blob: 2d48deef2a200ee87c1223cd0e91aeeebe8300c8 [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Tests for Google Test itself. This verifies that the basic constructs of
// Google Test work.
#include "gtest/gtest.h"
// Verifies that the command line flag variables can be accessed in
// code once "gtest.h" has been #included.
// Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
bool dummy =
GTEST_FLAG_GET(also_run_disabled_tests) ||
GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) ||
GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) ||
GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) ||
GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) ||
GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) ||
GTEST_FLAG_GET(repeat) > 0 ||
GTEST_FLAG_GET(recreate_environments_when_repeating) ||
GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) ||
GTEST_FLAG_GET(stack_trace_depth) > 0 ||
GTEST_FLAG_GET(stream_result_to) != "unknown" ||
GTEST_FLAG_GET(throw_on_failure);
EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
}
#include <limits.h> // For INT_MAX.
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <cstdint>
#include <map>
#include <memory>
#include <ostream>
#include <set>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <vector>
#include "gtest/gtest-spi.h"
#include "src/gtest-internal-inl.h"
struct ConvertibleGlobalType {
// The inner enable_if is to ensure invoking is_constructible doesn't fail.
// The outer enable_if is to ensure the overload resolution doesn't encounter
// an ambiguity.
template <
class T,
std::enable_if_t<
false, std::enable_if_t<std::is_constructible<T>::value, int>> = 0>
operator T() const; // NOLINT(google-explicit-constructor)
};
void operator<<(ConvertibleGlobalType&, int);
static_assert(sizeof(decltype(std::declval<ConvertibleGlobalType&>()
<< 1)(*)()) > 0,
"error in operator<< overload resolution");
namespace testing {
namespace internal {
#if GTEST_CAN_STREAM_RESULTS_
class StreamingListenerTest : public Test {
public:
class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
public:
// Sends a string to the socket.
void Send(const std::string& message) override { output_ += message; }
std::string output_;
};
StreamingListenerTest()
: fake_sock_writer_(new FakeSocketWriter),
streamer_(fake_sock_writer_),
test_info_obj_("FooTest", "Bar", nullptr, nullptr,
CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
protected:
std::string* output() { return &(fake_sock_writer_->output_); }
FakeSocketWriter* const fake_sock_writer_;
StreamingListener streamer_;
UnitTest unit_test_;
TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test.
};
TEST_F(StreamingListenerTest, OnTestProgramEnd) {
*output() = "";
streamer_.OnTestProgramEnd(unit_test_);
EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
}
TEST_F(StreamingListenerTest, OnTestIterationEnd) {
*output() = "";
streamer_.OnTestIterationEnd(unit_test_, 42);
EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
}
TEST_F(StreamingListenerTest, OnTestSuiteStart) {
*output() = "";
streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr));
EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
}
TEST_F(StreamingListenerTest, OnTestSuiteEnd) {
*output() = "";
streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr));
EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
}
TEST_F(StreamingListenerTest, OnTestStart) {
*output() = "";
streamer_.OnTestStart(test_info_obj_);
EXPECT_EQ("event=TestStart&name=Bar\n", *output());
}
TEST_F(StreamingListenerTest, OnTestEnd) {
*output() = "";
streamer_.OnTestEnd(test_info_obj_);
EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
}
TEST_F(StreamingListenerTest, OnTestPartResult) {
*output() = "";
streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure,
"foo.cc", 42, "failed=\n&%"));
// Meta characters in the failure message should be properly escaped.
EXPECT_EQ(
"event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
*output());
}
#endif // GTEST_CAN_STREAM_RESULTS_
// Provides access to otherwise private parts of the TestEventListeners class
// that are needed to test it.
class TestEventListenersAccessor {
public:
static TestEventListener* GetRepeater(TestEventListeners* listeners) {
return listeners->repeater();
}
static void SetDefaultResultPrinter(TestEventListeners* listeners,
TestEventListener* listener) {
listeners->SetDefaultResultPrinter(listener);
}
static void SetDefaultXmlGenerator(TestEventListeners* listeners,
TestEventListener* listener) {
listeners->SetDefaultXmlGenerator(listener);
}
static bool EventForwardingEnabled(const TestEventListeners& listeners) {
return listeners.EventForwardingEnabled();
}
static void SuppressEventForwarding(TestEventListeners* listeners) {
listeners->SuppressEventForwarding(true);
}
};
class UnitTestRecordPropertyTestHelper : public Test {
protected:
UnitTestRecordPropertyTestHelper() {}
// Forwards to UnitTest::RecordProperty() to bypass access controls.
void UnitTestRecordProperty(const char* key, const std::string& value) {
unit_test_.RecordProperty(key, value);
}
UnitTest unit_test_;
};
} // namespace internal
} // namespace testing
using testing::AssertionFailure;
using testing::AssertionResult;
using testing::AssertionSuccess;
using testing::DoubleLE;
using testing::EmptyTestEventListener;
using testing::Environment;
using testing::FloatLE;
using testing::IsNotSubstring;
using testing::IsSubstring;
using testing::kMaxStackTraceDepth;
using testing::Message;
using testing::ScopedFakeTestPartResultReporter;
using testing::StaticAssertTypeEq;
using testing::Test;
using testing::TestEventListeners;
using testing::TestInfo;
using testing::TestPartResult;
using testing::TestPartResultArray;
using testing::TestProperty;
using testing::TestResult;
using testing::TimeInMillis;
using testing::UnitTest;
using testing::internal::AlwaysFalse;
using testing::internal::AlwaysTrue;
using testing::internal::AppendUserMessage;
using testing::internal::ArrayAwareFind;
using testing::internal::ArrayEq;
using testing::internal::CodePointToUtf8;
using testing::internal::CopyArray;
using testing::internal::CountIf;
using testing::internal::EqFailure;
using testing::internal::FloatingPoint;
using testing::internal::ForEach;
using testing::internal::FormatEpochTimeInMillisAsIso8601;
using testing::internal::FormatTimeInMillisAsSeconds;
using testing::internal::GetElementOr;
using testing::internal::GetNextRandomSeed;
using testing::internal::GetRandomSeedFromFlag;
using testing::internal::GetTestTypeId;
using testing::internal::GetTimeInMillis;
using testing::internal::GetTypeId;
using testing::internal::GetUnitTestImpl;
using testing::internal::GTestFlagSaver;
using testing::internal::HasDebugStringAndShortDebugString;
using testing::internal::Int32FromEnvOrDie;
using testing::internal::IsContainer;
using testing::internal::IsContainerTest;
using testing::internal::IsNotContainer;
using testing::internal::kMaxRandomSeed;
using testing::internal::kTestTypeIdInGoogleTest;
using testing::internal::NativeArray;
using testing::internal::ParseFlag;
using testing::internal::RelationToSourceCopy;
using testing::internal::RelationToSourceReference;
using testing::internal::ShouldRunTestOnShard;
using testing::internal::ShouldShard;
using testing::internal::ShouldUseColor;
using testing::internal::Shuffle;
using testing::internal::ShuffleRange;
using testing::internal::SkipPrefix;
using testing::internal::StreamableToString;
using testing::internal::String;
using testing::internal::TestEventListenersAccessor;
using testing::internal::TestResultAccessor;
using testing::internal::WideStringToUtf8;
using testing::internal::edit_distance::CalculateOptimalEdits;
using testing::internal::edit_distance::CreateUnifiedDiff;
using testing::internal::edit_distance::EditType;
#if GTEST_HAS_STREAM_REDIRECTION
using testing::internal::CaptureStdout;
using testing::internal::GetCapturedStdout;
#endif
#ifdef GTEST_IS_THREADSAFE
using testing::internal::ThreadWithParam;
#endif
class TestingVector : public std::vector<int> {};
::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) {
os << "{ ";
for (size_t i = 0; i < vector.size(); i++) {
os << vector[i] << " ";
}
os << "}";
return os;
}
// This line tests that we can define tests in an unnamed namespace.
namespace {
TEST(GetRandomSeedFromFlagTest, HandlesZero) {
const int seed = GetRandomSeedFromFlag(0);
EXPECT_LE(1, seed);
EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
}
TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
EXPECT_EQ(1, GetRandomSeedFromFlag(1));
EXPECT_EQ(2, GetRandomSeedFromFlag(2));
EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
GetRandomSeedFromFlag(kMaxRandomSeed));
}
TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
const int seed1 = GetRandomSeedFromFlag(-1);
EXPECT_LE(1, seed1);
EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
EXPECT_LE(1, seed2);
EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
}
TEST(GetNextRandomSeedTest, WorksForValidInput) {
EXPECT_EQ(2, GetNextRandomSeed(1));
EXPECT_EQ(3, GetNextRandomSeed(2));
EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
GetNextRandomSeed(kMaxRandomSeed - 1));
EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
// We deliberately don't test GetNextRandomSeed() with invalid
// inputs, as that requires death tests, which are expensive. This
// is fine as GetNextRandomSeed() is internal and has a
// straightforward definition.
}
static void ClearCurrentTestPartResults() {
TestResultAccessor::ClearTestPartResults(
GetUnitTestImpl()->current_test_result());
}
// Tests GetTypeId.
TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
}
class SubClassOfTest : public Test {};
class AnotherSubClassOfTest : public Test {};
TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
}
// Verifies that GetTestTypeId() returns the same value, no matter it
// is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
}
// Tests CanonicalizeForStdLibVersioning.
using ::testing::internal::CanonicalizeForStdLibVersioning;
TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
}
TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
EXPECT_EQ("std::bind",
CanonicalizeForStdLibVersioning("std::__google::bind"));
EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
}
// Tests FormatTimeInMillisAsSeconds().
TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0));
}
TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000));
EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000));
EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000));
EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456));
EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890));
}
TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000));
EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000));
EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000));
EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456));
EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890));
}
// TODO: b/287046337 - In emscripten, local time zone modification is not
// supported.
#if !defined(__EMSCRIPTEN__)
// Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion
// for particular dates below was verified in Python using
// datetime.datetime.fromutctimestamp(<timestamp>/1000).
// FormatEpochTimeInMillisAsIso8601 depends on the local timezone, so we
// have to set up a particular timezone to obtain predictable results.
class FormatEpochTimeInMillisAsIso8601Test : public Test {
public:
// On Cygwin, GCC doesn't allow unqualified integer literals to exceed
// 32 bits, even when 64-bit integer types are available. We have to
// force the constants to have a 64-bit type here.
static const TimeInMillis kMillisPerSec = 1000;
private:
void SetUp() override {
saved_tz_.reset();
GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */)
if (const char* tz = getenv("TZ")) {
saved_tz_ = std::make_unique<std::string>(tz);
}
GTEST_DISABLE_MSC_DEPRECATED_POP_()
// Set the local time zone for FormatEpochTimeInMillisAsIso8601 to be
// a fixed time zone for reproducibility purposes.
SetTimeZone("UTC+00");
}
void TearDown() override {
SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr);
saved_tz_.reset();
}
static void SetTimeZone(const char* time_zone) {
// tzset() distinguishes between the TZ variable being present and empty
// and not being present, so we have to consider the case of time_zone
// being NULL.
#if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)
// ...Unless it's MSVC, whose standard library's _putenv doesn't
// distinguish between an empty and a missing variable.
const std::string env_var =
std::string("TZ=") + (time_zone ? time_zone : "");
_putenv(env_var.c_str());
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
tzset();
GTEST_DISABLE_MSC_WARNINGS_POP_()
#else
#if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21
// Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00".
// See https://github.com/android/ndk/issues/1604.
setenv("TZ", "UTC", 1);
tzset();
#endif
if (time_zone) {
setenv(("TZ"), time_zone, 1);
} else {
unsetenv("TZ");
}
tzset();
#endif
}
std::unique_ptr<std::string> saved_tz_; // Empty and null are different here
};
const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
EXPECT_EQ("2011-10-31T18:52:42.000",
FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
EXPECT_EQ("2011-10-31T18:52:42.234",
FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
EXPECT_EQ("2011-09-03T05:07:02.000",
FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
EXPECT_EQ("2011-09-28T17:08:22.000",
FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
}
TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
}
#endif // __EMSCRIPTEN__
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
#pragma option push -w-ccc -w-rch
#endif
// Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
// when the RHS is a pointer type.
TEST(NullLiteralTest, LHSAllowsNullLiterals) {
EXPECT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
ASSERT_EQ(0, static_cast<void*>(nullptr)); // NOLINT
EXPECT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
ASSERT_EQ(NULL, static_cast<void*>(nullptr)); // NOLINT
EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
const int* const p = nullptr;
EXPECT_EQ(0, p); // NOLINT
ASSERT_EQ(0, p); // NOLINT
EXPECT_EQ(NULL, p); // NOLINT
ASSERT_EQ(NULL, p); // NOLINT
EXPECT_EQ(nullptr, p);
ASSERT_EQ(nullptr, p);
}
struct ConvertToAll {
template <typename T>
operator T() const { // NOLINT
return T();
}
};
struct ConvertToPointer {
template <class T>
operator T*() const { // NOLINT
return nullptr;
}
};
struct ConvertToAllButNoPointers {
template <typename T,
typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T() const { // NOLINT
return T();
}
};
struct MyType {};
inline bool operator==(MyType const&, MyType const&) { return true; }
TEST(NullLiteralTest, ImplicitConversion) {
EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
#if !defined(__GNUC__) || defined(__clang__)
// Disabled due to GCC bug gcc.gnu.org/PR89580
EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
#endif
EXPECT_EQ(ConvertToAll{}, MyType{});
EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
}
#ifdef __clang__
#pragma clang diagnostic push
#if __has_warning("-Wzero-as-null-pointer-constant")
#pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
#endif
#endif
TEST(NullLiteralTest, NoConversionNoWarning) {
// Test that gtests detection and handling of null pointer constants
// doesn't trigger a warning when '0' isn't actually used as null.
EXPECT_EQ(0, 0);
ASSERT_EQ(0, 0);
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them.
#pragma option pop
#endif
//
// Tests CodePointToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeNul) {
EXPECT_EQ("", CodePointToUtf8(L'\0'));
}
// Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeAscii) {
EXPECT_EQ("a", CodePointToUtf8(L'a'));
EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
EXPECT_EQ("&", CodePointToUtf8(L'&'));
EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
}
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
// 000 1101 0011 => 110-00011 10-010011
EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
// 101 0111 0110 => 110-10101 10-110110
// Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
// in wide strings and wide chars. In order to accommodate them, we have to
// introduce such character constants as integers.
EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast<wchar_t>(0x576)));
}
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
// 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
}
#if !GTEST_WIDE_STRING_USES_UTF16_
// Tests in this group require a wchar_t to hold > 16 bits, and thus
// are skipped on Windows, and Cygwin, where a wchar_t is
// 16-bit wide. This code may not compile on those systems.
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
// 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
// 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
}
// Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
}
#endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests WideStringToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeNul) {
EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
}
// Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeAscii) {
EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
}
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
// 000 1101 0011 => 110-00011 10-010011
EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
// 101 0111 0110 => 110-10101 10-110110
const wchar_t s[] = {0x576, '\0'};
EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
}
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
// 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
const wchar_t s1[] = {0x8D3, '\0'};
EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
const wchar_t s2[] = {0xC74D, '\0'};
EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
}
// Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
}
// Tests that the conversion stops when the function reaches the limit
// specified by the 'length' parameter.
TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
}
#if !GTEST_WIDE_STRING_USES_UTF16_
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
// on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
// 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
}
// Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
WideStringToUtf8(L"\xABCDFF", -1).c_str());
}
#else // !GTEST_WIDE_STRING_USES_UTF16_
// Tests that surrogate pairs are encoded correctly on the systems using
// UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
const wchar_t s[] = {0xD801, 0xDC00, '\0'};
EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
}
// Tests that encoding an invalid UTF-16 surrogate pair
// generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
// Leading surrogate is at the end of the string.
const wchar_t s1[] = {0xD800, '\0'};
EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
// Leading surrogate is not followed by the trailing surrogate.
const wchar_t s2[] = {0xD800, 'M', '\0'};
EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
// Trailing surrogate appearas without a leading surrogate.
const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'};
EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
}
#endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests that codepoint concatenation works correctly.
#if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
EXPECT_STREQ(
"\xF4\x88\x98\xB4"
"\xEC\x9D\x8D"
"\n"
"\xD5\xB6"
"\xE0\xA3\x93"
"\xF4\x88\x98\xB4",
WideStringToUtf8(s, -1).c_str());
}
#else
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'};
EXPECT_STREQ(
"\xEC\x9D\x8D"
"\n"
"\xD5\xB6"
"\xE0\xA3\x93",
WideStringToUtf8(s, -1).c_str());
}
#endif // !GTEST_WIDE_STRING_USES_UTF16_
// Tests the Random class.
TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
testing::internal::Random random(42);
EXPECT_DEATH_IF_SUPPORTED(random.Generate(0),
"Cannot generate a number in the range \\[0, 0\\)");
EXPECT_DEATH_IF_SUPPORTED(
random.Generate(testing::internal::Random::kMaxRange + 1),
"Generation of a number in \\[0, 2147483649\\) was requested, "
"but this can only generate numbers in \\[0, 2147483648\\)");
}
TEST(RandomTest, GeneratesNumbersWithinRange) {
constexpr uint32_t kRange = 10000;
testing::internal::Random random(12345);
for (int i = 0; i < 10; i++) {
EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
}
testing::internal::Random random2(testing::internal::Random::kMaxRange);
for (int i = 0; i < 10; i++) {
EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
}
}
TEST(RandomTest, RepeatsWhenReseeded) {
constexpr int kSeed = 123;
constexpr int kArraySize = 10;
constexpr uint32_t kRange = 10000;
uint32_t values[kArraySize];
testing::internal::Random random(kSeed);
for (int i = 0; i < kArraySize; i++) {
values[i] = random.Generate(kRange);
}
random.Reseed(kSeed);
for (int i = 0; i < kArraySize; i++) {
EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
}
}
// Tests STL container utilities.
// Tests CountIf().
static bool IsPositive(int n) { return n > 0; }
TEST(ContainerUtilityTest, CountIf) {
std::vector<int> v;
EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
v.push_back(-1);
v.push_back(0);
EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
v.push_back(2);
v.push_back(-10);
v.push_back(10);
EXPECT_EQ(2, CountIf(v, IsPositive));
}
// Tests ForEach().
static int g_sum = 0;
static void Accumulate(int n) { g_sum += n; }
TEST(ContainerUtilityTest, ForEach) {
std::vector<int> v;
g_sum = 0;
ForEach(v, Accumulate);
EXPECT_EQ(0, g_sum); // Works for an empty container;
g_sum = 0;
v.push_back(1);
ForEach(v, Accumulate);
EXPECT_EQ(1, g_sum); // Works for a container with one element.
g_sum = 0;
v.push_back(20);
v.push_back(300);
ForEach(v, Accumulate);
EXPECT_EQ(321, g_sum);
}
// Tests GetElementOr().
TEST(ContainerUtilityTest, GetElementOr) {
std::vector<char> a;
EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
a.push_back('a');
a.push_back('b');
EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
}
TEST(ContainerUtilityDeathTest, ShuffleRange) {
std::vector<int> a;
a.push_back(0);
a.push_back(1);
a.push_back(2);
testing::internal::Random random(1);
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, -1, 1, &a),
"Invalid shuffle range start -1: must be in range \\[0, 3\\]");
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, 4, 4, &a),
"Invalid shuffle range start 4: must be in range \\[0, 3\\]");
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, 3, 2, &a),
"Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
EXPECT_DEATH_IF_SUPPORTED(
ShuffleRange(&random, 3, 4, &a),
"Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
}
class VectorShuffleTest : public Test {
protected:
static const size_t kVectorSize = 20;
VectorShuffleTest() : random_(1) {
for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
vector_.push_back(i);
}
}
static bool VectorIsCorrupt(const TestingVector& vector) {
if (kVectorSize != vector.size()) {
return true;
}
bool found_in_vector[kVectorSize] = {false};
for (size_t i = 0; i < vector.size(); i++) {
const int e = vector[i];
if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
return true;
}
found_in_vector[e] = true;
}
// Vector size is correct, elements' range is correct, no
// duplicate elements. Therefore no corruption has occurred.
return false;
}
static bool VectorIsNotCorrupt(const TestingVector& vector) {
return !VectorIsCorrupt(vector);
}
static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
for (int i = begin; i < end; i++) {
if (i != vector[static_cast<size_t>(i)]) {
return true;
}
}
return false;
}
static bool RangeIsUnshuffled(const TestingVector& vector, int begin,
int end) {
return !RangeIsShuffled(vector, begin, end);
}
static bool VectorIsShuffled(const TestingVector& vector) {
return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
}
static bool VectorIsUnshuffled(const TestingVector& vector) {
return !VectorIsShuffled(vector);
}
testing::internal::Random random_;
TestingVector vector_;
}; // class VectorShuffleTest
const size_t VectorShuffleTest::kVectorSize;
TEST_F(VectorShuffleTest, HandlesEmptyRange) {
// Tests an empty range at the beginning...
