Googletest export

Move matchers reference from cheat sheet into its own document

PiperOrigin-RevId: 370749693
diff --git a/docs/_data/navigation.yml b/docs/_data/navigation.yml
index 355ebc8..fdde283 100644
--- a/docs/_data/navigation.yml
+++ b/docs/_data/navigation.yml
@@ -21,6 +21,8 @@
     url: "/gmock_cheat_sheet.html"
 - section: "References"
   items:
+  - title: "Matchers"
+    url: "/reference/matchers.html"
   - title: "Testing FAQ"
     url: "/faq.html"
   - title: "Mocking FAQ"
diff --git a/docs/advanced.md b/docs/advanced.md
index 439cd3e..602dc7e 100644
--- a/docs/advanced.md
+++ b/docs/advanced.md
@@ -364,11 +364,9 @@
 
 ### Asserting Using gMock Matchers
 
-[gMock](gmock_for_dummies.md) comes with
-[a library of matchers](gmock_cheat_sheet.md#MatcherList) for
-validating arguments passed to mock objects. A gMock *matcher* is basically a
-predicate that knows how to describe itself. It can be used in these assertion
-macros:
+gMock comes with a library of *matchers* for validating arguments passed to mock
+objects. A gMock matcher is basically a predicate that knows how to describe
+itself. It can be used in these assertion macros:
 
 
 | Fatal assertion                | Nonfatal assertion             | Verifies              |
@@ -386,14 +384,11 @@
     EXPECT_THAT(Foo(), StartsWith("Hello"));
 ```
 
-Read this
-[recipe](gmock_cook_book.md#using-matchers-in-googletest-assertions)
-in the gMock Cookbook for more details.
-
-gMock has a rich set of matchers. You can do many things googletest cannot do
-alone with them. For a list of matchers gMock provides, read
-[this](gmock_cook_book.md##using-matchers). It's easy to write
-your [own matchers](gmock_cook_book.md#NewMatchers) too.
+See
+[Using Matchers in googletest Assertions](gmock_cook_book.md#using-matchers-in-googletest-assertions)
+in the gMock Cookbook for more details. For a list of built-in matchers, see the
+[Matchers Reference](reference/matchers.md). You can also write your own
+matchers—see [Writing New Matchers Quickly](gmock_cook_book.md#NewMatchers).
 
 gMock is bundled with googletest, so you don't need to add any build dependency
 in order to take advantage of this. Just include `"gmock/gmock.h"`
diff --git a/docs/gmock_cheat_sheet.md b/docs/gmock_cheat_sheet.md
index 8e371fc..cda9ddd 100644
--- a/docs/gmock_cheat_sheet.md
+++ b/docs/gmock_cheat_sheet.md
@@ -224,286 +224,7 @@
 
 ## Matchers {#MatcherList}
 
-A **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or
-`EXPECT_CALL()`, or use it to validate a value directly using two macros:
-
-| Macro                                | Description                           |
-| :----------------------------------- | :------------------------------------ |
-| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. |
-| `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. |
-
-{: .callout .note}
-**Note:** Although equality matching via `EXPECT_THAT(actual_value,
-expected_value)` is supported, prefer to make the comparison explicit via
-`EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value,
-expected_value)`.
-
-Built-in matchers (where `argument` is the function argument, e.g.
-`actual_value` in the example above, or when used in the context of
-`EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are
-divided into several categories:
-
-### Wildcard
-
-Matcher                     | Description
-:-------------------------- | :-----------------------------------------------
-`_`                         | `argument` can be any value of the correct type.
-`A<type>()` or `An<type>()` | `argument` can be any value of type `type`.
-
-### Generic Comparison
-
-| Matcher                | Description                                         |
-| :--------------------- | :-------------------------------------------------- |
-| `Eq(value)` or `value` | `argument == value`                                 |
-| `Ge(value)`            | `argument >= value`                                 |
-| `Gt(value)`            | `argument > value`                                  |
-| `Le(value)`            | `argument <= value`                                 |
-| `Lt(value)`            | `argument < value`                                  |
-| `Ne(value)`            | `argument != value`                                 |
-| `IsFalse()`            | `argument` evaluates to `false` in a Boolean context. |
-| `IsTrue()`             | `argument` evaluates to `true` in a Boolean context. |
-| `IsNull()`             | `argument` is a `NULL` pointer (raw or smart).      |
-| `NotNull()`            | `argument` is a non-null pointer (raw or smart).    |
-| `Optional(m)`          | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)|
-| `VariantWith<T>(m)`    | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. |
-| `Ref(variable)`        | `argument` is a reference to `variable`.            |
-| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. |
-
-Except `Ref()`, these matchers make a *copy* of `value` in case it's modified or
-destructed later. If the compiler complains that `value` doesn't have a public
-copy constructor, try wrap it in `std::ref()`, e.g.
-`Eq(std::ref(non_copyable_value))`. If you do that, make sure
-`non_copyable_value` is not changed afterwards, or the meaning of your matcher
-will be changed.
-
-`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types
-that can be explicitly converted to Boolean, but are not implicitly converted to
-Boolean. In other cases, you can use the basic
-[`EXPECT_TRUE` and `EXPECT_FALSE`](primer.md#basic-assertions) assertions.
-
-### Floating-Point Matchers {#FpMatchers}
-
-| Matcher                          | Description                        |
-| :------------------------------- | :--------------------------------- |
-| `DoubleEq(a_double)`             | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. |
-| `FloatEq(a_float)`               | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
-| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
-| `NanSensitiveFloatEq(a_float)`   | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
-| `IsNan()`   | `argument` is any floating-point type with a NaN value. |
-
-The above matchers use ULP-based comparison (the same as used in googletest).
-They automatically pick a reasonable error bound based on the absolute value of
-the expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard,
-which requires comparing two NaNs for equality to return false. The
-`NanSensitive*` version instead treats two NaNs as equal, which is often what a
-user wants.
-
-| Matcher                                           | Description              |
-| :------------------------------------------------ | :----------------------- |
-| `DoubleNear(a_double, max_abs_error)`             | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
-| `FloatNear(a_float, max_abs_error)`               | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
-| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
-| `NanSensitiveFloatNear(a_float, max_abs_error)`   | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
-
-### String Matchers
-
-The `argument` can be either a C string or a C++ string object:
-
-| Matcher                 | Description                                        |
-| :---------------------- | :------------------------------------------------- |
-| `ContainsRegex(string)` | `argument` matches the given regular expression.   |
-| `EndsWith(suffix)`      | `argument` ends with string `suffix`.              |
-| `HasSubstr(string)`     | `argument` contains `string` as a sub-string.      |
-| `IsEmpty()`             | `argument` is an empty string.                     |
-| `MatchesRegex(string)`  | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. |
-| `StartsWith(prefix)`    | `argument` starts with string `prefix`.            |
-| `StrCaseEq(string)`     | `argument` is equal to `string`, ignoring case.    |
-| `StrCaseNe(string)`     | `argument` is not equal to `string`, ignoring case. |
-| `StrEq(string)`         | `argument` is equal to `string`.                   |
-| `StrNe(string)`         | `argument` is not equal to `string`.               |
-
-`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
-use the regular expression syntax defined
-[here](advanced.md#regular-expression-syntax). All of these matchers, except
-`ContainsRegex()` and `MatchesRegex()` work for wide strings as well.
-
-### Container Matchers
-
-Most STL-style containers support `==`, so you can use `Eq(expected_container)`
-or simply `expected_container` to match a container exactly. If you want to
-write the elements in-line, match them more flexibly, or get more informative
-messages, you can use:
-
-| Matcher                                   | Description                      |
-| :---------------------------------------- | :------------------------------- |
-| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. |
-| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
-| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
-| `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. |
-| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. |
-| `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
-| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
-| `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. |
-| `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. |
-| `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
-| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
-| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. |
-| `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
-| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. |
-| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. |
-| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. |
-
-**Notes:**
-
-*   These matchers can also match:
-    1.  a native array passed by reference (e.g. in `Foo(const int (&a)[5])`),
-        and
-    2.  an array passed as a pointer and a count (e.g. in `Bar(const T* buffer,
-        int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
-*   The array being matched may be multi-dimensional (i.e. its elements can be
-    arrays).