ShuffleRange(&random_, 0, 0, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...in the middle...
ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...at the end...
ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...and past the end.
ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
}
TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
// Tests a size one range at the beginning...
ShuffleRange(&random_, 0, 1, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...in the middle...
ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
// ...and at the end.
ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsUnshuffled, vector_);
}
// Because we use our own random number generator and a fixed seed,
// we can guarantee that the following "random" tests will succeed.
TEST_F(VectorShuffleTest, ShufflesEntireVector) {
Shuffle(&random_, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
// Tests the first and last elements in particular to ensure that
// there are no off-by-one problems in our shuffle algorithm.
EXPECT_NE(0, vector_[0]);
EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
}
TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
const int kRangeSize = kVectorSize / 2;
ShuffleRange(&random_, 0, kRangeSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
static_cast<int>(kVectorSize));
}
TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
const int kRangeSize = kVectorSize / 2;
ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
static_cast<int>(kVectorSize));
}
TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
const int kRangeSize = static_cast<int>(kVectorSize) / 3;
ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize);
EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
static_cast<int>(kVectorSize));
}
TEST_F(VectorShuffleTest, ShufflesRepeatably) {
TestingVector vector2;
for (size_t i = 0; i < kVectorSize; i++) {
vector2.push_back(static_cast<int>(i));
}
random_.Reseed(1234);
Shuffle(&random_, &vector_);
random_.Reseed(1234);
Shuffle(&random_, &vector2);
ASSERT_PRED1(VectorIsNotCorrupt, vector_);
ASSERT_PRED1(VectorIsNotCorrupt, vector2);
for (size_t i = 0; i < kVectorSize; i++) {
EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
}
}
// Tests the size of the AssertHelper class.
TEST(AssertHelperTest, AssertHelperIsSmall) {
// To avoid breaking clients that use lots of assertions in one
// function, we cannot grow the size of AssertHelper.
EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
}
// Tests String::EndsWithCaseInsensitive().
TEST(StringTest, EndsWithCaseInsensitive) {
EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
}
// C++Builder's preprocessor is buggy; it fails to expand macros that
// appear in macro parameters after wide char literals. Provide an alias
// for NULL as a workaround.
static const wchar_t* const kNull = nullptr;
// Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest, CaseInsensitiveWideCStringEquals) {
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
}
#ifdef GTEST_OS_WINDOWS
// Tests String::ShowWideCString().
TEST(StringTest, ShowWideCString) {
EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str());
EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
}
#ifdef GTEST_OS_WINDOWS_MOBILE
TEST(StringTest, AnsiAndUtf16Null) {
EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
}
TEST(StringTest, AnsiAndUtf16ConvertBasic) {
const char* ansi = String::Utf16ToAnsi(L"str");
EXPECT_STREQ("str", ansi);
delete[] ansi;
const WCHAR* utf16 = String::AnsiToUtf16("str");
EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
delete[] utf16;
}
TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
EXPECT_STREQ(".:\\ \"*?", ansi);
delete[] ansi;
const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
delete[] utf16;
}
#endif // GTEST_OS_WINDOWS_MOBILE
#endif // GTEST_OS_WINDOWS
// Tests TestProperty construction.
TEST(TestPropertyTest, StringValue) {
TestProperty property("key", "1");
EXPECT_STREQ("key", property.key());
EXPECT_STREQ("1", property.value());
}
// Tests TestProperty replacing a value.
TEST(TestPropertyTest, ReplaceStringValue) {
TestProperty property("key", "1");
EXPECT_STREQ("1", property.value());
property.SetValue("2");
EXPECT_STREQ("2", property.value());
}
// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
// functions (i.e. their definitions cannot be inlined at the call
// sites), or C++Builder won't compile the code.
static void AddFatalFailure() { FAIL() << "Expected fatal failure."; }
static void AddNonfatalFailure() {
ADD_FAILURE() << "Expected non-fatal failure.";
}
class ScopedFakeTestPartResultReporterTest : public Test {
public: // Must be public and not protected due to a bug in g++ 3.4.2.
enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE };
static void AddFailure(FailureMode failure) {
if (failure == FATAL_FAILURE) {
AddFatalFailure();
} else {
AddNonfatalFailure();
}
}
};
// Tests that ScopedFakeTestPartResultReporter intercepts test
// failures.
TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
TestPartResultArray results;
{
ScopedFakeTestPartResultReporter reporter(
ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
&results);
AddFailure(NONFATAL_FAILURE);
AddFailure(FATAL_FAILURE);
}
EXPECT_EQ(2, results.size());
EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
}
TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
TestPartResultArray results;
{
// Tests, that the deprecated constructor still works.
ScopedFakeTestPartResultReporter reporter(&results);
AddFailure(NONFATAL_FAILURE);
}
EXPECT_EQ(1, results.size());
}
#ifdef GTEST_IS_THREADSAFE
class ScopedFakeTestPartResultReporterWithThreadsTest
: public ScopedFakeTestPartResultReporterTest {
protected:
static void AddFailureInOtherThread(FailureMode failure) {
ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
thread.Join();
}
};
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
InterceptsTestFailuresInAllThreads) {
TestPartResultArray results;
{
ScopedFakeTestPartResultReporter reporter(
ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
AddFailure(NONFATAL_FAILURE);
AddFailure(FATAL_FAILURE);
AddFailureInOtherThread(NONFATAL_FAILURE);
AddFailureInOtherThread(FATAL_FAILURE);
}
EXPECT_EQ(4, results.size());
EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
}
#endif // GTEST_IS_THREADSAFE
// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
// work even if the failure is generated in a called function rather than
// the current context.
typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
}
TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
EXPECT_FATAL_FAILURE(AddFatalFailure(),
::std::string("Expected fatal failure."));
}
TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
// We have another test below to verify that the macro catches fatal
// failures generated on another thread.
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
"Expected fatal failure.");
}
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true"
#pragma option push -w-ccc
#endif
// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
// function even when the statement in it contains ASSERT_*.
int NonVoidFunction() {
EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
return 0;
}
TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
NonVoidFunction();
}
// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
// current function even though 'statement' generates a fatal failure.
void DoesNotAbortHelper(bool* aborted) {
EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
*aborted = false;
}
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them.
#pragma option pop
#endif
TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
bool aborted = true;
DoesNotAbortHelper(&aborted);
EXPECT_FALSE(aborted);
}
// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
// statement that contains a macro which expands to code containing an
// unprotected comma.
static int global_var = 0;
#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
#ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(
{
GTEST_USE_UNPROTECTED_COMMA_;
AddFatalFailure();
},
"");
#endif
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(
{
GTEST_USE_UNPROTECTED_COMMA_;
AddFatalFailure();
},
"");
}
// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure.");
}
TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
::std::string("Expected non-fatal failure."));
}
TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
// We have another test below to verify that the macro catches
// non-fatal failures generated on another thread.
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
"Expected non-fatal failure.");
}
// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
// statement that contains a macro which expands to code containing an
// unprotected comma.
TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
EXPECT_NONFATAL_FAILURE(
{
GTEST_USE_UNPROTECTED_COMMA_;
AddNonfatalFailure();
},
"");
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
{
GTEST_USE_UNPROTECTED_COMMA_;
AddNonfatalFailure();
},
"");
}
#ifdef GTEST_IS_THREADSAFE
typedef ScopedFakeTestPartResultReporterWithThreadsTest
ExpectFailureWithThreadsTest;
TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
"Expected fatal failure.");
}
TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
}
#endif // GTEST_IS_THREADSAFE
// Tests the TestProperty class.
TEST(TestPropertyTest, ConstructorWorks) {
const TestProperty property("key", "value");
EXPECT_STREQ("key", property.key());
EXPECT_STREQ("value", property.value());
}
TEST(TestPropertyTest, SetValue) {
TestProperty property("key", "value_1");
EXPECT_STREQ("key", property.key());
property.SetValue("value_2");
EXPECT_STREQ("key", property.key());
EXPECT_STREQ("value_2", property.value());
}
// Tests the TestResult class
// The test fixture for testing TestResult.
class TestResultTest : public Test {
protected:
typedef std::vector<TestPartResult> TPRVector;
// We make use of 2 TestPartResult objects,
TestPartResult *pr1, *pr2;
// ... and 3 TestResult objects.
TestResult *r0, *r1, *r2;
void SetUp() override {
// pr1 is for success.
pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10,
"Success!");
// pr2 is for fatal failure.
pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc",
-1, // This line number means "unknown"
"Failure!");
// Creates the TestResult objects.
r0 = new TestResult();
r1 = new TestResult();
r2 = new TestResult();
// In order to test TestResult, we need to modify its internal
// state, in particular the TestPartResult vector it holds.
// test_part_results() returns a const reference to this vector.
// We cast it to a non-const object s.t. it can be modified
TPRVector* results1 =
const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r1));
TPRVector* results2 =
const_cast<TPRVector*>(&TestResultAccessor::test_part_results(*r2));
// r0 is an empty TestResult.
// r1 contains a single SUCCESS TestPartResult.
results1->push_back(*pr1);
// r2 contains a SUCCESS, and a FAILURE.
results2->push_back(*pr1);
results2->push_back(*pr2);
}
void TearDown() override {
delete pr1;
delete pr2;
delete r0;
delete r1;
delete r2;
}
// Helper that compares two TestPartResults.
static void CompareTestPartResult(const TestPartResult& expected,
const TestPartResult& actual) {
EXPECT_EQ(expected.type(), actual.type());
EXPECT_STREQ(expected.file_name(), actual.file_name());
EXPECT_EQ(expected.line_number(), actual.line_number());
EXPECT_STREQ(expected.summary(), actual.summary());
EXPECT_STREQ(expected.message(), actual.message());
EXPECT_EQ(expected.passed(), actual.passed());
EXPECT_EQ(expected.failed(), actual.failed());
EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
}
};
// Tests TestResult::total_part_count().
TEST_F(TestResultTest, total_part_count) {
ASSERT_EQ(0, r0->total_part_count());
ASSERT_EQ(1, r1->total_part_count());
ASSERT_EQ(2, r2->total_part_count());
}
// Tests TestResult::Passed().
TEST_F(TestResultTest, Passed) {
ASSERT_TRUE(r0->Passed());
ASSERT_TRUE(r1->Passed());
ASSERT_FALSE(r2->Passed());
}
// Tests TestResult::Failed().
TEST_F(TestResultTest, Failed) {
ASSERT_FALSE(r0->Failed());
ASSERT_FALSE(r1->Failed());
ASSERT_TRUE(r2->Failed());
}
// Tests TestResult::GetTestPartResult().
typedef TestResultTest TestResultDeathTest;
TEST_F(TestResultDeathTest, GetTestPartResult) {
CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
}
// Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
TestResult test_result;
ASSERT_EQ(0, test_result.test_property_count());
}
// Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
TestResult test_result;
TestProperty property("key_1", "1");
TestResultAccessor::RecordProperty(&test_result, "testcase", property);
ASSERT_EQ(1, test_result.test_property_count());
const TestProperty& actual_property = test_result.GetTestProperty(0);
EXPECT_STREQ("key_1", actual_property.key());
EXPECT_STREQ("1", actual_property.value());
}
// Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
TestResult test_result;
TestProperty property_1("key_1", "1");
TestProperty property_2("key_2", "2");
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
ASSERT_EQ(2, test_result.test_property_count());
const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
EXPECT_STREQ("key_1", actual_property_1.key());
EXPECT_STREQ("1", actual_property_1.value());
const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
EXPECT_STREQ("key_2", actual_property_2.key());
EXPECT_STREQ("2", actual_property_2.value());
}
// Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
TestResult test_result;
TestProperty property_1_1("key_1", "1");
TestProperty property_2_1("key_2", "2");
TestProperty property_1_2("key_1", "12");
TestProperty property_2_2("key_2", "22");
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
ASSERT_EQ(2, test_result.test_property_count());
const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
EXPECT_STREQ("key_1", actual_property_1.key());
EXPECT_STREQ("12", actual_property_1.value());
const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
EXPECT_STREQ("key_2", actual_property_2.key());
EXPECT_STREQ("22", actual_property_2.value());
}
// Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest, GetTestProperty) {
TestResult test_result;
TestProperty property_1("key_1", "1");
TestProperty property_2("key_2", "2");
TestProperty property_3("key_3", "3");
TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
EXPECT_STREQ("key_1", fetched_property_1.key());
EXPECT_STREQ("1", fetched_property_1.value());
EXPECT_STREQ("key_2", fetched_property_2.key());
EXPECT_STREQ("2", fetched_property_2.value());
EXPECT_STREQ("key_3", fetched_property_3.key());
EXPECT_STREQ("3", fetched_property_3.value());
EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
}
// Tests the Test class.
//
// It's difficult to test every public method of this class (we are
// already stretching the limit of Google Test by using it to test itself!).
// Fortunately, we don't have to do that, as we are already testing
// the functionalities of the Test class extensively by using Google Test
// alone.
//
// Therefore, this section only contains one test.
// Tests that GTestFlagSaver works on Windows and Mac.
class GTestFlagSaverTest : public Test {
protected:
// Saves the Google Test flags such that we can restore them later, and
// then sets them to their default values. This will be called
// before the first test in this test case is run.
static void SetUpTestSuite() {
saver_ = new GTestFlagSaver;
GTEST_FLAG_SET(also_run_disabled_tests, false);
GTEST_FLAG_SET(break_on_failure, false);
GTEST_FLAG_SET(catch_exceptions, false);
GTEST_FLAG_SET(death_test_use_fork, false);
GTEST_FLAG_SET(color, "auto");
GTEST_FLAG_SET(fail_fast, false);
GTEST_FLAG_SET(filter, "");
GTEST_FLAG_SET(list_tests, false);
GTEST_FLAG_SET(output, "");
GTEST_FLAG_SET(brief, false);
GTEST_FLAG_SET(print_time, true);
GTEST_FLAG_SET(random_seed, 0);
GTEST_FLAG_SET(repeat, 1);
GTEST_FLAG_SET(recreate_environments_when_repeating, true);
GTEST_FLAG_SET(shuffle, false);
GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
GTEST_FLAG_SET(stream_result_to, "");
GTEST_FLAG_SET(throw_on_failure, false);
}
// Restores the Google Test flags that the tests have modified. This will
// be called after the last test in this test case is run.
static void TearDownTestSuite() {
delete saver_;
saver_ = nullptr;
}
// Verifies that the Google Test flags have their default values, and then
// modifies each of them.
void VerifyAndModifyFlags() {
EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests));
EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure));
EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions));
EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str());
EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork));
EXPECT_FALSE(GTEST_FLAG_GET(fail_fast));
EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str());
EXPECT_FALSE(GTEST_FLAG_GET(list_tests));
EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str());
EXPECT_FALSE(GTEST_FLAG_GET(brief));
EXPECT_TRUE(GTEST_FLAG_GET(print_time));
EXPECT_EQ(0, GTEST_FLAG_GET(random_seed));
EXPECT_EQ(1, GTEST_FLAG_GET(repeat));
EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating));
EXPECT_FALSE(GTEST_FLAG_GET(shuffle));
EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth));
EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str());
EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure));
GTEST_FLAG_SET(also_run_disabled_tests, true);
GTEST_FLAG_SET(break_on_failure, true);
GTEST_FLAG_SET(catch_exceptions, true);
GTEST_FLAG_SET(color, "no");
GTEST_FLAG_SET(death_test_use_fork, true);
GTEST_FLAG_SET(fail_fast, true);
GTEST_FLAG_SET(filter, "abc");
GTEST_FLAG_SET(list_tests, true);
GTEST_FLAG_SET(output, "xml:foo.xml");
GTEST_FLAG_SET(brief, true);
GTEST_FLAG_SET(print_time, false);
GTEST_FLAG_SET(random_seed, 1);
GTEST_FLAG_SET(repeat, 100);
GTEST_FLAG_SET(recreate_environments_when_repeating, false);
GTEST_FLAG_SET(shuffle, true);
GTEST_FLAG_SET(stack_trace_depth, 1);
GTEST_FLAG_SET(stream_result_to, "localhost:1234");
GTEST_FLAG_SET(throw_on_failure, true);
}
private:
// For saving Google Test flags during this test case.
static GTestFlagSaver* saver_;
};
GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
// Google Test doesn't guarantee the order of tests. The following two
// tests are designed to work regardless of their order.
// Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); }
// Verifies that the Google Test flags in the body of the previous test were
// restored to their original values.
TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); }
// Sets an environment variable with the given name to the given
// value. If the value argument is "", unsets the environment
// variable. The caller must ensure that both arguments are not NULL.
static void SetEnv(const char* name, const char* value) {
#ifdef GTEST_OS_WINDOWS_MOBILE
// Environment variables are not supported on Windows CE.
return;
#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
// C++Builder's putenv only stores a pointer to its parameter; we have to
// ensure that the string remains valid as long as it might be needed.
// We use an std::map to do so.
static std::map<std::string, std::string*> added_env;
// Because putenv stores a pointer to the string buffer, we can't delete the
// previous string (if present) until after it's replaced.
std::string* prev_env = NULL;
if (added_env.find(name) != added_env.end()) {
prev_env = added_env[name];
}
added_env[name] =
new std::string((Message() << name << "=" << value).GetString());
// The standard signature of putenv accepts a 'char*' argument. Other
// implementations, like C++Builder's, accept a 'const char*'.
// We cast away the 'const' since that would work for both variants.
putenv(const_cast<char*>(added_env[name]->c_str()));
delete prev_env;
#elif defined(GTEST_OS_WINDOWS) // If we are on Windows proper.
_putenv((Message() << name << "=" << value).GetString().c_str());
#else
if (*value == '\0') {
unsetenv(name);
} else {
setenv(name, value, 1);
}
#endif // GTEST_OS_WINDOWS_MOBILE
}
#ifndef GTEST_OS_WINDOWS_MOBILE
// Environment variables are not supported on Windows CE.
using testing::internal::Int32FromGTestEnv;
// Tests Int32FromGTestEnv().
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable is not set.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
}
#if !defined(GTEST_GET_INT32_FROM_ENV_)
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
}
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
}
#endif // !defined(GTEST_GET_INT32_FROM_ENV_)
// Tests that Int32FromGTestEnv() parses and returns the value of the
// environment variable when it represents a valid decimal integer in
// the range of an Int32.
TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests ParseFlag().
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag has wrong format
TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
int32_t value = 123;
EXPECT_FALSE(ParseFlag("--a=100", "b", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseFlag("a=100", "a", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseFlag() returns false and doesn't change the
// output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
printf("(expecting 2 warnings)\n");
int32_t value = 123;
EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag does not represent a valid decimal
// integer.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
printf("(expecting 2 warnings)\n");
int32_t value = 123;
EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() parses the value of the flag and
// returns true when the flag represents a valid decimal integer in
// the range of an Int32.
TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
int32_t value = 123;
EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
EXPECT_EQ(456, value);
EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value));
EXPECT_EQ(-789, value);
}
// Tests that Int32FromEnvOrDie() parses the value of the var or
// returns the correct default.
// Environment variables are not supported on Windows CE.
#ifndef GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests that Int32FromEnvOrDie() aborts with an error message
// if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
EXPECT_DEATH_IF_SUPPORTED(
Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
}
// Tests that Int32FromEnvOrDie() aborts with an error message
// if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
EXPECT_DEATH_IF_SUPPORTED(
Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*");
}
// Tests that ShouldRunTestOnShard() selects all tests
// where there is 1 shard.
TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
}
class ShouldShardTest : public testing::Test {
protected:
void SetUp() override {
index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
}
void TearDown() override {
SetEnv(index_var_, "");
SetEnv(total_var_, "");
}
const char* index_var_;
const char* total_var_;
};
// Tests that sharding is disabled if neither of the environment variables
// are set.
TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
SetEnv(index_var_, "");
SetEnv(total_var_, "");
EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
}
// Tests that sharding is not enabled if total_shards == 1.
TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
SetEnv(index_var_, "0");
SetEnv(total_var_, "1");
EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
}
// Tests that sharding is enabled if total_shards > 1 and
// we are not in a death test subprocess.
// Environment variables are not supported on Windows CE.