-*   `m` in `Pointwise(m, ...)` and `UnorderedPointwise(m, ...)` should be a
-    matcher for `::std::tuple<T, U>` where `T` and `U` are the element type of
-    the actual container and the expected container, respectively. For example,
-    to compare two `Foo` containers where `Foo` doesn't support `operator==`,
-    one might write:
-
-    ```cpp
-    using ::std::get;
-    MATCHER(FooEq, "") {
-      return std::get<0>(arg).Equals(std::get<1>(arg));
-    }
-    ...
-    EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
-    ```
-
-### Member Matchers
-
-| Matcher                         | Description                                |
-| :------------------------------ | :----------------------------------------- |
-| `Field(&class::field, m)`       | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
-| `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. |
-| `Key(e)`                        | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. |
-| `Pair(m1, m2)`                  | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
-| `FieldsAre(m...)`                   | `argument` is a compatible object where each field matches piecewise with the matchers `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. |
-| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. |
-| `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message.
-
-**Notes:**
-
-*   You can use `FieldsAre()` to match any type that supports structured
-    bindings, such as `std::tuple`, `std::pair`, `std::array`, and aggregate
-    types. For example:
-
-    ```cpp
-    std::tuple<int, std::string> my_tuple{7, "hello world"};
-    EXPECT_THAT(my_tuple, FieldsAre(Ge(0), HasSubstr("hello")));
-
-    struct MyStruct {
-      int value = 42;
-      std::string greeting = "aloha";
-    };
-    MyStruct s;
-    EXPECT_THAT(s, FieldsAre(42, "aloha"));
-    ```
-
-*   Don't use `Property()` against member functions that you do not own, because
-    taking addresses of functions is fragile and generally not part of the
-    contract of the function.
-
-### Matching the Result of a Function, Functor, or Callback
-
-| Matcher          | Description                                       |
-| :--------------- | :------------------------------------------------ |
-| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. |
-
-### Pointer Matchers
-
-| Matcher                   | Description                                     |
-| :------------------------ | :---------------------------------------------- |
-| `Address(m)`              | the result of `std::addressof(argument)` matches `m`. |
-| `Pointee(m)`              | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. |
-| `Pointer(m)`              | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. |
-| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
-
-### Multi-argument Matchers {#MultiArgMatchers}
-
-Technically, all matchers match a *single* value. A "multi-argument" matcher is
-just one that matches a *tuple*. The following matchers can be used to match a
-tuple `(x, y)`:
-
-Matcher | Description
-:------ | :----------
-`Eq()`  | `x == y`
-`Ge()`  | `x >= y`
-`Gt()`  | `x > y`
-`Le()`  | `x <= y`
-`Lt()`  | `x < y`
-`Ne()`  | `x != y`
-
-You can use the following selectors to pick a subset of the arguments (or
-reorder them) to participate in the matching:
-
-| Matcher                    | Description                                     |
-| :------------------------- | :---------------------------------------------- |
-| `AllArgs(m)`               | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. |
-| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. |
-
-### Composite Matchers
-
-You can make a matcher from one or more other matchers:
-
-| Matcher                          | Description                             |
-| :------------------------------- | :-------------------------------------- |
-| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. |
-| `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
-| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. |
-| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
-| `Not(m)` | `argument` doesn't match matcher `m`. |
-
-### Adapters for Matchers
-
-| Matcher                 | Description                           |
-| :---------------------- | :------------------------------------ |
-| `MatcherCast<T>(m)`     | casts matcher `m` to type `Matcher<T>`. |
-| `SafeMatcherCast<T>(m)` | [safely casts](gmock_cook_book.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
-| `Truly(predicate)`      | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. |
-
-`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`,
-which must be a permanent callback.