#ifndef GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
SetEnv(index_var_, "4");
SetEnv(total_var_, "22");
EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
SetEnv(index_var_, "8");
SetEnv(total_var_, "9");
EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
SetEnv(index_var_, "0");
SetEnv(total_var_, "9");
EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests that we exit in error if the sharding values are not valid.
typedef ShouldShardTest ShouldShardDeathTest;
TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
SetEnv(index_var_, "4");
SetEnv(total_var_, "4");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "4");
SetEnv(total_var_, "-2");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "5");
SetEnv(total_var_, "");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
SetEnv(index_var_, "");
SetEnv(total_var_, "5");
EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
}
// Tests that ShouldRunTestOnShard is a partition when 5
// shards are used.
TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
// Choose an arbitrary number of tests and shards.
const int num_tests = 17;
const int num_shards = 5;
// Check partitioning: each test should be on exactly 1 shard.
for (int test_id = 0; test_id < num_tests; test_id++) {
int prev_selected_shard_index = -1;
for (int shard_index = 0; shard_index < num_shards; shard_index++) {
if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
if (prev_selected_shard_index < 0) {
prev_selected_shard_index = shard_index;
} else {
ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
<< shard_index << " are both selected to run test "
<< test_id;
}
}
}
}
// Check balance: This is not required by the sharding protocol, but is a
// desirable property for performance.
for (int shard_index = 0; shard_index < num_shards; shard_index++) {
int num_tests_on_shard = 0;
for (int test_id = 0; test_id < num_tests; test_id++) {
num_tests_on_shard +=
ShouldRunTestOnShard(num_shards, shard_index, test_id);
}
EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
}
}
// For the same reason we are not explicitly testing everything in the
// Test class, there are no separate tests for the following classes
// (except for some trivial cases):
//
// TestSuite, UnitTest, UnitTestResultPrinter.
//
// Similarly, there are no separate tests for the following macros:
//
// TEST, TEST_F, RUN_ALL_TESTS
TEST(UnitTestTest, CanGetOriginalWorkingDir) {
ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
}
TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
}
// When a property using a reserved key is supplied to this function, it
// tests that a non-fatal failure is added, a fatal failure is not added,
// and that the property is not recorded.
void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
const TestResult& test_result, const char* key) {
EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
ASSERT_EQ(0, test_result.test_property_count())
<< "Property for key '" << key << "' recorded unexpectedly.";
}
void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
const char* key) {
const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
ASSERT_TRUE(test_info != nullptr);
ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
key);
}
void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
const char* key) {
const testing::TestSuite* test_suite =
UnitTest::GetInstance()->current_test_suite();
ASSERT_TRUE(test_suite != nullptr);
ExpectNonFatalFailureRecordingPropertyWithReservedKey(
test_suite->ad_hoc_test_result(), key);
}
void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
const char* key) {
ExpectNonFatalFailureRecordingPropertyWithReservedKey(
UnitTest::GetInstance()->ad_hoc_test_result(), key);
}
// Tests that property recording functions in UnitTest outside of tests
// functions correctly. Creating a separate instance of UnitTest ensures it
// is in a state similar to the UnitTest's singleton's between tests.
class UnitTestRecordPropertyTest
: public testing::internal::UnitTestRecordPropertyTestHelper {
public:
static void SetUpTestSuite() {
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"disabled");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"errors");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"failures");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"name");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"tests");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
"time");
Test::RecordProperty("test_case_key_1", "1");
const testing::TestSuite* test_suite =
UnitTest::GetInstance()->current_test_suite();
ASSERT_TRUE(test_suite != nullptr);
ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
EXPECT_STREQ("test_case_key_1",
test_suite->ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("1",
test_suite->ad_hoc_test_result().GetTestProperty(0).value());
}
};
// Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
UnitTestRecordProperty("key_1", "1");
ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
EXPECT_STREQ("key_1",
unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
}
// Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
UnitTestRecordProperty("key_1", "1");
UnitTestRecordProperty("key_2", "2");
ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
EXPECT_STREQ("key_1",
unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
EXPECT_STREQ("key_2",
unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
}
// Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
UnitTestRecordProperty("key_1", "1");
UnitTestRecordProperty("key_2", "2");
UnitTestRecordProperty("key_1", "12");
UnitTestRecordProperty("key_2", "22");
ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
EXPECT_STREQ("key_1",
unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
EXPECT_STREQ("12",
unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
EXPECT_STREQ("key_2",
unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
EXPECT_STREQ("22",
unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
}
TEST_F(UnitTestRecordPropertyTest,
AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"value_param");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"type_param");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
"classname");
}
TEST_F(UnitTestRecordPropertyTest,
AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
EXPECT_NONFATAL_FAILURE(
Test::RecordProperty("name", "1"),
"'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
" 'file', and 'line' are reserved");
}
class UnitTestRecordPropertyTestEnvironment : public Environment {
public:
void TearDown() override {
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"tests");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"failures");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"disabled");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"errors");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"name");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"timestamp");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"time");
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
"random_seed");
}
};
// This will test property recording outside of any test or test case.
GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static Environment* record_property_env =
AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
// of various arities. They do not attempt to be exhaustive. Rather,
// view them as smoke tests that can be easily reviewed and verified.
// A more complete set of tests for predicate assertions can be found
// in gtest_pred_impl_unittest.cc.
// First, some predicates and predicate-formatters needed by the tests.
// Returns true if and only if the argument is an even number.
bool IsEven(int n) { return (n % 2) == 0; }
// A functor that returns true if and only if the argument is an even number.
struct IsEvenFunctor {
bool operator()(int n) { return IsEven(n); }
};
// A predicate-formatter function that asserts the argument is an even
// number.
AssertionResult AssertIsEven(const char* expr, int n) {
if (IsEven(n)) {
return AssertionSuccess();
}
Message msg;
msg << expr << " evaluates to " << n << ", which is not even.";
return AssertionFailure(msg);
}
// A predicate function that returns AssertionResult for use in
// EXPECT/ASSERT_TRUE/FALSE.
AssertionResult ResultIsEven(int n) {
if (IsEven(n))
return AssertionSuccess() << n << " is even";
else
return AssertionFailure() << n << " is odd";
}
// A predicate function that returns AssertionResult but gives no
// explanation why it succeeds. Needed for testing that
// EXPECT/ASSERT_FALSE handles such functions correctly.
AssertionResult ResultIsEvenNoExplanation(int n) {
if (IsEven(n))
return AssertionSuccess();
else
return AssertionFailure() << n << " is odd";
}
// A predicate-formatter functor that asserts the argument is an even
// number.
struct AssertIsEvenFunctor {
AssertionResult operator()(const char* expr, int n) {
return AssertIsEven(expr, n);
}
};
// Returns true if and only if the sum of the arguments is an even number.
bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); }
// A functor that returns true if and only if the sum of the arguments is an
// even number.
struct SumIsEven3Functor {
bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); }
};
// A predicate-formatter function that asserts the sum of the
// arguments is an even number.
AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3,
const char* e4, int n1, int n2, int n3,
int n4) {
const int sum = n1 + n2 + n3 + n4;
if (IsEven(sum)) {
return AssertionSuccess();
}
Message msg;
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + "
<< n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum
<< ", which is not even.";
return AssertionFailure(msg);
}
// A predicate-formatter functor that asserts the sum of the arguments
// is an even number.
struct AssertSumIsEven5Functor {
AssertionResult operator()(const char* e1, const char* e2, const char* e3,
const char* e4, const char* e5, int n1, int n2,
int n3, int n4, int n5) {
const int sum = n1 + n2 + n3 + n4 + n5;
if (IsEven(sum)) {
return AssertionSuccess();
}
Message msg;
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
<< " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + "
<< n5 << ") evaluates to " << sum << ", which is not even.";
return AssertionFailure(msg);
}
};
// Tests unary predicate assertions.
// Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test, WithoutFormat) {
// Success cases.
EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
ASSERT_PRED1(IsEven, 4);
// Failure cases.
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
},
"This failure is expected.");
EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false");
}
// Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test, WithFormat) {
// Success cases.
EXPECT_PRED_FORMAT1(AssertIsEven, 2);
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
<< "This failure is UNEXPECTED!";
// Failure cases.
const int n = 5;
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
"n evaluates to 5, which is not even.");
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
},
"This failure is expected.");
}
// Tests that unary predicate assertions evaluates their arguments
// exactly once.
TEST(Pred1Test, SingleEvaluationOnFailure) {
// A success case.
static int n = 0;
EXPECT_PRED1(IsEven, n++);
EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
// A failure case.
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
<< "This failure is expected.";
},
"This failure is expected.");
EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
}
// Tests predicate assertions whose arity is >= 2.
// Tests predicate assertions that don't use a custom formatter.
TEST(PredTest, WithoutFormat) {
// Success cases.
ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
// Failure cases.
const int n1 = 1;
const int n2 = 2;
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
},
"This failure is expected.");
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
},
"evaluates to false");
}
// Tests predicate assertions that use a custom formatter.
TEST(PredTest, WithFormat) {
// Success cases.
ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10)
<< "This failure is UNEXPECTED!";
EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
// Failure cases.
const int n1 = 1;
const int n2 = 2;
const int n3 = 4;
const int n4 = 6;
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
},
"evaluates to 13, which is not even.");
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
<< "This failure is expected.";
},
"This failure is expected.");
}
// Tests that predicate assertions evaluates their arguments
// exactly once.
TEST(PredTest, SingleEvaluationOnFailure) {
// A success case.
int n1 = 0;
int n2 = 0;
EXPECT_PRED2(SumIsEven2, n1++, n2++);
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
// Another success case.
n1 = n2 = 0;
int n3 = 0;
int n4 = 0;
int n5 = 0;
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++)
<< "This failure is UNEXPECTED!";
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
// A failure case.
n1 = n2 = n3 = 0;
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
<< "This failure is expected.";
},
"This failure is expected.");
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
// Another failure case.
n1 = n2 = n3 = n4 = 0;
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
},
"evaluates to 1, which is not even.");
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
}
// Test predicate assertions for sets
TEST(PredTest, ExpectPredEvalFailure) {
std::set<int> set_a = {2, 1, 3, 4, 5};
std::set<int> set_b = {0, 4, 8};
const auto compare_sets = [](std::set<int>, std::set<int>) { return false; };
EXPECT_NONFATAL_FAILURE(
EXPECT_PRED2(compare_sets, set_a, set_b),
"compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
"to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
}
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PREDn and EXPECT_PREDn.
bool IsPositive(double x) { return x > 0; }
template <typename T>
bool IsNegative(T x) {
return x < 0;
}
template <typename T1, typename T2>
bool GreaterThan(T1 x1, T2 x2) {
return x1 > x2;
}
// Tests that overloaded functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
// C++Builder requires C-style casts rather than static_cast.
EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
}
// Tests that template functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
EXPECT_PRED1(IsNegative<int>, -5);
// Makes sure that we can handle templates with more than one
// parameter.
ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
}
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
}
AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
}
template <typename T>
AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure");
}
template <typename T1, typename T2>
AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
const T1& x1, const T2& x2) {
return x1 == x2 ? AssertionSuccess()
: AssertionFailure(Message() << "Failure");
}
// Tests that overloaded functions can be used in *_PRED_FORMAT*
// without explicitly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
}
// Tests that template functions can be used in *_PRED_FORMAT* without
// explicitly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
}
// Tests string assertions.
// Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ) {
const char* const p1 = "good";
ASSERT_STREQ(p1, p1);
// Let p2 have the same content as p1, but be at a different address.
const char p2[] = "good";
ASSERT_STREQ(p1, p2);
EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), " \"bad\"\n \"good\"");
}
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null) {
ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
}
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
}
// Tests ASSERT_STRNE.
TEST(StringAssertionTest, ASSERT_STRNE) {
ASSERT_STRNE("hi", "Hi");
ASSERT_STRNE("Hi", nullptr);
ASSERT_STRNE(nullptr, "Hi");
ASSERT_STRNE("", nullptr);
ASSERT_STRNE(nullptr, "");
ASSERT_STRNE("", "Hi");
ASSERT_STRNE("Hi", "");
EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\"");
}
// Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
ASSERT_STRCASEEQ("hi", "Hi");
ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
ASSERT_STRCASEEQ("", "");
EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case");
}
// Tests ASSERT_STRCASENE.
TEST(StringAssertionTest, ASSERT_STRCASENE) {
ASSERT_STRCASENE("hi1", "Hi2");
ASSERT_STRCASENE("Hi", nullptr);
ASSERT_STRCASENE(nullptr, "Hi");
ASSERT_STRCASENE("", nullptr);
ASSERT_STRCASENE(nullptr, "");
ASSERT_STRCASENE("", "Hi");
ASSERT_STRCASENE("Hi", "");
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)");
}
// Tests *_STREQ on wide strings.
TEST(StringAssertionTest, STREQ_Wide) {
// NULL strings.
ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
// Empty strings.
ASSERT_STREQ(L"", L"");
// Non-null vs NULL.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
// Equal strings.
EXPECT_STREQ(L"Hi", L"Hi");
// Unequal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc");
// The streaming variation.
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
},
"Expected failure");
}
// Tests *_STRNE on wide strings.
TEST(StringAssertionTest, STRNE_Wide) {
// NULL strings.
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
},
"");
// Empty strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\"");
// Non-null vs NULL.
ASSERT_STRNE(L"non-null", nullptr);
// Equal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\"");
// Unequal strings.
EXPECT_STRNE(L"abc", L"Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc");
// The streaming variation.
ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
}
// Tests for ::testing::IsSubstring().
// Tests that IsSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
}
// Tests that IsSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
EXPECT_TRUE(
IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
}
// Tests that IsSubstring() generates the correct message when the input
// argument type is const char*.
TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
EXPECT_STREQ(
"Value of: needle_expr\n"
" Actual: \"needle\"\n"
"Expected: a substring of haystack_expr\n"
"Which is: \"haystack\"",
IsSubstring("needle_expr", "haystack_expr", "needle", "haystack")
.failure_message());
}
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
}
#if GTEST_HAS_STD_WSTRING
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
}
// Tests that IsSubstring() generates the correct message when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
EXPECT_STREQ(
"Value of: needle_expr\n"
" Actual: L\"needle\"\n"
"Expected: a substring of haystack_expr\n"
"Which is: L\"haystack\"",
IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"),
L"haystack")
.failure_message());
}
#endif // GTEST_HAS_STD_WSTRING
// Tests for ::testing::IsNotSubstring().
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
}
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
}
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
EXPECT_STREQ(
"Value of: needle_expr\n"
" Actual: L\"needle\"\n"
"Expected: not a substring of haystack_expr\n"
"Which is: L\"two needles\"",
IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles")
.failure_message());
}
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
}
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
EXPECT_STREQ(
"Value of: needle_expr\n"
" Actual: \"needle\"\n"
"Expected: not a substring of haystack_expr\n"
"Which is: \"two needles\"",
IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"),
"two needles")
.failure_message());
}
#if GTEST_HAS_STD_WSTRING
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
EXPECT_FALSE(
IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
}
#endif // GTEST_HAS_STD_WSTRING
// Tests floating-point assertions.
template <typename RawType>
class FloatingPointTest : public Test {
protected:
// Pre-calculated numbers to be used by the tests.
struct TestValues {
RawType close_to_positive_zero;
RawType close_to_negative_zero;
RawType further_from_negative_zero;
RawType close_to_one;
RawType further_from_one;
RawType infinity;
RawType close_to_infinity;
RawType further_from_infinity;
RawType nan1;
RawType nan2;
};
typedef typename testing::internal::FloatingPoint<RawType> Floating;
typedef typename Floating::Bits Bits;
void SetUp() override {
const uint32_t max_ulps = Floating::kMaxUlps;
// The bits that represent 0.0.
const Bits zero_bits = Floating(0).bits();
// Makes some numbers close to 0.0.
values_.close_to_positive_zero =
Floating::ReinterpretBits(zero_bits + max_ulps / 2);
values_.close_to_negative_zero =
-Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2);
values_.further_from_negative_zero =
-Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2);
// The bits that represent 1.0.
const Bits one_bits = Floating(1).bits();
// Makes some numbers close to 1.0.
values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
values_.further_from_one =
Floating::ReinterpretBits(one_bits + max_ulps + 1);
// +infinity.
values_.infinity = Floating::Infinity();
// The bits that represent +infinity.
const Bits infinity_bits = Floating(values_.infinity).bits();
// Makes some numbers close to infinity.
values_.close_to_infinity =
Floating::ReinterpretBits(infinity_bits - max_ulps);
values_.further_from_infinity =
Floating::ReinterpretBits(infinity_bits - max_ulps - 1);
// Makes some NAN's. Sets the most significant bit of the fraction so that
// our NaN's are quiet; trying to process a signaling NaN would raise an
// exception if our environment enables floating point exceptions.
values_.nan1 = Floating::ReinterpretBits(
Floating::kExponentBitMask |
(static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
values_.nan2 = Floating::ReinterpretBits(
Floating::kExponentBitMask |
(static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
}
void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
static TestValues values_;
};
template <typename RawType>
typename FloatingPointTest<RawType>::TestValues
FloatingPointTest<RawType>::values_;
// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
typedef FloatingPointTest<float> FloatTest;
// Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest, Size) { TestSize(); }
// Tests comparing with +0 and -0.
TEST_F(FloatTest, Zeros) {
EXPECT_FLOAT_EQ(0.0, -0.0);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5");
}
// Tests comparing numbers close to 0.
//
// This ensures that *_FLOAT_EQ handles the sign correctly and no
// overflow occurs when comparing numbers whose absolute value is very
// small.
TEST_F(FloatTest, AlmostZeros) {
// In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const FloatTest::TestValues& v = this->values_;
EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero);
},
"v.further_from_negative_zero");
}
// Tests comparing numbers close to each other.
TEST_F(FloatTest, SmallDiff) {
EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
"values_.further_from_one");
}
// Tests comparing numbers far apart.
TEST_F(FloatTest, LargeDiff) {
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0");
}
// Tests comparing with infinity.
//
// This ensures that no overflow occurs when comparing numbers whose
// absolute value is very large.
TEST_F(FloatTest, Infinity) {
EXPECT_FLOAT_EQ(values_.infinity, values_.infinity);
EXPECT_FLOAT_EQ(-values_.infinity, -values_.infinity);
EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
"-values_.infinity");
// This is interesting as the representations of infinity and nan1
// are only 1 DLP apart.
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
"values_.nan1");
}
// Tests that comparing with NAN always returns false.
TEST_F(FloatTest, NaN) {
// In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const FloatTest::TestValues& v = this->values_;
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2");
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, v.nan1, 1.0f), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, v.nan1, v.infinity), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, 1.0f), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, v.infinity),
"v.nan1");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity");
}
// Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest, Reflexive) {
EXPECT_FLOAT_EQ(0.0, 0.0);
EXPECT_FLOAT_EQ(1.0, 1.0);
ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
}
// Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest, Commutative) {
// We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
// We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
"1.0");
}
// Tests EXPECT_NEAR.
TEST_F(FloatTest, EXPECT_NEAR) {
static const FloatTest::TestValues& v = this->values_;
EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
EXPECT_NEAR(2.0f, 3.0f, 1.0f);
EXPECT_NEAR(v.infinity, v.infinity, 0.0f);
EXPECT_NEAR(-v.infinity, -v.infinity, 0.0f);
EXPECT_NEAR(0.0f, 1.0f, v.infinity);
EXPECT_NEAR(v.infinity, -v.infinity, v.infinity);
EXPECT_NEAR(-v.infinity, v.infinity, v.infinity);
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
"The difference between 1.0f and 1.5f is 0.5, "
"which exceeds 0.25f");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, -v.infinity, 0.0f), // NOLINT
"The difference between v.infinity and -v.infinity "
"is inf, which exceeds 0.0f");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(-v.infinity, v.infinity, 0.0f), // NOLINT
"The difference between -v.infinity and v.infinity "
"is inf, which exceeds 0.0f");
EXPECT_NONFATAL_FAILURE(
EXPECT_NEAR(v.infinity, v.close_to_infinity, v.further_from_infinity),
"The difference between v.infinity and v.close_to_infinity is inf, which "
"exceeds v.further_from_infinity");
}
// Tests ASSERT_NEAR.
TEST_F(FloatTest, ASSERT_NEAR) {
ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
ASSERT_NEAR(2.0f, 3.0f, 1.0f);
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT
"The difference between 1.0f and 1.5f is 0.5, "
"which exceeds 0.25f");
}
// Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest, FloatLESucceeds) {
EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
// or when val1 is greater than, but almost equals to, val2.
EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
}
// Tests the cases where FloatLE() should fail.
TEST_F(FloatTest, FloatLEFails) {
// When val1 is greater than val2 by a large margin,
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
"(2.0f) <= (1.0f)");
// or by a small yet non-negligible margin,
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
},
"(values_.further_from_one) <= (1.0f)");
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
},
"(values_.nan1) <= (values_.infinity)");
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
},
"(-values_.infinity) <= (values_.nan1)");
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
},
"(values_.nan1) <= (values_.nan1)");
}
// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
typedef FloatingPointTest<double> DoubleTest;
// Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest, Size) { TestSize(); }
// Tests comparing with +0 and -0.
TEST_F(DoubleTest, Zeros) {
EXPECT_DOUBLE_EQ(0.0, -0.0);
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0");
EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0");
}
// Tests comparing numbers close to 0.
//
// This ensures that *_DOUBLE_EQ handles the sign correctly and no
// overflow occurs when comparing numbers whose absolute value is very
// small.
TEST_F(DoubleTest, AlmostZeros) {
// In C++Builder, names within local classes (such as used by
// EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
// scoping class. Use a static local alias as a workaround.
// We use the assignment syntax since some compilers, like Sun Studio,
// don't allow initializing references using construction syntax
// (parentheses).
static const DoubleTest::TestValues& v = this->values_;
EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
v.further_from_negative_zero);
},
"v.further_from_negative_zero");
}
// Tests comparing numbers close to each other.
TEST_F(DoubleTest, SmallDiff) {
EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
"values_.further_from_one");
}
// Tests comparing numbers far apart.
TEST_F(DoubleTest, LargeDiff) {
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0");
}
// Tests comparing with infinity.
//
// This ensures that no overflow occurs when comparing numbers whose
// absolute value is very large.
TEST_F(DoubleTest, Infinity) {
EXPECT_DOUBLE_EQ(values_.infinity, values_.infinity);
EXPECT_DOUBLE_EQ(-values_.infinity, -values_.infinity);
EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
"-values_.infinity");
// This is interesting as the representations of infinity_ and nan1_
// are only 1 DLP apart.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
"values_.nan1");
}
// Tests that comparing with NAN always returns false.
TEST_F(DoubleTest, NaN) {
static const DoubleTest::TestValues& v = this->values_;
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, v.nan1, 1.0), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, v.nan1, v.infinity), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, 1.0), "v.nan1");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, v.nan1, v.infinity),
"v.nan1");
EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity");
}
// Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest, Reflexive) {
EXPECT_DOUBLE_EQ(0.0, 0.0);
EXPECT_DOUBLE_EQ(1.0, 1.0);
ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
}
// Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest, Commutative) {
// We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
// We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
"1.0");
}
// Tests EXPECT_NEAR.
TEST_F(DoubleTest, EXPECT_NEAR) {
static const DoubleTest::TestValues& v = this->values_;
EXPECT_NEAR(-1.0, -1.1, 0.2);
EXPECT_NEAR(2.0, 3.0, 1.0);
EXPECT_NEAR(v.infinity, v.infinity, 0.0);
EXPECT_NEAR(-v.infinity, -v.infinity, 0.0);
EXPECT_NEAR(0.0, 1.0, v.infinity);
EXPECT_NEAR(v.infinity, -v.infinity, v.infinity);
EXPECT_NEAR(-v.infinity, v.infinity, v.infinity);
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
"The difference between 1.0 and 1.5 is 0.5, "
"which exceeds 0.25");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(v.infinity, -v.infinity, 0.0),
"The difference between v.infinity and -v.infinity "
"is inf, which exceeds 0.0");
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(-v.infinity, v.infinity, 0.0),
"The difference between -v.infinity and v.infinity "
"is inf, which exceeds 0.0");
EXPECT_NONFATAL_FAILURE(
EXPECT_NEAR(v.infinity, v.close_to_infinity, v.further_from_infinity),
"The difference between v.infinity and v.close_to_infinity is inf, which "
"exceeds v.further_from_infinity");
// At this magnitude adjacent doubles are 512.0 apart, so this triggers a
// slightly different failure reporting path.
EXPECT_NONFATAL_FAILURE(
EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
"The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
"minimum distance between doubles for numbers of this magnitude which is "
"512");
}
// Tests ASSERT_NEAR.
TEST_F(DoubleTest, ASSERT_NEAR) {
ASSERT_NEAR(-1.0, -1.1, 0.2);
ASSERT_NEAR(2.0, 3.0, 1.0);
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
"The difference between 1.0 and 1.5 is 0.5, "
"which exceeds 0.25");
}
// Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest, DoubleLESucceeds) {
EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
// or when val1 is greater than, but almost equals to, val2.
EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
}
// Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest, DoubleLEFails) {
// When val1 is greater than val2 by a large margin,
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
"(2.0) <= (1.0)");
// or by a small yet non-negligible margin,
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
},
"(values_.further_from_one) <= (1.0)");
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
},
"(values_.nan1) <= (values_.infinity)");
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
},
" (-values_.infinity) <= (values_.nan1)");
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
},
"(values_.nan1) <= (values_.nan1)");
}
// Verifies that a test or test case whose name starts with DISABLED_ is
// not run.
// A test whose name starts with DISABLED_.
// Should not run.
TEST(DisabledTest, DISABLED_TestShouldNotRun) {
FAIL() << "Unexpected failure: Disabled test should not be run.";
}
// A test whose name does not start with DISABLED_.
// Should run.
TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); }
// A test case whose name starts with DISABLED_.
// Should not run.
TEST(DISABLED_TestSuite, TestShouldNotRun) {
FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
}
// A test case and test whose names start with DISABLED_.
// Should not run.
TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
}
// Check that when all tests in a test case are disabled, SetUpTestSuite() and
// TearDownTestSuite() are not called.
class DisabledTestsTest : public Test {
protected:
static void SetUpTestSuite() {
FAIL() << "Unexpected failure: All tests disabled in test case. "
"SetUpTestSuite() should not be called.";
}
static void TearDownTestSuite() {
FAIL() << "Unexpected failure: All tests disabled in test case. "
"TearDownTestSuite() should not be called.";
}
};
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
FAIL() << "Unexpected failure: Disabled test should not be run.";
}
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
FAIL() << "Unexpected failure: Disabled test should not be run.";
}
// Tests that disabled typed tests aren't run.
template <typename T>
class TypedTest : public Test {};
typedef testing::Types<int, double> NumericTypes;
TYPED_TEST_SUITE(TypedTest, NumericTypes);
TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
FAIL() << "Unexpected failure: Disabled typed test should not run.";
}
template <typename T>
class DISABLED_TypedTest : public Test {};
TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
FAIL() << "Unexpected failure: Disabled typed test should not run.";
}
// Tests that disabled type-parameterized tests aren't run.
template <typename T>
class TypedTestP : public Test {};
TYPED_TEST_SUITE_P(TypedTestP);
TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
FAIL() << "Unexpected failure: "
<< "Disabled type-parameterized test should not run.";
}
REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
template <typename T>
class DISABLED_TypedTestP : public Test {};
TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
FAIL() << "Unexpected failure: "
<< "Disabled type-parameterized test should not run.";
}
REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
// Tests that assertion macros evaluate their arguments exactly once.
class SingleEvaluationTest : public Test {
public: // Must be public and not protected due to a bug in g++ 3.4.2.
// This helper function is needed by the FailedASSERT_STREQ test
// below. It's public to work around C++Builder's bug with scoping local
// classes.
static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); }
// This helper function is needed by the FailedASSERT_NE test below. It's
// public to work around C++Builder's bug with scoping local classes.
static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); }
protected:
SingleEvaluationTest() {
p1_ = s1_;
p2_ = s2_;
a_ = 0;
b_ = 0;
}
static const char* const s1_;
static const char* const s2_;
static const char* p1_;
static const char* p2_;
static int a_;
static int b_;
};
const char* const SingleEvaluationTest::s1_ = "01234";
const char* const SingleEvaluationTest::s2_ = "abcde";
const char* SingleEvaluationTest::p1_;
const char* SingleEvaluationTest::p2_;
int SingleEvaluationTest::a_;
int SingleEvaluationTest::b_;
// Tests that when ASSERT_STREQ fails, it evaluates its arguments
// exactly once.
TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
"p2_++");
EXPECT_EQ(s1_ + 1, p1_);
EXPECT_EQ(s2_ + 1, p2_);
}
// Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, ASSERT_STR) {
// successful EXPECT_STRNE
EXPECT_STRNE(p1_++, p2_++);
EXPECT_EQ(s1_ + 1, p1_);
EXPECT_EQ(s2_ + 1, p2_);
// failed EXPECT_STRCASEEQ
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case");
EXPECT_EQ(s1_ + 2, p1_);
EXPECT_EQ(s2_ + 2, p2_);
}
// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
// once.
TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
"(a_++) != (b_++)");
EXPECT_EQ(1, a_);
EXPECT_EQ(1, b_);
}
// Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, OtherCases) {
// successful EXPECT_TRUE
EXPECT_TRUE(0 == a_++); // NOLINT
EXPECT_EQ(1, a_);
// failed EXPECT_TRUE
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
EXPECT_EQ(2, a_);
// successful EXPECT_GT
EXPECT_GT(a_++, b_++);
EXPECT_EQ(3, a_);
EXPECT_EQ(1, b_);
// failed EXPECT_LT
EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
EXPECT_EQ(4, a_);
EXPECT_EQ(2, b_);
// successful ASSERT_TRUE
ASSERT_TRUE(0 < a_++); // NOLINT
EXPECT_EQ(5, a_);
// successful ASSERT_GT
ASSERT_GT(a_++, b_++);
EXPECT_EQ(6, a_);
EXPECT_EQ(3, b_);
}
#if GTEST_HAS_EXCEPTIONS
#if GTEST_HAS_RTTI
#define ERROR_DESC "std::runtime_error"
#else // GTEST_HAS_RTTI
#define ERROR_DESC "an std::exception-derived error"
#endif // GTEST_HAS_RTTI
void ThrowAnInteger() { throw 1; }
void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); }
// Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, ExceptionTests) {
// successful EXPECT_THROW
EXPECT_THROW(
{ // NOLINT
a_++;
ThrowAnInteger();
},
int);
EXPECT_EQ(1, a_);
// failed EXPECT_THROW, throws different
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
{ // NOLINT
a_++;
ThrowAnInteger();
},
bool),
"throws a different type");
EXPECT_EQ(2, a_);
// failed EXPECT_THROW, throws runtime error
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(
{ // NOLINT
a_++;
ThrowRuntimeError("A description");
},
bool),
"throws " ERROR_DESC
" with description \"A description\"");
EXPECT_EQ(3, a_);
// failed EXPECT_THROW, throws nothing
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
EXPECT_EQ(4, a_);
// successful EXPECT_NO_THROW
EXPECT_NO_THROW(a_++);
EXPECT_EQ(5, a_);
// failed EXPECT_NO_THROW
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT
a_++;
ThrowAnInteger();
}),
"it throws");
EXPECT_EQ(6, a_);
// successful EXPECT_ANY_THROW
EXPECT_ANY_THROW({ // NOLINT
a_++;
ThrowAnInteger();
});
EXPECT_EQ(7, a_);
// failed EXPECT_ANY_THROW
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
EXPECT_EQ(8, a_);
}
#endif // GTEST_HAS_EXCEPTIONS
// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
class NoFatalFailureTest : public Test {
protected:
void Succeeds() {}
void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; }
void Fails() { FAIL() << "some fatal failure"; }
void DoAssertNoFatalFailureOnFails() {
ASSERT_NO_FATAL_FAILURE(Fails());
ADD_FAILURE() << "should not reach here.";
}
void DoExpectNoFatalFailureOnFails() {
EXPECT_NO_FATAL_FAILURE(Fails());
ADD_FAILURE() << "other failure";
}
};
TEST_F(NoFatalFailureTest, NoFailure) {
EXPECT_NO_FATAL_FAILURE(Succeeds());
ASSERT_NO_FATAL_FAILURE(Succeeds());
}
TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
"some non-fatal failure");
EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
"some non-fatal failure");
}
TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
TestPartResultArray gtest_failures;
{
ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
DoAssertNoFatalFailureOnFails();
}
ASSERT_EQ(2, gtest_failures.size());
EXPECT_EQ(TestPartResult::kFatalFailure,
gtest_failures.GetTestPartResult(0).type());
EXPECT_EQ(TestPartResult::kFatalFailure,
gtest_failures.GetTestPartResult(1).type());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
gtest_failures.GetTestPartResult(0).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
gtest_failures.GetTestPartResult(1).message());
}
TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
TestPartResultArray gtest_failures;
{
ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
DoExpectNoFatalFailureOnFails();
}
ASSERT_EQ(3, gtest_failures.size());
EXPECT_EQ(TestPartResult::kFatalFailure,
gtest_failures.GetTestPartResult(0).type());
EXPECT_EQ(TestPartResult::kNonFatalFailure,
gtest_failures.GetTestPartResult(1).type());
EXPECT_EQ(TestPartResult::kNonFatalFailure,
gtest_failures.GetTestPartResult(2).type());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
gtest_failures.GetTestPartResult(0).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
gtest_failures.GetTestPartResult(1).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
gtest_failures.GetTestPartResult(2).message());
}
TEST_F(NoFatalFailureTest, MessageIsStreamable) {
TestPartResultArray gtest_failures;
{
ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message";
}
ASSERT_EQ(2, gtest_failures.size());
EXPECT_EQ(TestPartResult::kFatalFailure,
gtest_failures.GetTestPartResult(0).type());
EXPECT_EQ(TestPartResult::kNonFatalFailure,
gtest_failures.GetTestPartResult(1).type());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
gtest_failures.GetTestPartResult(0).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
gtest_failures.GetTestPartResult(1).message());
}
// Tests non-string assertions.
std::string EditsToString(const std::vector<EditType>& edits) {
std::string out;
for (size_t i = 0; i < edits.size(); ++i) {
static const char kEdits[] = " +-/";
out.append(1, kEdits[edits[i]]);
}
return out;
}
std::vector<size_t> CharsToIndices(const std::string& str) {
std::vector<size_t> out;
for (size_t i = 0; i < str.size(); ++i) {
out.push_back(static_cast<size_t>(str[i]));
}
return out;
}
std::vector<std::string> CharsToLines(const std::string& str) {
std::vector<std::string> out;
for (size_t i = 0; i < str.size(); ++i) {
out.push_back(str.substr(i, 1));
}
return out;
}
TEST(EditDistance, TestSuites) {
struct Case {
int line;
const char* left;
const char* right;
const char* expected_edits;
const char* expected_diff;
};
static const Case kCases[] = {
// No change.
{__LINE__, "A", "A", " ", ""},
{__LINE__, "ABCDE", "ABCDE", " ", ""},
// Simple adds.
{__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
{__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
// Simple removes.
{__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
{__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
// Simple replaces.
{__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
{__LINE__, "ABCD", "abcd", "////",
"@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
// Path finding.
{__LINE__, "ABCDEFGH", "ABXEGH1", " -/ - +",
"@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
{__LINE__, "AAAABCCCC", "ABABCDCDC", "- / + / ",
"@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
{__LINE__, "ABCDE", "BCDCD", "- +/",
"@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
{__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++ -- ++",
"@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
"@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
{}};
for (const Case* c = kCases; c->left; ++c) {
EXPECT_TRUE(c->expected_edits ==
EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
CharsToIndices(c->right))))
<< "Left <" << c->left << "> Right <" << c->right << "> Edits <"
<< EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
CharsToIndices(c->right)))
<< ">";
EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
CharsToLines(c->right)))
<< "Left <" << c->left << "> Right <" << c->right << "> Diff <"
<< CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
<< ">";
}
}
// Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest, EqFailure) {
const std::string foo_val("5"), bar_val("6");
const std::string msg1(
EqFailure("foo", "bar", foo_val, bar_val, false).failure_message());
EXPECT_STREQ(
"Expected equality of these values:\n"
" foo\n"
" Which is: 5\n"
" bar\n"
" Which is: 6",
msg1.c_str());
const std::string msg2(
EqFailure("foo", "6", foo_val, bar_val, false).failure_message());
EXPECT_STREQ(
"Expected equality of these values:\n"
" foo\n"
" Which is: 5\n"
" 6",
msg2.c_str());
const std::string msg3(
EqFailure("5", "bar", foo_val, bar_val, false).failure_message());
EXPECT_STREQ(
"Expected equality of these values:\n"
" 5\n"
" bar\n"
" Which is: 6",
msg3.c_str());
const std::string msg4(
EqFailure("5", "6", foo_val, bar_val, false).failure_message());
EXPECT_STREQ(
"Expected equality of these values:\n"
" 5\n"
" 6",
msg4.c_str());
const std::string msg5(
EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true)
.failure_message());
EXPECT_STREQ(
"Expected equality of these values:\n"
" foo\n"
" Which is: \"x\"\n"
" bar\n"
" Which is: \"y\"\n"
"Ignoring case",
msg5.c_str());
}
TEST(AssertionTest, EqFailureWithDiff) {
const std::string left(
"1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
const std::string right(
"1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
const std::string msg1(
EqFailure("left", "right", left, right, false).failure_message());
EXPECT_STREQ(
"Expected equality of these values:\n"
" left\n"
" Which is: "
"1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
" right\n"
" Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
"With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
"@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
msg1.c_str());
}
// Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest, AppendUserMessage) {
const std::string foo("foo");
Message msg;
EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str());
msg << "bar";
EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str());
}
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
#pragma option push -w-ccc -w-rch
#endif
// Tests ASSERT_TRUE.
TEST(AssertionTest, ASSERT_TRUE) {
ASSERT_TRUE(2 > 1); // NOLINT
EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1");
}
// Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest, AssertTrueWithAssertionResult) {
ASSERT_TRUE(ResultIsEven(2));
#ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
"Value of: ResultIsEven(3)\n"
" Actual: false (3 is odd)\n"
"Expected: true");
#endif
ASSERT_TRUE(ResultIsEvenNoExplanation(2));
EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
"Value of: ResultIsEvenNoExplanation(3)\n"
" Actual: false (3 is odd)\n"
"Expected: true");
}
// Tests ASSERT_FALSE.
TEST(AssertionTest, ASSERT_FALSE) {
ASSERT_FALSE(2 < 1); // NOLINT
EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
"Value of: 2 > 1\n"
" Actual: true\n"
"Expected: false");
}
// Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest, AssertFalseWithAssertionResult) {
ASSERT_FALSE(ResultIsEven(3));
#ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
"Value of: ResultIsEven(2)\n"
" Actual: true (2 is even)\n"
"Expected: false");
#endif
ASSERT_FALSE(ResultIsEvenNoExplanation(3));
EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
"Value of: ResultIsEvenNoExplanation(2)\n"
" Actual: true\n"
"Expected: false");
}
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them
#pragma option pop
#endif
// Tests using ASSERT_EQ on double values. The purpose is to make
// sure that the specialization we did for integer and anonymous enums
// isn't used for double arguments.
TEST(ExpectTest, ASSERT_EQ_Double) {
// A success.
ASSERT_EQ(5.6, 5.6);
// A failure.
EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1");
}
// Tests ASSERT_EQ.
TEST(AssertionTest, ASSERT_EQ) {
ASSERT_EQ(5, 2 + 3);
// clang-format off
EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
"Expected equality of these values:\n"
" 5\n"
" 2*3\n"
" Which is: 6");
// clang-format on
}
// Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest, ASSERT_EQ_NULL) {
// A success.
const char* p = nullptr;
ASSERT_EQ(nullptr, p);
// A failure.
static int n = 0;
EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), " &n\n Which is:");
}
// Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
// treated as a null pointer by the compiler, we need to make sure
// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest, ASSERT_EQ_0) {
int n = 0;
// A success.
ASSERT_EQ(0, n);
// A failure.
EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), " 0\n 5.6");
}
// Tests ASSERT_NE.
TEST(AssertionTest, ASSERT_NE) {
ASSERT_NE(6, 7);
EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
"Expected: ('a') != ('a'), "
"actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
}
// Tests ASSERT_LE.
TEST(AssertionTest, ASSERT_LE) {
ASSERT_LE(2, 3);
ASSERT_LE(2, 2);
EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0");
}
// Tests ASSERT_LT.
TEST(AssertionTest, ASSERT_LT) {
ASSERT_LT(2, 3);
EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2");
}
// Tests ASSERT_GE.
TEST(AssertionTest, ASSERT_GE) {
ASSERT_GE(2, 1);
ASSERT_GE(2, 2);
EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3");
}
// Tests ASSERT_GT.
TEST(AssertionTest, ASSERT_GT) {
ASSERT_GT(2, 1);
EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2");
}
#if GTEST_HAS_EXCEPTIONS
void ThrowNothing() {}
// Tests ASSERT_THROW.