-
-### Using Matchers as Predicates {#MatchersAsPredicatesCheat}
-
-| Matcher                       | Description                                 |
-| :---------------------------- | :------------------------------------------ |
-| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. |
-| `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
-| `Value(value, m)` | evaluates to `true` if `value` matches `m`. |
-
-### Defining Matchers
-
-| Matcher                              | Description                           |
-| :----------------------------------- | :------------------------------------ |
-| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
-| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. |
-| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
-
-**Notes:**
-
-1.  The `MATCHER*` macros cannot be used inside a function or class.
-2.  The matcher body must be *purely functional* (i.e. it cannot have any side
-    effect, and the result must not depend on anything other than the value
-    being matched and the matcher parameters).
-3.  You can use `PrintToString(x)` to convert a value `x` of any type to a
-    string.
-4.  You can use `ExplainMatchResult()` in a custom matcher to wrap another
-    matcher, for example:
-
-    ```cpp
-    MATCHER_P(NestedPropertyMatches, matcher, "") {
-      return ExplainMatchResult(matcher, arg.nested().property(), result_listener);
-    }
-    ```
+See the [Matchers Reference](reference/matchers.md).
 
 ## Actions {#ActionList}
 
diff --git a/docs/gmock_cook_book.md b/docs/gmock_cook_book.md
index bb3f0bd..5b8910b 100644
--- a/docs/gmock_cook_book.md
+++ b/docs/gmock_cook_book.md
@@ -1184,11 +1184,12 @@
 
 ### Using Predicates as Matchers
 
-gMock provides a [built-in set](gmock_cheat_sheet.md#MatcherList) of matchers.
-In case you find them lacking, you can use an arbitrary unary predicate function
-or functor as a matcher - as long as the predicate accepts a value of the type
-you want. You do this by wrapping the predicate inside the `Truly()` function,
-for example:
+gMock provides a set of built-in matchers for matching arguments with expected
+values—see the [Matchers Reference](reference/matchers.md) for more information.
+In case you find the built-in set lacking, you can use an arbitrary unary
+predicate function or functor as a matcher - as long as the predicate accepts a
+value of the type you want. You do this by wrapping the predicate inside the
+`Truly()` function, for example:
 
 ```cpp
 using ::testing::Truly;
diff --git a/docs/gmock_for_dummies.md b/docs/gmock_for_dummies.md
index 6e41caf..370f17e 100644
--- a/docs/gmock_for_dummies.md
+++ b/docs/gmock_for_dummies.md
@@ -371,8 +371,8 @@
 In the above examples, `100` and `50` are also matchers; implicitly, they are
 the same as `Eq(100)` and `Eq(50)`, which specify that the argument must be
 equal (using `operator==`) to the matcher argument. There are many
-[built-in matchers](gmock_cheat_sheet.md#MatcherList) for common types (as well
-as [custom matchers](gmock_cook_book.md#NewMatchers)); for example:
+[built-in matchers](reference/matchers.md) for common types (as well as
+[custom matchers](gmock_cook_book.md#NewMatchers)); for example:
 
 ```cpp
 using ::testing::Ge;
diff --git a/docs/reference/matchers.md b/docs/reference/matchers.md
new file mode 100644
index 0000000..a2ded43
--- /dev/null
+++ b/docs/reference/matchers.md
@@ -0,0 +1,282 @@
+# Matchers Reference
+
+A **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or
+`EXPECT_CALL()`, or use it to validate a value directly using two macros:
+
+| Macro                                | Description                           |
+| :----------------------------------- | :------------------------------------ |
+| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. |
+| `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. |
+
+{: .callout .note}
+**Note:** Although equality matching via `EXPECT_THAT(actual_value,
+expected_value)` is supported, prefer to make the comparison explicit via
+`EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value,
+expected_value)`.
+
+Built-in matchers (where `argument` is the function argument, e.g.
+`actual_value` in the example above, or when used in the context of
+`EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are
+divided into several categories:
+
+### Wildcard
+
+Matcher                     | Description
+:-------------------------- | :-----------------------------------------------
+`_`                         | `argument` can be any value of the correct type.