TEST(AssertionTest, ASSERT_THROW) {
ASSERT_THROW(ThrowAnInteger(), int);
#ifndef __BORLANDC__
// ICE's in C++Builder 2007 and 2009.
EXPECT_FATAL_FAILURE(
ASSERT_THROW(ThrowAnInteger(), bool),
"Expected: ThrowAnInteger() throws an exception of type bool.\n"
" Actual: it throws a different type.");
EXPECT_FATAL_FAILURE(
ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
"Expected: ThrowRuntimeError(\"A description\") "
"throws an exception of type std::logic_error.\n "
"Actual: it throws " ERROR_DESC
" "
"with description \"A description\".");
#endif
EXPECT_FATAL_FAILURE(
ASSERT_THROW(ThrowNothing(), bool),
"Expected: ThrowNothing() throws an exception of type bool.\n"
" Actual: it throws nothing.");
}
// Tests ASSERT_NO_THROW.
TEST(AssertionTest, ASSERT_NO_THROW) {
ASSERT_NO_THROW(ThrowNothing());
EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
"Expected: ThrowAnInteger() doesn't throw an exception."
"\n Actual: it throws.");
EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
"Expected: ThrowRuntimeError(\"A description\") "
"doesn't throw an exception.\n "
"Actual: it throws " ERROR_DESC
" "
"with description \"A description\".");
}
// Tests ASSERT_ANY_THROW.
TEST(AssertionTest, ASSERT_ANY_THROW) {
ASSERT_ANY_THROW(ThrowAnInteger());
EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()),
"Expected: ThrowNothing() throws an exception.\n"
" Actual: it doesn't.");
}
#endif // GTEST_HAS_EXCEPTIONS
// Makes sure we deal with the precedence of <<. This test should
// compile.
TEST(AssertionTest, AssertPrecedence) {
ASSERT_EQ(1 < 2, true);
bool false_value = false;
ASSERT_EQ(true && false_value, false);
}
// A subroutine used by the following test.
void TestEq1(int x) { ASSERT_EQ(1, x); }
// Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest, NonFixtureSubroutine) {
EXPECT_FATAL_FAILURE(TestEq1(2), " x\n Which is: 2");
}
// An uncopyable class.
class Uncopyable {
public:
explicit Uncopyable(int a_value) : value_(a_value) {}
int value() const { return value_; }
bool operator==(const Uncopyable& rhs) const {
return value() == rhs.value();
}
private:
// This constructor deliberately has no implementation, as we don't
// want this class to be copyable.
Uncopyable(const Uncopyable&); // NOLINT
int value_;
};
::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
return os << value.value();
}
bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; }
// A subroutine used by the following test.
void TestAssertNonPositive() {
Uncopyable y(-1);
ASSERT_PRED1(IsPositiveUncopyable, y);
}
// A subroutine used by the following test.
void TestAssertEqualsUncopyable() {
Uncopyable x(5);
Uncopyable y(-1);
ASSERT_EQ(x, y);
}
// Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest, AssertWorksWithUncopyableObject) {
Uncopyable x(5);
ASSERT_PRED1(IsPositiveUncopyable, x);
ASSERT_EQ(x, x);
EXPECT_FATAL_FAILURE(
TestAssertNonPositive(),
"IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
"Expected equality of these values:\n"
" x\n Which is: 5\n y\n Which is: -1");
}
// Tests that uncopyable objects can be used in expects.
TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
Uncopyable x(5);
EXPECT_PRED1(IsPositiveUncopyable, x);
Uncopyable y(-1);
EXPECT_NONFATAL_FAILURE(
EXPECT_PRED1(IsPositiveUncopyable, y),
"IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
EXPECT_EQ(x, x);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
"Expected equality of these values:\n"
" x\n Which is: 5\n y\n Which is: -1");
}
enum NamedEnum { kE1 = 0, kE2 = 1 };
TEST(AssertionTest, NamedEnum) {
EXPECT_EQ(kE1, kE1);
EXPECT_LT(kE1, kE2);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
}
// Sun Studio and HP aCC2reject this code.
#if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
// Tests using assertions with anonymous enums.
enum {
kCaseA = -1,
#ifdef GTEST_OS_LINUX
// We want to test the case where the size of the anonymous enum is
// larger than sizeof(int), to make sure our implementation of the
// assertions doesn't truncate the enums. However, MSVC
// (incorrectly) doesn't allow an enum value to exceed the range of
// an int, so this has to be conditionally compiled.
//
// On Linux, kCaseB and kCaseA have the same value when truncated to
// int size. We want to test whether this will confuse the
// assertions.
kCaseB = testing::internal::kMaxBiggestInt,
#else
kCaseB = INT_MAX,
#endif // GTEST_OS_LINUX
kCaseC = 42
};
TEST(AssertionTest, AnonymousEnum) {
#ifdef GTEST_OS_LINUX
EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
#endif // GTEST_OS_LINUX
EXPECT_EQ(kCaseA, kCaseA);
EXPECT_NE(kCaseA, kCaseB);
EXPECT_LT(kCaseA, kCaseB);
EXPECT_LE(kCaseA, kCaseB);
EXPECT_GT(kCaseB, kCaseA);
EXPECT_GE(kCaseA, kCaseA);
EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)");
EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42");
ASSERT_EQ(kCaseA, kCaseA);
ASSERT_NE(kCaseA, kCaseB);
ASSERT_LT(kCaseA, kCaseB);
ASSERT_LE(kCaseA, kCaseB);
ASSERT_GT(kCaseB, kCaseA);
ASSERT_GE(kCaseA, kCaseA);
#ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), " kCaseB\n Which is: ");
EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: 42");
#endif
EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: -1");
}
#endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
#ifdef GTEST_OS_WINDOWS
static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; }
static HRESULT OkHRESULTSuccess() { return S_OK; }
static HRESULT FalseHRESULTSuccess() { return S_FALSE; }
// HRESULT assertion tests test both zero and non-zero
// success codes as well as failure message for each.
//
// Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
EXPECT_HRESULT_SUCCEEDED(S_OK);
EXPECT_HRESULT_SUCCEEDED(S_FALSE);
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
" Actual: 0x8000FFFF");
}
TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
ASSERT_HRESULT_SUCCEEDED(S_OK);
ASSERT_HRESULT_SUCCEEDED(S_FALSE);
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
" Actual: 0x8000FFFF");
}
TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
EXPECT_HRESULT_FAILED(E_UNEXPECTED);
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
"Expected: (OkHRESULTSuccess()) fails.\n"
" Actual: 0x0");
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
"Expected: (FalseHRESULTSuccess()) fails.\n"
" Actual: 0x1");
}
TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
ASSERT_HRESULT_FAILED(E_UNEXPECTED);
#ifndef __BORLANDC__
// ICE's in C++Builder 2007 and 2009.
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
"Expected: (OkHRESULTSuccess()) fails.\n"
" Actual: 0x0");
#endif
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
"Expected: (FalseHRESULTSuccess()) fails.\n"
" Actual: 0x1");
}
// Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest, Streaming) {
EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED)
<< "expected failure",
"expected failure");
#ifndef __BORLANDC__
// ICE's in C++Builder 2007 and 2009.
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED)
<< "expected failure",
"expected failure");
#endif
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
"expected failure");
}
#endif // GTEST_OS_WINDOWS
// The following code intentionally tests a suboptimal syntax.
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdangling-else"
#pragma GCC diagnostic ignored "-Wempty-body"
#pragma GCC diagnostic ignored "-Wpragmas"
#endif
// Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
if (AlwaysFalse())
ASSERT_TRUE(false) << "This should never be executed; "
"It's a compilation test only.";
if (AlwaysTrue())
EXPECT_FALSE(false);
else
; // NOLINT
if (AlwaysFalse()) ASSERT_LT(1, 3);
if (AlwaysFalse())
; // NOLINT
else
EXPECT_GT(3, 2) << "";
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#if GTEST_HAS_EXCEPTIONS
// Tests that the compiler will not complain about unreachable code in the
// EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
int n = 0;
EXPECT_THROW(throw 1, int);
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw n, const char*), "");
EXPECT_NO_THROW(n++);
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
EXPECT_ANY_THROW(throw 1);
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
}
TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
EXPECT_THROW(throw std::exception(), std::exception);
}
// The following code intentionally tests a suboptimal syntax.
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdangling-else"
#pragma GCC diagnostic ignored "-Wempty-body"
#pragma GCC diagnostic ignored "-Wpragmas"
#endif
TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool);
if (AlwaysTrue())
EXPECT_THROW(ThrowAnInteger(), int);
else
; // NOLINT
if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger());
if (AlwaysTrue())
EXPECT_NO_THROW(ThrowNothing());
else
; // NOLINT
if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing());
if (AlwaysTrue())
EXPECT_ANY_THROW(ThrowAnInteger());
else
; // NOLINT
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#endif // GTEST_HAS_EXCEPTIONS
// The following code intentionally tests a suboptimal syntax.
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdangling-else"
#pragma GCC diagnostic ignored "-Wempty-body"
#pragma GCC diagnostic ignored "-Wpragmas"
#endif
TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
if (AlwaysFalse())
EXPECT_NO_FATAL_FAILURE(FAIL())
<< "This should never be executed. " << "It's a compilation test only.";
else
; // NOLINT
if (AlwaysFalse())
ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
else
; // NOLINT
if (AlwaysTrue())
EXPECT_NO_FATAL_FAILURE(SUCCEED());
else
; // NOLINT
if (AlwaysFalse())
; // NOLINT
else
ASSERT_NO_FATAL_FAILURE(SUCCEED());
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
// Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest, WorksWithSwitch) {
switch (0) {
case 1:
break;
default:
ASSERT_TRUE(true);
}
switch (0)
case 0:
EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
// Binary assertions are implemented using a different code path
// than the Boolean assertions. Hence we test them separately.
switch (0) {
case 1:
default:
ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
}
switch (0)
case 0:
EXPECT_NE(1, 2);
}
#if GTEST_HAS_EXCEPTIONS
void ThrowAString() { throw "std::string"; }
// Test that the exception assertion macros compile and work with const
// type qualifier.
TEST(AssertionSyntaxTest, WorksWithConst) {
ASSERT_THROW(ThrowAString(), const char*);
EXPECT_THROW(ThrowAString(), const char*);
}
#endif // GTEST_HAS_EXCEPTIONS
} // namespace
namespace testing {
// Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest, SUCCEED) {
SUCCEED();
SUCCEED() << "OK";
EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
}
// Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest, EXPECT) {
EXPECT_TRUE(true);
EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
}
// Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest, EXPECT_STR) {
EXPECT_STREQ("", "");
EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
}
// Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest, ASSERT) {
ASSERT_TRUE(true);
EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
}
// Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest, ASSERT_STR) {
ASSERT_STREQ("", "");
EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
}
} // namespace testing
namespace {
// Tests the message streaming variation of assertions.
TEST(AssertionWithMessageTest, EXPECT) {
EXPECT_EQ(1, 1) << "This should succeed.";
EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
"Expected failure #1");
EXPECT_LE(1, 2) << "This should succeed.";
EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
"Expected failure #2.");
EXPECT_GE(1, 0) << "This should succeed.";
EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
"Expected failure #3.");
EXPECT_STREQ("1", "1") << "This should succeed.";
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
"Expected failure #4.");
EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
"Expected failure #5.");
EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
"Expected failure #6.");
EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
}
TEST(AssertionWithMessageTest, ASSERT) {
ASSERT_EQ(1, 1) << "This should succeed.";
ASSERT_NE(1, 2) << "This should succeed.";
ASSERT_LE(1, 2) << "This should succeed.";
ASSERT_LT(1, 2) << "This should succeed.";
ASSERT_GE(1, 0) << "This should succeed.";
EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
"Expected failure.");
}
TEST(AssertionWithMessageTest, ASSERT_STR) {
ASSERT_STREQ("1", "1") << "This should succeed.";
ASSERT_STRNE("1", "2") << "This should succeed.";
ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
"Expected failure.");
}
TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.", // NOLINT
"Expect failure.");
}
// Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest, ASSERT_FALSE) {
ASSERT_FALSE(false) << "This shouldn't fail.";
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
<< " evaluates to " << true;
},
"Expected failure");
}
// Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); }
// Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; }
// Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest, ASSERT_TRUE) {
ASSERT_TRUE(true) << "This should succeed.";
ASSERT_TRUE(true) << true;
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
<< static_cast<char*>(nullptr);
},
"(null)(null)");
}
#ifdef GTEST_OS_WINDOWS
// Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest, WideStringMessage) {
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_TRUE(false) << L"This failure is expected.\x8119";
},
"This failure is expected.");
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120";
},
"This failure is expected too.");
}
#endif // GTEST_OS_WINDOWS
// Tests EXPECT_TRUE.
TEST(ExpectTest, EXPECT_TRUE) {
EXPECT_TRUE(true) << "Intentional success";
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
"Intentional failure #1.");
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
"Intentional failure #2.");
EXPECT_TRUE(2 > 1); // NOLINT
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
"Value of: 2 < 1\n"
" Actual: false\n"
"Expected: true");
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3");
}
// Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest, ExpectTrueWithAssertionResult) {
EXPECT_TRUE(ResultIsEven(2));
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
"Value of: ResultIsEven(3)\n"
" Actual: false (3 is odd)\n"
"Expected: true");
EXPECT_TRUE(ResultIsEvenNoExplanation(2));
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
"Value of: ResultIsEvenNoExplanation(3)\n"
" Actual: false (3 is odd)\n"
"Expected: true");
}
// Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest, EXPECT_FALSE) {
EXPECT_FALSE(2 < 1); // NOLINT
EXPECT_FALSE(false) << "Intentional success";
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
"Intentional failure #1.");
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
"Intentional failure #2.");
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
"Value of: 2 > 1\n"
" Actual: true\n"
"Expected: false");
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3");
}
// Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest, ExpectFalseWithAssertionResult) {
EXPECT_FALSE(ResultIsEven(3));
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
"Value of: ResultIsEven(2)\n"
" Actual: true (2 is even)\n"
"Expected: false");
EXPECT_FALSE(ResultIsEvenNoExplanation(3));
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
"Value of: ResultIsEvenNoExplanation(2)\n"
" Actual: true\n"
"Expected: false");
}
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them
#pragma option pop
#endif
// Tests EXPECT_EQ.
TEST(ExpectTest, EXPECT_EQ) {
EXPECT_EQ(5, 2 + 3);
// clang-format off
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
"Expected equality of these values:\n"
" 5\n"
" 2*3\n"
" Which is: 6");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3");
// clang-format on
}
// Tests using EXPECT_EQ on double values. The purpose is to make
// sure that the specialization we did for integer and anonymous enums
// isn't used for double arguments.
TEST(ExpectTest, EXPECT_EQ_Double) {
// A success.
EXPECT_EQ(5.6, 5.6);
// A failure.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1");
}
// Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest, EXPECT_EQ_NULL) {
// A success.
const char* p = nullptr;
EXPECT_EQ(nullptr, p);
// A failure.
int n = 0;
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), " &n\n Which is:");
}
// Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
// treated as a null pointer by the compiler, we need to make sure
// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest, EXPECT_EQ_0) {
int n = 0;
// A success.
EXPECT_EQ(0, n);
// A failure.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), " 0\n 5.6");
}
// Tests EXPECT_NE.
TEST(ExpectTest, EXPECT_NE) {
EXPECT_NE(6, 7);
EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
"Expected: ('a') != ('a'), "
"actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2");
char* const p0 = nullptr;
EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0");
// Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
char* const p1 = reinterpret_cast<char*>(pv1);
EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1");
}
// Tests EXPECT_LE.
TEST(ExpectTest, EXPECT_LE) {
EXPECT_LE(2, 3);
EXPECT_LE(2, 2);
EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
"Expected: (2) <= (0), actual: 2 vs 0");
EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)");
}
// Tests EXPECT_LT.
TEST(ExpectTest, EXPECT_LT) {
EXPECT_LT(2, 3);
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
"Expected: (2) < (2), actual: 2 vs 2");
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)");
}
// Tests EXPECT_GE.
TEST(ExpectTest, EXPECT_GE) {
EXPECT_GE(2, 1);
EXPECT_GE(2, 2);
EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
"Expected: (2) >= (3), actual: 2 vs 3");
EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)");
}
// Tests EXPECT_GT.
TEST(ExpectTest, EXPECT_GT) {
EXPECT_GT(2, 1);
EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
"Expected: (2) > (2), actual: 2 vs 2");
EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)");
}
#if GTEST_HAS_EXCEPTIONS
// Tests EXPECT_THROW.
TEST(ExpectTest, EXPECT_THROW) {
EXPECT_THROW(ThrowAnInteger(), int);
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
"Expected: ThrowAnInteger() throws an exception of "
"type bool.\n Actual: it throws a different type.");
EXPECT_NONFATAL_FAILURE(
EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error),
"Expected: ThrowRuntimeError(\"A description\") "
"throws an exception of type std::logic_error.\n "
"Actual: it throws " ERROR_DESC
" "
"with description \"A description\".");
EXPECT_NONFATAL_FAILURE(
EXPECT_THROW(ThrowNothing(), bool),
"Expected: ThrowNothing() throws an exception of type bool.\n"
" Actual: it throws nothing.");
}
// Tests EXPECT_NO_THROW.
TEST(ExpectTest, EXPECT_NO_THROW) {
EXPECT_NO_THROW(ThrowNothing());
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
"Expected: ThrowAnInteger() doesn't throw an "
"exception.\n Actual: it throws.");
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
"Expected: ThrowRuntimeError(\"A description\") "
"doesn't throw an exception.\n "
"Actual: it throws " ERROR_DESC
" "
"with description \"A description\".");
}
// Tests EXPECT_ANY_THROW.
TEST(ExpectTest, EXPECT_ANY_THROW) {
EXPECT_ANY_THROW(ThrowAnInteger());
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()),
"Expected: ThrowNothing() throws an exception.\n"
" Actual: it doesn't.");
}
#endif // GTEST_HAS_EXCEPTIONS
// Make sure we deal with the precedence of <<.
TEST(ExpectTest, ExpectPrecedence) {
EXPECT_EQ(1 < 2, true);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
" true && false\n Which is: false");
}
// Tests the StreamableToString() function.
// Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest, Scalar) {
EXPECT_STREQ("5", StreamableToString(5).c_str());
}
// Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest, Pointer) {
int n = 0;
int* p = &n;
EXPECT_STRNE("(null)", StreamableToString(p).c_str());
}
// Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest, NullPointer) {
int* p = nullptr;
EXPECT_STREQ("(null)", StreamableToString(p).c_str());
}
// Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest, CString) {
EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
}
// Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest, NullCString) {
char* p = nullptr;
EXPECT_STREQ("(null)", StreamableToString(p).c_str());
}
// Tests using streamable values as assertion messages.
// Tests using std::string as an assertion message.
TEST(StreamableTest, string) {
static const std::string str(
"This failure message is a std::string, and is expected.");
EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str());
}
// Tests that we can output strings containing embedded NULs.
// Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest, stringWithEmbeddedNUL) {
static const char char_array_with_nul[] =
"Here's a NUL\0 and some more string";
static const std::string string_with_nul(
char_array_with_nul,
sizeof(char_array_with_nul) - 1); // drops the trailing NUL
EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
"Here's a NUL\\0 and some more string");
}
// Tests that we can output a NUL char.
TEST(StreamableTest, NULChar) {
EXPECT_FATAL_FAILURE(
{ // NOLINT
FAIL() << "A NUL" << '\0' << " and some more string";
},
"A NUL\\0 and some more string");
}
// Tests using int as an assertion message.
TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); }
// Tests using NULL char pointer as an assertion message.
//
// In MSVC, streaming a NULL char * causes access violation. Google Test
// implemented a workaround (substituting "(null)" for NULL). This
// tests whether the workaround works.
TEST(StreamableTest, NullCharPtr) {
EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
}
// Tests that basic IO manipulators (endl, ends, and flush) can be
// streamed to testing::Message.
TEST(StreamableTest, BasicIoManip) {
EXPECT_FATAL_FAILURE(
{ // NOLINT
FAIL() << "Line 1." << std::endl
<< "A NUL char " << std::ends << std::flush << " in line 2.";
},
"Line 1.\nA NUL char \\0 in line 2.");
}
// Tests the macros that haven't been covered so far.
void AddFailureHelper(bool* aborted) {
*aborted = true;
ADD_FAILURE() << "Intentional failure.";
*aborted = false;
}
// Tests ADD_FAILURE.
TEST(MacroTest, ADD_FAILURE) {
bool aborted = true;
EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure.");
EXPECT_FALSE(aborted);
}
// Tests ADD_FAILURE_AT.
TEST(MacroTest, ADD_FAILURE_AT) {
// Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
// the failure message contains the user-streamed part.
EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
// Verifies that the user-streamed part is optional.
EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
// Unfortunately, we cannot verify that the failure message contains
// the right file path and line number the same way, as
// EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
// line number. Instead, we do that in googletest-output-test_.cc.
}
// Tests FAIL.
TEST(MacroTest, FAIL) {
EXPECT_FATAL_FAILURE(FAIL(), "Failed");
EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
"Intentional failure.");
}
// Tests GTEST_FAIL_AT.
TEST(MacroTest, GTEST_FAIL_AT) {
// Verifies that GTEST_FAIL_AT does generate a fatal failure and
// the failure message contains the user-streamed part.
EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
// Verifies that the user-streamed part is optional.
EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
// See the ADD_FAIL_AT test above to see how we test that the failure message
// contains the right filename and line number -- the same applies here.
}
// Tests SUCCEED
TEST(MacroTest, SUCCEED) {
SUCCEED();
SUCCEED() << "Explicit success.";
}
// Tests for EXPECT_EQ() and ASSERT_EQ().
//
// These tests fail *intentionally*, s.t. the failure messages can be
// generated and tested.
//
// We have different tests for different argument types.
// Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Bool) {
EXPECT_EQ(true, true);
EXPECT_FATAL_FAILURE(
{
bool false_value = false;
ASSERT_EQ(false_value, true);
},
" false_value\n Which is: false\n true");
}
// Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Int) {
ASSERT_EQ(32, 32);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), " 32\n 33");
}
// Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Time_T) {
EXPECT_EQ(static_cast<time_t>(0), static_cast<time_t>(0));
EXPECT_FATAL_FAILURE(
ASSERT_EQ(static_cast<time_t>(0), static_cast<time_t>(1234)), "1234");
}
// Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Char) {
ASSERT_EQ('z', 'z');
const char ch = 'b';
EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), " ch\n Which is: 'b'");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), " ch\n Which is: 'b'");
}
// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, WideChar) {
EXPECT_EQ(L'b', L'b');
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
"Expected equality of these values:\n"
" L'\0'\n"
" Which is: L'\0' (0, 0x0)\n"
" L'x'\n"
" Which is: L'x' (120, 0x78)");
static wchar_t wchar;
wchar = L'b';
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar");
wchar = 0x8119;
EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
" wchar\n Which is: L'");
}
// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, StdString) {
// Compares a const char* to an std::string that has identical
// content.
ASSERT_EQ("Test", ::std::string("Test"));
// Compares two identical std::strings.
static const ::std::string str1("A * in the middle");
static const ::std::string str2(str1);
EXPECT_EQ(str1, str2);
// Compares a const char* to an std::string that has different
// content
EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\"");
// Compares an std::string to a char* that has different content.
char* const p1 = const_cast<char*>("foo");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1");
// Compares two std::strings that have different contents, one of
// which having a NUL character in the middle. This should fail.
static ::std::string str3(str1);
str3.at(2) = '\0';
EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
" str3\n Which is: \"A \\0 in the middle\"");
}
#if GTEST_HAS_STD_WSTRING
// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, StdWideString) {
// Compares two identical std::wstrings.
const ::std::wstring wstr1(L"A * in the middle");
const ::std::wstring wstr2(wstr1);
ASSERT_EQ(wstr1, wstr2);
// Compares an std::wstring to a const wchar_t* that has identical
// content.
const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'};
EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
// Compares an std::wstring to a const wchar_t* that has different
// content.
const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'};
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
},
"kTestX8120");
// Compares two std::wstrings that have different contents, one of
// which having a NUL character in the middle.
::std::wstring wstr3(wstr1);
wstr3.at(2) = L'\0';
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3");
// Compares a wchar_t* to an std::wstring that has different
// content.
EXPECT_FATAL_FAILURE(
{ // NOLINT
ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
},
"");
}
#endif // GTEST_HAS_STD_WSTRING
// Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, CharPointer) {
char* const p0 = nullptr;
// Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
void* pv2 = (void*)0xABC0; // NOLINT
char* const p1 = reinterpret_cast<char*>(pv1);
char* const p2 = reinterpret_cast<char*>(pv2);
ASSERT_EQ(p1, p1);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:");
EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
reinterpret_cast<char*>(0xABC0)),
"ABC0");
}
// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, WideCharPointer) {
wchar_t* const p0 = nullptr;
// Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
void* pv2 = (void*)0xABC0; // NOLINT
wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
EXPECT_EQ(p0, p0);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:");
void* pv3 = (void*)0x1234; // NOLINT
void* pv4 = (void*)0xABC0; // NOLINT
const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4");
}
// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, OtherPointer) {
ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
reinterpret_cast<const int*>(0x1234)),
"0x1234");
}
// A class that supports binary comparison operators but not streaming.
class UnprintableChar {
public:
explicit UnprintableChar(char ch) : char_(ch) {}
bool operator==(const UnprintableChar& rhs) const {
return char_ == rhs.char_;
}
bool operator!=(const UnprintableChar& rhs) const {
return char_ != rhs.char_;
}
bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; }
bool operator<=(const UnprintableChar& rhs) const {
return char_ <= rhs.char_;
}
bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; }
bool operator>=(const UnprintableChar& rhs) const {
return char_ >= rhs.char_;
}
private:
char char_;
};
// Tests that ASSERT_EQ() and friends don't require the arguments to
// be printable.
TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
const UnprintableChar x('x'), y('y');
ASSERT_EQ(x, x);
EXPECT_NE(x, y);
ASSERT_LT(x, y);
EXPECT_LE(x, y);
ASSERT_GT(y, x);
EXPECT_GE(x, x);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
// Code tested by EXPECT_FATAL_FAILURE cannot reference local
// variables, so we have to write UnprintableChar('x') instead of x.
#ifndef __BORLANDC__
// ICE's in C++Builder.
EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
"1-byte object <78>");
EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
"1-byte object <78>");
#endif
EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
"1-byte object <79>");
EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
"1-byte object <78>");
EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
"1-byte object <79>");
}
// Tests the FRIEND_TEST macro.
// This class has a private member we want to test. We will test it
// both in a TEST and in a TEST_F.
class Foo {
public:
Foo() = default;
private:
int Bar() const { return 1; }
// Declares the friend tests that can access the private member
// Bar().
FRIEND_TEST(FRIEND_TEST_Test, TEST);
FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
};
// Tests that the FRIEND_TEST declaration allows a TEST to access a
// class's private members. This should compile.
TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); }
// The fixture needed to test using FRIEND_TEST with TEST_F.
class FRIEND_TEST_Test2 : public Test {
protected:
Foo foo;
};
// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
// class's private members. This should compile.
TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); }
// Tests the life cycle of Test objects.
// The test fixture for testing the life cycle of Test objects.
//
// This class counts the number of live test objects that uses this
// fixture.
class TestLifeCycleTest : public Test {
protected:
// Constructor. Increments the number of test objects that uses
// this fixture.
TestLifeCycleTest() { count_++; }
// Destructor. Decrements the number of test objects that uses this
// fixture.
~TestLifeCycleTest() override { count_--; }
// Returns the number of live test objects that uses this fixture.
int count() const { return count_; }
private:
static int count_;
};
int TestLifeCycleTest::count_ = 0;
// Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest, Test1) {
// There should be only one test object in this test case that's
// currently alive.
ASSERT_EQ(1, count());
}
// Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest, Test2) {
// After Test1 is done and Test2 is started, there should still be
// only one live test object, as the object for Test1 should've been
// deleted.
ASSERT_EQ(1, count());
}
} // namespace
// Tests that the copy constructor works when it is NOT optimized away by
// the compiler.
TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
// Checks that the copy constructor doesn't try to dereference NULL pointers
// in the source object.
AssertionResult r1 = AssertionSuccess();
AssertionResult r2 = r1;
// The following line is added to prevent the compiler from optimizing
// away the constructor call.
r1 << "abc";
AssertionResult r3 = r1;
EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
EXPECT_STREQ("abc", r1.message());
}
// Tests that AssertionSuccess and AssertionFailure construct
// AssertionResult objects as expected.
TEST(AssertionResultTest, ConstructionWorks) {
AssertionResult r1 = AssertionSuccess();
EXPECT_TRUE(r1);
EXPECT_STREQ("", r1.message());
AssertionResult r2 = AssertionSuccess() << "abc";
EXPECT_TRUE(r2);
EXPECT_STREQ("abc", r2.message());
AssertionResult r3 = AssertionFailure();
EXPECT_FALSE(r3);
EXPECT_STREQ("", r3.message());
AssertionResult r4 = AssertionFailure() << "def";
EXPECT_FALSE(r4);
EXPECT_STREQ("def", r4.message());
AssertionResult r5 = AssertionFailure(Message() << "ghi");
EXPECT_FALSE(r5);
EXPECT_STREQ("ghi", r5.message());
}
// Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest, NegationWorks) {
AssertionResult r1 = AssertionSuccess() << "abc";
EXPECT_FALSE(!r1);
EXPECT_STREQ("abc", (!r1).message());
AssertionResult r2 = AssertionFailure() << "def";
EXPECT_TRUE(!r2);
EXPECT_STREQ("def", (!r2).message());
}
TEST(AssertionResultTest, StreamingWorks) {
AssertionResult r = AssertionSuccess();
r << "abc" << 'd' << 0 << true;
EXPECT_STREQ("abcd0true", r.message());
}
TEST(AssertionResultTest, CanStreamOstreamManipulators) {
AssertionResult r = AssertionSuccess();
r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
EXPECT_STREQ("Data\n\\0Will be visible", r.message());
}
// The next test uses explicit conversion operators
TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
struct ExplicitlyConvertibleToBool {
explicit operator bool() const { return value; }
bool value;
};
ExplicitlyConvertibleToBool v1 = {false};
ExplicitlyConvertibleToBool v2 = {true};
EXPECT_FALSE(v1);
EXPECT_TRUE(v2);
}
struct ConvertibleToAssertionResult {
operator AssertionResult() const { return AssertionResult(true); }
};
TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
ConvertibleToAssertionResult obj;
EXPECT_TRUE(obj);
}
// Tests streaming a user type whose definition and operator << are
// both in the global namespace.
class Base {
public:
explicit Base(int an_x) : x_(an_x) {}
int x() const { return x_; }
private:
int x_;
};
std::ostream& operator<<(std::ostream& os, const Base& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os, const Base* pointer) {
return os << "(" << pointer->x() << ")";
}
TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
Message msg;
Base a(1);
msg << a << &a; // Uses ::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming a user type whose definition and operator<< are
// both in an unnamed namespace.
namespace {
class MyTypeInUnnamedNameSpace : public Base {
public:
explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {}
};
std::ostream& operator<<(std::ostream& os,
const MyTypeInUnnamedNameSpace& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os,
const MyTypeInUnnamedNameSpace* pointer) {
return os << "(" << pointer->x() << ")";
}
} // namespace
TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
Message msg;
MyTypeInUnnamedNameSpace a(1);
msg << a << &a; // Uses <unnamed_namespace>::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming a user type whose definition and operator<< are
// both in a user namespace.
namespace namespace1 {
class MyTypeInNameSpace1 : public Base {
public:
explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {}
};
std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) {
return os << "(" << pointer->x() << ")";
}
} // namespace namespace1
TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
Message msg;
namespace1::MyTypeInNameSpace1 a(1);
msg << a << &a; // Uses namespace1::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming a user type whose definition is in a user namespace
// but whose operator<< is in the global namespace.
namespace namespace2 {
class MyTypeInNameSpace2 : public ::Base {
public:
explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {}
};
} // namespace namespace2
std::ostream& operator<<(std::ostream& os,
const namespace2::MyTypeInNameSpace2& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os,
const namespace2::MyTypeInNameSpace2* pointer) {
return os << "(" << pointer->x() << ")";
}
TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
Message msg;
namespace2::MyTypeInNameSpace2 a(1);
msg << a << &a; // Uses ::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming NULL pointers to testing::Message.
TEST(MessageTest, NullPointers) {
Message msg;
char* const p1 = nullptr;
unsigned char* const p2 = nullptr;
int* p3 = nullptr;
double* p4 = nullptr;
bool* p5 = nullptr;
Message* p6 = nullptr;
msg << p1 << p2 << p3 << p4 << p5 << p6;
ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str());
}
// Tests streaming wide strings to testing::Message.
TEST(MessageTest, WideStrings) {
// Streams a NULL of type const wchar_t*.
const wchar_t* const_wstr = nullptr;
EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str());
// Streams a NULL of type wchar_t*.
wchar_t* wstr = nullptr;
EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str());
// Streams a non-NULL of type const wchar_t*.
const_wstr = L"abc\x8119";
EXPECT_STREQ("abc\xe8\x84\x99",
(Message() << const_wstr).GetString().c_str());
// Streams a non-NULL of type wchar_t*.
wstr = const_cast<wchar_t*>(const_wstr);
EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str());
}
// This line tests that we can define tests in the testing namespace.
namespace testing {
// Tests the TestInfo class.
class TestInfoTest : public Test {
protected:
static const TestInfo* GetTestInfo(const char* test_name) {
const TestSuite* const test_suite =
GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
for (int i = 0; i < test_suite->total_test_count(); ++i) {
const TestInfo* const test_info = test_suite->GetTestInfo(i);
if (strcmp(test_name, test_info->name()) == 0) return test_info;
}
return nullptr;
}
static const TestResult* GetTestResult(const TestInfo* test_info) {
return test_info->result();
}
};
// Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest, Names) {
const TestInfo* const test_info = GetTestInfo("Names");
ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
ASSERT_STREQ("Names", test_info->name());
}
// Tests TestInfo::result().
TEST_F(TestInfoTest, result) {
const TestInfo* const test_info = GetTestInfo("result");
// Initially, there is no TestPartResult for this test.
ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
// After the previous assertion, there is still none.
ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
}
#define VERIFY_CODE_LOCATION \
const int expected_line = __LINE__ - 1; \
const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
ASSERT_TRUE(test_info); \
EXPECT_STREQ(__FILE__, test_info->file()); \
EXPECT_EQ(expected_line, test_info->line())
// clang-format off
TEST(CodeLocationForTEST, Verify) {
VERIFY_CODE_LOCATION;
}
class CodeLocationForTESTF : public Test {};
TEST_F(CodeLocationForTESTF, Verify) {
VERIFY_CODE_LOCATION;
}
class CodeLocationForTESTP : public TestWithParam<int> {};
TEST_P(CodeLocationForTESTP, Verify) {
VERIFY_CODE_LOCATION;
}
INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
template <typename T>
class CodeLocationForTYPEDTEST : public Test {};
TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
VERIFY_CODE_LOCATION;
}
template <typename T>
class CodeLocationForTYPEDTESTP : public Test {};
TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
VERIFY_CODE_LOCATION;
}
REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
#undef VERIFY_CODE_LOCATION
// clang-format on
// Tests setting up and tearing down a test case.
// Legacy API is deprecated but still available
#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
class SetUpTestCaseTest : public Test {
protected:
// This will be called once before the first test in this test case
// is run.
static void SetUpTestCase() {
printf("Setting up the test case . . .\n");
// Initializes some shared resource. In this simple example, we
// just create a C string. More complex stuff can be done if
// desired.
shared_resource_ = "123";
// Increments the number of test cases that have been set up.
counter_++;
// SetUpTestCase() should be called only once.
EXPECT_EQ(1, counter_);
}
// This will be called once after the last test in this test case is
// run.
static void TearDownTestCase() {
printf("Tearing down the test case . . .\n");
// Decrements the number of test cases that have been set up.
counter_--;
// TearDownTestCase() should be called only once.
EXPECT_EQ(0, counter_);
// Cleans up the shared resource.
shared_resource_ = nullptr;
}
// This will be called before each test in this test case.
void SetUp() override {
// SetUpTestCase() should be called only once, so counter_ should
// always be 1.
EXPECT_EQ(1, counter_);
}
// Number of test cases that have been set up.
static int counter_;
// Some resource to be shared by all tests in this test case.
static const char* shared_resource_;
};
int SetUpTestCaseTest::counter_ = 0;
const char* SetUpTestCaseTest::shared_resource_ = nullptr;
// A test that uses the shared resource.
TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
// Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); }
#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
// Tests SetupTestSuite/TearDown TestSuite
class SetUpTestSuiteTest : public Test {
protected:
// This will be called once before the first test in this test case
// is run.
static void SetUpTestSuite() {
printf("Setting up the test suite . . .\n");
// Initializes some shared resource. In this simple example, we
// just create a C string. More complex stuff can be done if
// desired.
shared_resource_ = "123";
// Increments the number of test cases that have been set up.
counter_++;
// SetUpTestSuite() should be called only once.
EXPECT_EQ(1, counter_);
}
// This will be called once after the last test in this test case is
// run.
static void TearDownTestSuite() {
printf("Tearing down the test suite . . .\n");
// Decrements the number of test suites that have been set up.
counter_--;
// TearDownTestSuite() should be called only once.
EXPECT_EQ(0, counter_);
// Cleans up the shared resource.
shared_resource_ = nullptr;
}
// This will be called before each test in this test case.
void SetUp() override {
// SetUpTestSuite() should be called only once, so counter_ should
// always be 1.
EXPECT_EQ(1, counter_);
}
// Number of test suites that have been set up.
static int counter_;
// Some resource to be shared by all tests in this test case.
static const char* shared_resource_;
};
int SetUpTestSuiteTest::counter_ = 0;
const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
// A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
EXPECT_STRNE(nullptr, shared_resource_);
}
// Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
EXPECT_STREQ("123", shared_resource_);
}
// The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
// The Flags struct stores a copy of all Google Test flags.
struct Flags {
// Constructs a Flags struct where each flag has its default value.
Flags()
: also_run_disabled_tests(false),
break_on_failure(false),
catch_exceptions(false),
death_test_use_fork(false),
fail_fast(false),
filter(""),
list_tests(false),
output(""),
brief(false),
print_time(true),
random_seed(0),
repeat(1),
recreate_environments_when_repeating(true),
shuffle(false),
stack_trace_depth(kMaxStackTraceDepth),
stream_result_to(""),
throw_on_failure(false) {}
// Factory methods.
// Creates a Flags struct where the gtest_also_run_disabled_tests flag has
// the given value.
static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
Flags flags;
flags.also_run_disabled_tests = also_run_disabled_tests;
return flags;
}
// Creates a Flags struct where the gtest_break_on_failure flag has
// the given value.
static Flags BreakOnFailure(bool break_on_failure) {
Flags flags;
flags.break_on_failure = break_on_failure;
return flags;
}
// Creates a Flags struct where the gtest_catch_exceptions flag has
// the given value.
static Flags CatchExceptions(bool catch_exceptions) {
Flags flags;
flags.catch_exceptions = catch_exceptions;
return flags;
}
// Creates a Flags struct where the gtest_death_test_use_fork flag has
// the given value.
static Flags DeathTestUseFork(bool death_test_use_fork) {
Flags flags;
flags.death_test_use_fork = death_test_use_fork;
return flags;
}
// Creates a Flags struct where the gtest_fail_fast flag has
// the given value.
static Flags FailFast(bool fail_fast) {
Flags flags;
flags.fail_fast = fail_fast;
return flags;
}
// Creates a Flags struct where the gtest_filter flag has the given
// value.
static Flags Filter(const char* filter) {
Flags flags;
flags.filter = filter;
return flags;
}
// Creates a Flags struct where the gtest_list_tests flag has the
// given value.
static Flags ListTests(bool list_tests) {
Flags flags;
flags.list_tests = list_tests;
return flags;
}
// Creates a Flags struct where the gtest_output flag has the given
// value.
static Flags Output(const char* output) {
Flags flags;
flags.output = output;
return flags;
}
// Creates a Flags struct where the gtest_brief flag has the given
// value.
static Flags Brief(bool brief) {
Flags flags;
flags.brief = brief;
return flags;
}
// Creates a Flags struct where the gtest_print_time flag has the given
// value.
static Flags PrintTime(bool print_time) {
Flags flags;
flags.print_time = print_time;
return flags;
}
// Creates a Flags struct where the gtest_random_seed flag has the given
// value.
static Flags RandomSeed(int32_t random_seed) {
Flags flags;
flags.random_seed = random_seed;
return flags;
}
// Creates a Flags struct where the gtest_repeat flag has the given
// value.
static Flags Repeat(int32_t repeat) {
Flags flags;
flags.repeat = repeat;
return flags;
}
// Creates a Flags struct where the gtest_recreate_environments_when_repeating
// flag has the given value.
static Flags RecreateEnvironmentsWhenRepeating(
bool recreate_environments_when_repeating) {
Flags flags;
flags.recreate_environments_when_repeating =
recreate_environments_when_repeating;
return flags;
}
// Creates a Flags struct where the gtest_shuffle flag has the given
// value.
static Flags Shuffle(bool shuffle) {
Flags flags;
flags.shuffle = shuffle;
return flags;
}
// Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
// the given value.
static Flags StackTraceDepth(int32_t stack_trace_depth) {
Flags flags;
flags.stack_trace_depth = stack_trace_depth;
return flags;
}
// Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
// the given value.
static Flags StreamResultTo(const char* stream_result_to) {
Flags flags;
flags.stream_result_to = stream_result_to;
return flags;
}
// Creates a Flags struct where the gtest_throw_on_failure flag has
// the given value.
static Flags ThrowOnFailure(bool throw_on_failure) {
Flags flags;
flags.throw_on_failure = throw_on_failure;
return flags;
}
// These fields store the flag values.
bool also_run_disabled_tests;
bool break_on_failure;
bool catch_exceptions;
bool death_test_use_fork;
bool fail_fast;
const char* filter;
bool list_tests;
const char* output;
bool brief;
bool print_time;
int32_t random_seed;
int32_t repeat;
bool recreate_environments_when_repeating;
bool shuffle;
int32_t stack_trace_depth;
const char* stream_result_to;
bool throw_on_failure;
};
// Fixture for testing ParseGoogleTestFlagsOnly().
class ParseFlagsTest : public Test {
protected:
// Clears the flags before each test.
void SetUp() override {
GTEST_FLAG_SET(also_run_disabled_tests, false);
GTEST_FLAG_SET(break_on_failure, false);
GTEST_FLAG_SET(catch_exceptions, false);
GTEST_FLAG_SET(death_test_use_fork, false);
GTEST_FLAG_SET(fail_fast, false);
GTEST_FLAG_SET(filter, "");
GTEST_FLAG_SET(list_tests, false);
GTEST_FLAG_SET(output, "");
GTEST_FLAG_SET(brief, false);
GTEST_FLAG_SET(print_time, true);
GTEST_FLAG_SET(random_seed, 0);
GTEST_FLAG_SET(repeat, 1);
GTEST_FLAG_SET(recreate_environments_when_repeating, true);
GTEST_FLAG_SET(shuffle, false);
GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth);
GTEST_FLAG_SET(stream_result_to, "");
GTEST_FLAG_SET(throw_on_failure, false);
}
// Asserts that two narrow or wide string arrays are equal.
template <typename CharType>
static void AssertStringArrayEq(int size1, CharType** array1, int size2,
CharType** array2) {
ASSERT_EQ(size1, size2) << " Array sizes different.";
for (int i = 0; i != size1; i++) {
ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
}
}
// Verifies that the flag values match the expected values.
static void CheckFlags(const Flags& expected) {
EXPECT_EQ(expected.also_run_disabled_tests,
GTEST_FLAG_GET(also_run_disabled_tests));
EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure));
EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions));
EXPECT_EQ(expected.death_test_use_fork,
GTEST_FLAG_GET(death_test_use_fork));
EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast));
EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str());
EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests));
EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str());
EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief));
EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time));
EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed));
EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat));
EXPECT_EQ(expected.recreate_environments_when_repeating,
GTEST_FLAG_GET(recreate_environments_when_repeating));
EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle));
EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth));
EXPECT_STREQ(expected.stream_result_to,
GTEST_FLAG_GET(stream_result_to).c_str());
EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure));
}
// Parses a command line (specified by argc1 and argv1), then
// verifies that the flag values are expected and that the
// recognized flags are removed from the command line.
template <typename CharType>
static void TestParsingFlags(int argc1, const CharType** argv1, int argc2,
const CharType** argv2, const Flags& expected,
bool should_print_help) {
const bool saved_help_flag = ::testing::internal::g_help_flag;
::testing::internal::g_help_flag = false;
#if GTEST_HAS_STREAM_REDIRECTION
CaptureStdout();
#endif
// Parses the command line.
internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
#if GTEST_HAS_STREAM_REDIRECTION
const std::string captured_stdout = GetCapturedStdout();
#endif
// Verifies the flag values.
CheckFlags(expected);
// Verifies that the recognized flags are removed from the command
// line.
AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
// ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
// help message for the flags it recognizes.
EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
#if GTEST_HAS_STREAM_REDIRECTION
const char* const expected_help_fragment =
"This program contains tests written using";
if (should_print_help) {
EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
} else {
EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment,
captured_stdout);
}
#endif // GTEST_HAS_STREAM_REDIRECTION
::testing::internal::g_help_flag = saved_help_flag;
}
// This macro wraps TestParsingFlags s.t. the user doesn't need
// to specify the array sizes.
#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1, \
sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected, \
should_print_help)
};
// Tests parsing an empty command line.
TEST_F(ParseFlagsTest, Empty) {
const char* argv[] = {nullptr};
const char* argv2[] = {nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
}
// Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest, NoFlag) {
const char* argv[] = {"foo.exe", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
}
// Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest, FailFast) {
const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
}
// Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest, FilterEmpty) {
const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
}
// Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest, FilterNonEmpty) {
const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
}
// Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
}
// Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
}
// Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
}
// Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
}
// Tests parsing a --gtest_break_on_failure flag that has a "true"
// definition.
TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
}
// Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest, CatchExceptions) {
const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
}
// Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest, DeathTestUseFork) {
const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
}
// Tests having the same flag twice with different values. The
// expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest, DuplicatedFlags) {
const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
}
// Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest, UnrecognizedFlag) {
const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
"bar", // Unrecognized by Google Test.
"--gtest_filter=b", nullptr};
const char* argv2[] = {"foo.exe", "bar", nullptr};
Flags flags;
flags.break_on_failure = true;
flags.filter = "b";
GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
}
// Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest, ListTestsFlag) {
const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
}
// Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest, ListTestsTrue) {
const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
}
// Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest, ListTestsFalse) {
const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
}
// Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest, ListTestsFalse_f) {
const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
}
// Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest, ListTestsFalse_F) {
const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
}
// Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest, OutputXml) {
const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
}
// Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest, OutputXmlFile) {
const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
}
// Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest, OutputXmlDirectory) {
const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"),
false);
}
// Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest, BriefFlag) {
const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
}
// Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest, BriefFlagTrue) {
const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
}
// Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest, BriefFlagFalse) {
const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
}
// Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest, PrintTimeFlag) {
const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
}
// Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest, PrintTimeTrue) {
const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
}
// Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest, PrintTimeFalse) {
const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
}
// Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
}
// Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
}
// Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest, RandomSeed) {
const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
}
// Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest, Repeat) {
const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
}
// Tests parsing --gtest_recreate_environments_when_repeating
TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) {
const char* argv[] = {
"foo.exe",
"--gtest_recreate_environments_when_repeating=0",
nullptr,
};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(
argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false);
}
// Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
false);
}
// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
false);
}
// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
false);
}
// Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
}
// Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest, ShuffleFalse_0) {
const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
}
// Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest, ShuffleTrue) {
const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
}
// Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest, StackTraceDepth) {
const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
}
TEST_F(ParseFlagsTest, StreamResultTo) {
const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2,
Flags::StreamResultTo("localhost:1234"), false);
}
// Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
}
// Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
}
// Tests parsing a --gtest_throw_on_failure flag that has a "true"
// definition.
TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
}
// Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest, FilterBad) {
const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
#if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
// Invalid flag arguments are a fatal error when using the Abseil Flags.
EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true),
testing::ExitedWithCode(1),
"ERROR: Missing the value for the flag 'gtest_filter'");
#elif !defined(GTEST_HAS_ABSL)
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
#else
static_cast<void>(argv);
static_cast<void>(argv2);
#endif
}
// Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest, OutputEmpty) {
const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
#if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST)
// Invalid flag arguments are a fatal error when using the Abseil Flags.
EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true),
testing::ExitedWithCode(1),
"ERROR: Missing the value for the flag 'gtest_output'");
#elif !defined(GTEST_HAS_ABSL)
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
#else
static_cast<void>(argv);
static_cast<void>(argv2);
#endif
}
#ifdef GTEST_HAS_ABSL
TEST_F(ParseFlagsTest, AbseilPositionalFlags) {
const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--",
"--other_flag", nullptr};
// When using Abseil flags, it should be possible to pass flags not recognized
// using "--" to delimit positional arguments. These flags should be returned
// though argv.
const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
}
#endif
TEST_F(ParseFlagsTest, UnrecognizedFlags) {
const char* argv[] = {"foo.exe", "--gtest_filter=abcd", "--other_flag",
nullptr};
const char* argv2[] = {"foo.exe", "--other_flag", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abcd"), false);
}
#ifdef GTEST_OS_WINDOWS
// Tests parsing wide strings.
TEST_F(ParseFlagsTest, WideStrings) {
const wchar_t* argv[] = {L"foo.exe",
L"--gtest_filter=Foo*",
L"--gtest_list_tests=1",
L"--gtest_break_on_failure",
L"--non_gtest_flag",
NULL};
const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL};
Flags expected_flags;
expected_flags.break_on_failure = true;
expected_flags.filter = "Foo*";
expected_flags.list_tests = true;
GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
}
#endif // GTEST_OS_WINDOWS
#if GTEST_USE_OWN_FLAGFILE_FLAG_
class FlagfileTest : public ParseFlagsTest {
public:
void SetUp() override {
ParseFlagsTest::SetUp();
testdata_path_.Set(internal::FilePath(
testing::TempDir() + internal::GetCurrentExecutableName().string() +
"_flagfile_test"));
testing::internal::posix::RmDir(testdata_path_.c_str());
EXPECT_TRUE(testdata_path_.CreateFolder());
}
void TearDown() override {
testing::internal::posix::RmDir(testdata_path_.c_str());
ParseFlagsTest::TearDown();
}
internal::FilePath CreateFlagfile(const char* contents) {
internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
testdata_path_, internal::FilePath("unique"), "txt"));
FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
fprintf(f, "%s", contents);
fclose(f);
return file_path;
}
private:
internal::FilePath testdata_path_;
};
// Tests an empty flagfile.
TEST_F(FlagfileTest, Empty) {
internal::FilePath flagfile_path(CreateFlagfile(""));
std::string flagfile_flag =
std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
}
// Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest, FilterNonEmpty) {
internal::FilePath flagfile_path(
CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc"));
std::string flagfile_flag =
std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
const char* argv2[] = {"foo.exe", nullptr};
GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
}
// Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest, SeveralFlags) {
internal::FilePath flagfile_path(
CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n"
"--" GTEST_FLAG_PREFIX_ "break_on_failure\n"
"--" GTEST_FLAG_PREFIX_ "list_tests"));
std::string flagfile_flag =
std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
const char* argv2[] = {"foo.exe", nullptr};
Flags expected_flags;
expected_flags.break_on_failure = true;
expected_flags.filter = "abc";
expected_flags.list_tests = true;
GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
}
#endif // GTEST_USE_OWN_FLAGFILE_FLAG_
// Tests current_test_info() in UnitTest.
class CurrentTestInfoTest : public Test {
protected:
// Tests that current_test_info() returns NULL before the first test in
// the test case is run.
static void SetUpTestSuite() {
// There should be no tests running at this point.
const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
EXPECT_TRUE(test_info == nullptr)
<< "There should be no tests running at this point.";
}
// Tests that current_test_info() returns NULL after the last test in
// the test case has run.
static void TearDownTestSuite() {
const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
EXPECT_TRUE(test_info == nullptr)
<< "There should be no tests running at this point.";
}
};
// Tests that current_test_info() returns TestInfo for currently running
// test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
ASSERT_TRUE(nullptr != test_info)
<< "There is a test running so we should have a valid TestInfo.";
EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
<< "Expected the name of the currently running test suite.";
EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
<< "Expected the name of the currently running test.";
}
// Tests that current_test_info() returns TestInfo for currently running
// test by checking the expected test name against the actual one. We
// use this test to see that the TestInfo object actually changed from
// the previous invocation.
TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
ASSERT_TRUE(nullptr != test_info)
<< "There is a test running so we should have a valid TestInfo.";
EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
<< "Expected the name of the currently running test suite.";
EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
<< "Expected the name of the currently running test.";
}
} // namespace testing
// These two lines test that we can define tests in a namespace that
// has the name "testing" and is nested in another namespace.
namespace my_namespace {
namespace testing {
// Makes sure that TEST knows to use ::testing::Test instead of
// ::my_namespace::testing::Test.
class Test {};
// Makes sure that an assertion knows to use ::testing::Message instead of
// ::my_namespace::testing::Message.
class Message {};
// Makes sure that an assertion knows to use
// ::testing::AssertionResult instead of
// ::my_namespace::testing::AssertionResult.
class AssertionResult {};
// Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest, Success) {
EXPECT_EQ(1, 1) << "This shouldn't fail.";
}
// Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest, Failure) {
EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
"This failure is expected.");
}
} // namespace testing
} // namespace my_namespace
// Tests that one can call superclass SetUp and TearDown methods--
// that is, that they are not private.
// No tests are based on this fixture; the test "passes" if it compiles
// successfully.
class ProtectedFixtureMethodsTest : public Test {
protected:
void SetUp() override { Test::SetUp(); }
void TearDown() override { Test::TearDown(); }
};
// StreamingAssertionsTest tests the streaming versions of a representative
// sample of assertions.
TEST(StreamingAssertionsTest, Unconditional) {
SUCCEED() << "expected success";
EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure");
}
#ifdef __BORLANDC__
// Silences warnings: "Condition is always true", "Unreachable code"
#pragma option push -w-ccc -w-rch
#endif
TEST(StreamingAssertionsTest, Truth) {
EXPECT_TRUE(true) << "unexpected failure";
ASSERT_TRUE(true) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, Truth2) {
EXPECT_FALSE(false) << "unexpected failure";
ASSERT_FALSE(false) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
"expected failure");
}
#ifdef __BORLANDC__
// Restores warnings after previous "#pragma option push" suppressed them
#pragma option pop
#endif
TEST(StreamingAssertionsTest, IntegerEquals) {
EXPECT_EQ(1, 1) << "unexpected failure";
ASSERT_EQ(1, 1) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, IntegerLessThan) {
EXPECT_LT(1, 2) << "unexpected failure";
ASSERT_LT(1, 2) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringsEqual) {
EXPECT_STREQ("foo", "foo") << "unexpected failure";
ASSERT_STREQ("foo", "foo") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringsNotEqual) {
EXPECT_STRNE("foo", "bar") << "unexpected failure";
ASSERT_STRNE("foo", "bar") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, FloatingPointEquals) {
EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
"expected failure");
}
#if GTEST_HAS_EXCEPTIONS
TEST(StreamingAssertionsTest, Throw) {
EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool)
<< "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool)
<< "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, NoThrow) {
EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger())
<< "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, AnyThrow) {
EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing())
<< "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure",
"expected failure");
}
#endif // GTEST_HAS_EXCEPTIONS
// Tests that Google Test correctly decides whether to use colors in the output.
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
GTEST_FLAG_SET(color, "yes");
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
GTEST_FLAG_SET(color, "True");
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
GTEST_FLAG_SET(color, "t");
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
GTEST_FLAG_SET(color, "1");
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
GTEST_FLAG_SET(color, "no");
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
SetEnv("TERM", "xterm"); // TERM supports colors.
GTEST_FLAG_SET(color, "F");
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
GTEST_FLAG_SET(color, "0");
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
GTEST_FLAG_SET(color, "unknown");
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
GTEST_FLAG_SET(color, "auto");
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
GTEST_FLAG_SET(color, "auto");
#if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW)
// On Windows, we ignore the TERM variable as it's usually not set.
SetEnv("TERM", "dumb");
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "");
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm");
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
#else
// On non-Windows platforms, we rely on TERM to determine if the
// terminal supports colors.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "emacs"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "vt100"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-kitty"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "alacritty"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-256color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "screen"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "screen-256color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "tmux"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "tmux-256color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "rxvt-unicode"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "rxvt-unicode-256color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "linux"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "cygwin"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
#endif // GTEST_OS_WINDOWS
}
// Verifies that StaticAssertTypeEq works in a namespace scope.
GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static bool dummy1 =
StaticAssertTypeEq<bool, bool>();
GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED static bool dummy2 =
StaticAssertTypeEq<const int, const int>();
// Verifies that StaticAssertTypeEq works in a class.
template <typename T>
class StaticAssertTypeEqTestHelper {
public:
StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
};
TEST(StaticAssertTypeEqTest, WorksInClass) {
StaticAssertTypeEqTestHelper<bool>();
}
// Verifies that StaticAssertTypeEq works inside a function.
typedef int IntAlias;
TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
StaticAssertTypeEq<int, IntAlias>();
StaticAssertTypeEq<int*, IntAlias*>();
}
TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
EXPECT_FALSE(HasNonfatalFailure());
}
static void FailFatally() { FAIL(); }
TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
FailFatally();
const bool has_nonfatal_failure = HasNonfatalFailure();
ClearCurrentTestPartResults();
EXPECT_FALSE(has_nonfatal_failure);
}
TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
ADD_FAILURE();
const bool has_nonfatal_failure = HasNonfatalFailure();
ClearCurrentTestPartResults();
EXPECT_TRUE(has_nonfatal_failure);
}
TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
FailFatally();
ADD_FAILURE();
const bool has_nonfatal_failure = HasNonfatalFailure();
ClearCurrentTestPartResults();
EXPECT_TRUE(has_nonfatal_failure);
}
// A wrapper for calling HasNonfatalFailure outside of a test body.
static bool HasNonfatalFailureHelper() {
return testing::Test::HasNonfatalFailure();
}
TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
EXPECT_FALSE(HasNonfatalFailureHelper());
}
TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
ADD_FAILURE();
const bool has_nonfatal_failure = HasNonfatalFailureHelper();
ClearCurrentTestPartResults();
EXPECT_TRUE(has_nonfatal_failure);
}
TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
EXPECT_FALSE(HasFailure());
}
TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
FailFatally();
const bool has_failure = HasFailure();
ClearCurrentTestPartResults();
EXPECT_TRUE(has_failure);
}
TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
ADD_FAILURE();
const bool has_failure = HasFailure();
ClearCurrentTestPartResults();
EXPECT_TRUE(has_failure);
}
TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
FailFatally();
ADD_FAILURE();
const bool has_failure = HasFailure();
ClearCurrentTestPartResults();
EXPECT_TRUE(has_failure);
}
// A wrapper for calling HasFailure outside of a test body.
static bool HasFailureHelper() { return testing::Test::HasFailure(); }
TEST(HasFailureTest, WorksOutsideOfTestBody) {
EXPECT_FALSE(HasFailureHelper());
}
TEST(HasFailureTest, WorksOutsideOfTestBody2) {
ADD_FAILURE();
const bool has_failure = HasFailureHelper();
ClearCurrentTestPartResults();
EXPECT_TRUE(has_failure);
}
class TestListener : public EmptyTestEventListener {
public:
TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int* on_start_counter, bool* is_destroyed)
: on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {}
~TestListener() override {
if (is_destroyed_) *is_destroyed_ = true;
}
protected:
void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
if (on_start_counter_ != nullptr) (*on_start_counter_)++;
}
private:
int* on_start_counter_;
bool* is_destroyed_;
};
// Tests the constructor.
TEST(TestEventListenersTest, ConstructionWorks) {
TestEventListeners listeners;
EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
EXPECT_TRUE(listeners.default_result_printer() == nullptr);
EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
}
// Tests that the TestEventListeners destructor deletes all the listeners it
// owns.
TEST(TestEventListenersTest, DestructionWorks) {
bool default_result_printer_is_destroyed = false;
bool default_xml_printer_is_destroyed = false;
bool extra_listener_is_destroyed = false;
TestListener* default_result_printer =
new TestListener(nullptr, &default_result_printer_is_destroyed);
TestListener* default_xml_printer =
new TestListener(nullptr, &default_xml_printer_is_destroyed);
TestListener* extra_listener =
new TestListener(nullptr, &extra_listener_is_destroyed);
{
TestEventListeners listeners;
TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
default_result_printer);
TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
default_xml_printer);
listeners.Append(extra_listener);
}
EXPECT_TRUE(default_result_printer_is_destroyed);
EXPECT_TRUE(default_xml_printer_is_destroyed);
EXPECT_TRUE(extra_listener_is_destroyed);
}
// Tests that a listener Append'ed to a TestEventListeners list starts
// receiving events.
TEST(TestEventListenersTest, Append) {
int on_start_counter = 0;
bool is_destroyed = false;
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
{
TestEventListeners listeners;
listeners.Append(listener);
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(1, on_start_counter);
}
EXPECT_TRUE(is_destroyed);
}
// Tests that listeners receive events in the order they were appended to
// the list, except for *End requests, which must be received in the reverse
// order.
class SequenceTestingListener : public EmptyTestEventListener {
public:
SequenceTestingListener(std::vector<std::string>* vector, const char* id)
: vector_(vector), id_(id) {}
protected:
void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
vector_->push_back(GetEventDescription("OnTestProgramStart"));
}
void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
vector_->push_back(GetEventDescription("OnTestProgramEnd"));
}
void OnTestIterationStart(const UnitTest& /*unit_test*/,
int /*iteration*/) override {
vector_->push_back(GetEventDescription("OnTestIterationStart"));
}
void OnTestIterationEnd(const UnitTest& /*unit_test*/,
int /*iteration*/) override {
vector_->push_back(GetEventDescription("OnTestIterationEnd"));
}
private:
std::string GetEventDescription(const char* method) {
Message message;
message << id_ << "." << method;
return message.GetString();
}
std::vector<std::string>* vector_;
const char* const id_;
SequenceTestingListener(const SequenceTestingListener&) = delete;
SequenceTestingListener& operator=(const SequenceTestingListener&) = delete;
};
TEST(EventListenerTest, AppendKeepsOrder) {
std::vector<std::string> vec;
TestEventListeners listeners;
listeners.Append(new SequenceTestingListener(&vec, "1st"));
listeners.Append(new SequenceTestingListener(&vec, "2nd"));
listeners.Append(new SequenceTestingListener(&vec, "3rd"));
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
ASSERT_EQ(3U, vec.size());
EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
vec.clear();
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramEnd(*UnitTest::GetInstance());
ASSERT_EQ(3U, vec.size());
EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
vec.clear();
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestIterationStart(*UnitTest::GetInstance(), 0);
ASSERT_EQ(3U, vec.size());
EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
vec.clear();
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestIterationEnd(*UnitTest::GetInstance(), 0);
ASSERT_EQ(3U, vec.size());
EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
}
// Tests that a listener removed from a TestEventListeners list stops receiving
// events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest, Release) {
int on_start_counter = 0;
bool is_destroyed = false;
// Although Append passes the ownership of this object to the list,
// the following calls release it, and we need to delete it before the
// test ends.
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
{
TestEventListeners listeners;
listeners.Append(listener);
EXPECT_EQ(listener, listeners.Release(listener));
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_TRUE(listeners.Release(listener) == nullptr);
}
EXPECT_EQ(0, on_start_counter);
EXPECT_FALSE(is_destroyed);
delete listener;
}
// Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest, SuppressEventForwarding) {
int on_start_counter = 0;
TestListener* listener = new TestListener(&on_start_counter, nullptr);
TestEventListeners listeners;
listeners.Append(listener);
ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
TestEventListenersAccessor::SuppressEventForwarding(&listeners);
ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(0, on_start_counter);
}
// Tests that events generated by Google Test are not forwarded in
// death test subprocesses.
TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) {
EXPECT_DEATH_IF_SUPPORTED(
{
GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
*GetUnitTestImpl()->listeners()))
<< "expected failure";
},
"expected failure");
}
// Tests that a listener installed via SetDefaultResultPrinter() starts
// receiving events and is returned via default_result_printer() and that
// the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest, default_result_printer) {
int on_start_counter = 0;
bool is_destroyed = false;
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
TestEventListeners listeners;
TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
EXPECT_EQ(listener, listeners.default_result_printer());
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(1, on_start_counter);
// Replacing default_result_printer with something else should remove it
// from the list and destroy it.
TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
EXPECT_TRUE(listeners.default_result_printer() == nullptr);
EXPECT_TRUE(is_destroyed);
// After broadcasting an event the counter is still the same, indicating
// the listener is not in the list anymore.
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(1, on_start_counter);
}
// Tests that the default_result_printer listener stops receiving events
// when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
int on_start_counter = 0;
bool is_destroyed = false;
// Although Append passes the ownership of this object to the list,
// the following calls release it, and we need to delete it before the
// test ends.
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
{
TestEventListeners listeners;
TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
EXPECT_EQ(listener, listeners.Release(listener));
EXPECT_TRUE(listeners.default_result_printer() == nullptr);
EXPECT_FALSE(is_destroyed);
// Broadcasting events now should not affect default_result_printer.
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(0, on_start_counter);
}
// Destroying the list should not affect the listener now, too.
EXPECT_FALSE(is_destroyed);
delete listener;
}
// Tests that a listener installed via SetDefaultXmlGenerator() starts
// receiving events and is returned via default_xml_generator() and that
// the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest, default_xml_generator) {
int on_start_counter = 0;
bool is_destroyed = false;
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
TestEventListeners listeners;
TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
EXPECT_EQ(listener, listeners.default_xml_generator());
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(1, on_start_counter);
// Replacing default_xml_generator with something else should remove it
// from the list and destroy it.
TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
EXPECT_TRUE(is_destroyed);
// After broadcasting an event the counter is still the same, indicating
// the listener is not in the list anymore.
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(1, on_start_counter);
}
// Tests that the default_xml_generator listener stops receiving events
// when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
int on_start_counter = 0;
bool is_destroyed = false;
// Although Append passes the ownership of this object to the list,
// the following calls release it, and we need to delete it before the
// test ends.
TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
{
TestEventListeners listeners;
TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
EXPECT_EQ(listener, listeners.Release(listener));
EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
EXPECT_FALSE(is_destroyed);
// Broadcasting events now should not affect default_xml_generator.
TestEventListenersAccessor::GetRepeater(&listeners)
->OnTestProgramStart(*UnitTest::GetInstance());
EXPECT_EQ(0, on_start_counter);
}
// Destroying the list should not affect the listener now, too.
EXPECT_FALSE(is_destroyed);
delete listener;
}
// Tests to ensure that the alternative, verbose spellings of
// some of the macros work. We don't test them thoroughly as that
// would be quite involved. Since their implementations are
// straightforward, and they are rarely used, we'll just rely on the
// users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
// GTEST_FAIL is the same as FAIL.
EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
"An expected failure");
// GTEST_ASSERT_XY is the same as ASSERT_XY.
GTEST_ASSERT_EQ(0, 0);
EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
"An expected failure");
EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
"An expected failure");
GTEST_ASSERT_NE(0, 1);
GTEST_ASSERT_NE(1, 0);
EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
"An expected failure");
GTEST_ASSERT_LE(0, 0);
GTEST_ASSERT_LE(0, 1);
EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
"An expected failure");
GTEST_ASSERT_LT(0, 1);
EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
"An expected failure");
EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
"An expected failure");
GTEST_ASSERT_GE(0, 0);
GTEST_ASSERT_GE(1, 0);
EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
"An expected failure");
GTEST_ASSERT_GT(1, 0);
EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
"An expected failure");
EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
"An expected failure");
}
// Tests for internal utilities necessary for implementation of the universal
// printing.
class ConversionHelperBase {};
class ConversionHelperDerived : public ConversionHelperBase {};
struct HasDebugStringMethods {
std::string DebugString() const { return ""; }
std::string ShortDebugString() const { return ""; }
};
struct InheritsDebugStringMethods : public HasDebugStringMethods {};
struct WrongTypeDebugStringMethod {
std::string DebugString() const { return ""; }
int ShortDebugString() const { return 1; }
};
struct NotConstDebugStringMethod {
std::string DebugString() { return ""; }
std::string ShortDebugString() const { return ""; }
};
struct MissingDebugStringMethod {
std::string DebugString() { return ""; }
};
struct IncompleteType;
// Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
// constant.
TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
static_assert(HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
"const_true");
static_assert(
HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
"const_true");
static_assert(HasDebugStringAndShortDebugString<
const InheritsDebugStringMethods>::value,
"const_true");
static_assert(
!HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
"const_false");
static_assert(
!HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
"const_false");
static_assert(
!HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
"const_false");
static_assert(!HasDebugStringAndShortDebugString<IncompleteType>::value,
"const_false");
static_assert(!HasDebugStringAndShortDebugString<int>::value, "const_false");
}
// Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
// needed methods.
TEST(HasDebugStringAndShortDebugStringTest,
ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
EXPECT_TRUE(
HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
}
// Tests that HasDebugStringAndShortDebugString<T>::value is false when T
// doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,
ValueIsFalseWhenTypeIsNotAProtocolMessage) {
EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
EXPECT_FALSE(
HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
}
// Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
template <typename T1, typename T2>
void TestGTestRemoveReferenceAndConst() {
static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
"GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
}
TEST(RemoveReferenceToConstTest, Works) {
TestGTestRemoveReferenceAndConst<int, int>();
TestGTestRemoveReferenceAndConst<double, double&>();
TestGTestRemoveReferenceAndConst<char, const char>();
TestGTestRemoveReferenceAndConst<char, const char&>();
TestGTestRemoveReferenceAndConst<const char*, const char*>();
}
// Tests GTEST_REFERENCE_TO_CONST_.
template <typename T1, typename T2>
void TestGTestReferenceToConst() {
static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
"GTEST_REFERENCE_TO_CONST_ failed.");
}
TEST(GTestReferenceToConstTest, Works) {
TestGTestReferenceToConst<const char&, char>();
TestGTestReferenceToConst<const int&, const int>();
TestGTestReferenceToConst<const double&, double>();
TestGTestReferenceToConst<const std::string&, const std::string&>();
}
// Tests IsContainerTest.
class NonContainer {};
TEST(IsContainerTestTest, WorksForNonContainer) {
EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
}
TEST(IsContainerTestTest, WorksForContainer) {
EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest<std::vector<bool>>(0)));
EXPECT_EQ(sizeof(IsContainer),
sizeof(IsContainerTest<std::map<int, double>>(0)));
}
struct ConstOnlyContainerWithPointerIterator {
using const_iterator = int*;
const_iterator begin() const;
const_iterator end() const;
};
struct ConstOnlyContainerWithClassIterator {
struct const_iterator {
const int& operator*() const;
const_iterator& operator++(/* pre-increment */);
};
const_iterator begin() const;
const_iterator end() const;
};
TEST(IsContainerTestTest, ConstOnlyContainer) {
EXPECT_EQ(sizeof(IsContainer),
sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
EXPECT_EQ(sizeof(IsContainer),
sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
}
// Tests IsHashTable.
struct AHashTable {
typedef void hasher;
};
struct NotReallyAHashTable {
typedef void hasher;
typedef void reverse_iterator;
};
TEST(IsHashTable, Basic) {
EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
}
// Tests ArrayEq().
TEST(ArrayEqTest, WorksForDegeneratedArrays) {
EXPECT_TRUE(ArrayEq(5, 5L));
EXPECT_FALSE(ArrayEq('a', 0));
}
TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
// Note that a and b are distinct but compatible types.
const int a[] = {0, 1};
long b[] = {0, 1};
EXPECT_TRUE(ArrayEq(a, b));
EXPECT_TRUE(ArrayEq(a, 2, b));
b[0] = 2;
EXPECT_FALSE(ArrayEq(a, b));
EXPECT_FALSE(ArrayEq(a, 1, b));
}
TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
const char a[][3] = {"hi", "lo"};
const char b[][3] = {"hi", "lo"};
const char c[][3] = {"hi", "li"};
EXPECT_TRUE(ArrayEq(a, b));
EXPECT_TRUE(ArrayEq(a, 2, b));
EXPECT_FALSE(ArrayEq(a, c));
EXPECT_FALSE(ArrayEq(a, 2, c));
}
// Tests ArrayAwareFind().
TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
const char a[] = "hello";
EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
}
TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
int a[][2] = {{0, 1}, {2, 3}, {4, 5}};
const int b[2] = {2, 3};
EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
const int c[2] = {6, 7};
EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
}
// Tests CopyArray().
TEST(CopyArrayTest, WorksForDegeneratedArrays) {
int n = 0;
CopyArray('a', &n);
EXPECT_EQ('a', n);
}
TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
const char a[3] = "hi";
int b[3];
#ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
CopyArray(a, &b);
EXPECT_TRUE(ArrayEq(a, b));
#endif
int c[3];
CopyArray(a, 3, c);
EXPECT_TRUE(ArrayEq(a, c));
}
TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
const int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
int b[2][3];
#ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
CopyArray(a, &b);
EXPECT_TRUE(ArrayEq(a, b));
#endif
int c[2][3];
CopyArray(a, 2, c);
EXPECT_TRUE(ArrayEq(a, c));
}
// Tests NativeArray.
TEST(NativeArrayTest, ConstructorFromArrayWorks) {
const int a[3] = {0, 1, 2};
NativeArray<int> na(a, 3, RelationToSourceReference());
EXPECT_EQ(3U, na.size());
EXPECT_EQ(a, na.begin());
}
TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
typedef int Array[2];
Array* a = new Array[1];
(*a)[0] = 0;
(*a)[1] = 1;
NativeArray<int> na(*a, 2, RelationToSourceCopy());
EXPECT_NE(*a, na.begin());
delete[] a;
EXPECT_EQ(0, na.begin()[0]);
EXPECT_EQ(1, na.begin()[1]);
// We rely on the heap checker to verify that na deletes the copy of
// array.
}
TEST(NativeArrayTest, TypeMembersAreCorrect) {
StaticAssertTypeEq<char, NativeArray<char>::value_type>();
StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
}
TEST(NativeArrayTest, MethodsWork) {
const int a[3] = {0, 1, 2};
NativeArray<int> na(a, 3, RelationToSourceCopy());
ASSERT_EQ(3U, na.size());
EXPECT_EQ(3, na.end() - na.begin());
NativeArray<int>::const_iterator it = na.begin();
EXPECT_EQ(0, *it);
++it;
EXPECT_EQ(1, *it);
it++;
EXPECT_EQ(2, *it);
++it;
EXPECT_EQ(na.end(), it);
EXPECT_TRUE(na == na);
NativeArray<int> na2(a, 3, RelationToSourceReference());
EXPECT_TRUE(na == na2);
const int b1[3] = {0, 1, 1};
const int b2[4] = {0, 1, 2, 3};
EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
}
TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
const char a[2][3] = {"hi", "lo"};
NativeArray<char[3]> na(a, 2, RelationToSourceReference());
ASSERT_EQ(2U, na.size());
EXPECT_EQ(a, na.begin());
}
// ElemFromList
TEST(ElemFromList, Basic) {
using testing::internal::ElemFromList;
EXPECT_TRUE(
(std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
EXPECT_TRUE(
(std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
EXPECT_TRUE(
(std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
EXPECT_TRUE((
std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
char, int, int, int, int>::type>::value));
}
// FlatTuple
TEST(FlatTuple, Basic) {
using testing::internal::FlatTuple;
FlatTuple<int, double, const char*> tuple = {};
EXPECT_EQ(0, tuple.Get<0>());
EXPECT_EQ(0.0, tuple.Get<1>());
EXPECT_EQ(nullptr, tuple.Get<2>());
tuple = FlatTuple<int, double, const char*>(
testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
EXPECT_EQ(7, tuple.Get<0>());
EXPECT_EQ(3.2, tuple.Get<1>());
EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
tuple.Get<1>() = 5.1;
EXPECT_EQ(5.1, tuple.Get<1>());
}
namespace {
std::string AddIntToString(int i, const std::string& s) {
return s + std::to_string(i);
}
} // namespace
TEST(FlatTuple, Apply) {
using testing::internal::FlatTuple;
FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
5, "Hello"};
// Lambda.
EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
return i == static_cast<int>(s.size());
}));
// Function.
EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
// Mutating operations.
tuple.Apply([](int& i, std::string& s) {
++i;
s += s;
});
EXPECT_EQ(tuple.Get<0>(), 6);
EXPECT_EQ(tuple.Get<1>(), "HelloHello");
}
struct ConstructionCounting {
ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCounting() { ++dtor_calls; }
ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
ConstructionCounting& operator=(const ConstructionCounting&) {
++copy_assignment_calls;
return *this;
}
ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
++move_assignment_calls;
return *this;
}
static void Reset() {
default_ctor_calls = 0;
dtor_calls = 0;
copy_ctor_calls = 0;
move_ctor_calls = 0;
copy_assignment_calls = 0;
move_assignment_calls = 0;
}
static int default_ctor_calls;
static int dtor_calls;
static int copy_ctor_calls;
static int move_ctor_calls;
static int copy_assignment_calls;
static int move_assignment_calls;
};
int ConstructionCounting::default_ctor_calls = 0;
int ConstructionCounting::dtor_calls = 0;
int ConstructionCounting::copy_ctor_calls = 0;
int ConstructionCounting::move_ctor_calls = 0;
int ConstructionCounting::copy_assignment_calls = 0;
int ConstructionCounting::move_assignment_calls = 0;
TEST(FlatTuple, ConstructorCalls) {
using testing::internal::FlatTuple;
// Default construction.
ConstructionCounting::Reset();
{ FlatTuple<ConstructionCounting> tuple; }
EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
// Copy construction.
ConstructionCounting::Reset();
{
ConstructionCounting elem;
FlatTuple<ConstructionCounting> tuple{
testing::internal::FlatTupleConstructTag{}, elem};
}
EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
// Move construction.
ConstructionCounting::Reset();
{
FlatTuple<ConstructionCounting> tuple{
testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
}
EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
// Copy assignment.
// TODO(ofats): it should be testing assignment operator of FlatTuple, not its
// elements
ConstructionCounting::Reset();
{
FlatTuple<ConstructionCounting> tuple;
ConstructionCounting elem;
tuple.Get<0>() = elem;
}
EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
// Move assignment.
// TODO(ofats): it should be testing assignment operator of FlatTuple, not its
// elements
ConstructionCounting::Reset();
{
FlatTuple<ConstructionCounting> tuple;
tuple.Get<0>() = ConstructionCounting{};
}
EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
ConstructionCounting::Reset();
}
TEST(FlatTuple, ManyTypes) {
using testing::internal::FlatTuple;
// Instantiate FlatTuple with 257 ints.
// Tests show that we can do it with thousands of elements, but very long
// compile times makes it unusuitable for this test.
#define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
#define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
#define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
#define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
#define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
#define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
// Let's make sure that we can have a very long list of types without blowing
// up the template instantiation depth.
FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
tuple.Get<0>() = 7;
tuple.Get<99>() = 17;
tuple.Get<256>() = 1000;
EXPECT_EQ(7, tuple.Get<0>());
EXPECT_EQ(17, tuple.Get<99>());
EXPECT_EQ(1000, tuple.Get<256>());
}
// Tests SkipPrefix().
TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
const char* const str = "hello";
const char* p = str;
EXPECT_TRUE(SkipPrefix("", &p));
EXPECT_EQ(str, p);
p = str;
EXPECT_TRUE(SkipPrefix("hell", &p));
EXPECT_EQ(str + 4, p);
}
TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
const char* const str = "world";
const char* p = str;
EXPECT_FALSE(SkipPrefix("W", &p));
EXPECT_EQ(str, p);
p = str;
EXPECT_FALSE(SkipPrefix("world!", &p));
EXPECT_EQ(str, p);
}
// Tests ad_hoc_test_result().
TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
const testing::TestResult& test_result =
testing::UnitTest::GetInstance()->ad_hoc_test_result();
EXPECT_FALSE(test_result.Failed());
}
class DynamicUnitTestFixture : public testing::Test {};
class DynamicTest : public DynamicUnitTestFixture {
void TestBody() override { EXPECT_TRUE(true); }
};
auto* dynamic_test = testing::RegisterTest(
"DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
TEST(RegisterTest, WasRegistered) {
const auto& unittest = testing::UnitTest::GetInstance();
for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
auto* tests = unittest->GetTestSuite(i);
if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
for (int j = 0; j < tests->total_test_count(); ++j) {
if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
// Found it.
EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
return;
}
}
FAIL() << "Didn't find the test!";
}
// Test that the pattern globbing algorithm is linear. If not, this test should
// time out.
TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) {
std::string name(100, 'a'); // Construct the string (a^100)b
name.push_back('b');
std::string pattern; // Construct the string ((a*)^100)b
for (int i = 0; i < 100; ++i) {
pattern.append("a*");
}
pattern.push_back('b');
EXPECT_TRUE(
testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str()));
}
TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) {
const std::string name = "aaaa";
EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*"));
EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:"));
EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab"));
EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:"));
EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*"));
}
TEST(PatternGlobbingTest, MatchesFilterEdgeCases) {
EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a"));
EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*"));
EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", ""));
EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", ""));
}