+`A<type>()` or `An<type>()` | `argument` can be any value of type `type`.
+
+### Generic Comparison
+
+| Matcher                | Description                                         |
+| :--------------------- | :-------------------------------------------------- |
+| `Eq(value)` or `value` | `argument == value`                                 |
+| `Ge(value)`            | `argument >= value`                                 |
+| `Gt(value)`            | `argument > value`                                  |
+| `Le(value)`            | `argument <= value`                                 |
+| `Lt(value)`            | `argument < value`                                  |
+| `Ne(value)`            | `argument != value`                                 |
+| `IsFalse()`            | `argument` evaluates to `false` in a Boolean context. |
+| `IsTrue()`             | `argument` evaluates to `true` in a Boolean context. |
+| `IsNull()`             | `argument` is a `NULL` pointer (raw or smart).      |
+| `NotNull()`            | `argument` is a non-null pointer (raw or smart).    |
+| `Optional(m)`          | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)|
+| `VariantWith<T>(m)`    | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. |
+| `Ref(variable)`        | `argument` is a reference to `variable`.            |
+| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. |
+
+Except `Ref()`, these matchers make a *copy* of `value` in case it's modified or
+destructed later. If the compiler complains that `value` doesn't have a public
+copy constructor, try wrap it in `std::ref()`, e.g.
+`Eq(std::ref(non_copyable_value))`. If you do that, make sure
+`non_copyable_value` is not changed afterwards, or the meaning of your matcher
+will be changed.
+
+`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types
+that can be explicitly converted to Boolean, but are not implicitly converted to
+Boolean. In other cases, you can use the basic
+[`EXPECT_TRUE` and `EXPECT_FALSE`](primer.md#basic-assertions) assertions.
+
+### Floating-Point Matchers {#FpMatchers}
+
+| Matcher                          | Description                        |
+| :------------------------------- | :--------------------------------- |
+| `DoubleEq(a_double)`             | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. |
+| `FloatEq(a_float)`               | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
+| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
+| `NanSensitiveFloatEq(a_float)`   | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
+| `IsNan()`   | `argument` is any floating-point type with a NaN value. |
+
+The above matchers use ULP-based comparison (the same as used in googletest).
+They automatically pick a reasonable error bound based on the absolute value of
+the expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard,
+which requires comparing two NaNs for equality to return false. The
+`NanSensitive*` version instead treats two NaNs as equal, which is often what a
+user wants.
+
+| Matcher                                           | Description              |
+| :------------------------------------------------ | :----------------------- |
+| `DoubleNear(a_double, max_abs_error)`             | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
+| `FloatNear(a_float, max_abs_error)`               | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
+| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
+| `NanSensitiveFloatNear(a_float, max_abs_error)`   | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
+
+### String Matchers
+
+The `argument` can be either a C string or a C++ string object:
+
+| Matcher                 | Description                                        |
+| :---------------------- | :------------------------------------------------- |
+| `ContainsRegex(string)` | `argument` matches the given regular expression.   |
+| `EndsWith(suffix)`      | `argument` ends with string `suffix`.              |
+| `HasSubstr(string)`     | `argument` contains `string` as a sub-string.      |
+| `IsEmpty()`             | `argument` is an empty string.                     |
+| `MatchesRegex(string)`  | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. |
+| `StartsWith(prefix)`    | `argument` starts with string `prefix`.            |
+| `StrCaseEq(string)`     | `argument` is equal to `string`, ignoring case.    |
+| `StrCaseNe(string)`     | `argument` is not equal to `string`, ignoring case. |
+| `StrEq(string)`         | `argument` is equal to `string`.                   |
+| `StrNe(string)`         | `argument` is not equal to `string`.               |
+
+`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
+use the regular expression syntax defined
+[here](advanced.md#regular-expression-syntax). All of these matchers, except
+`ContainsRegex()` and `MatchesRegex()` work for wide strings as well.
+
+### Container Matchers
+
+Most STL-style containers support `==`, so you can use `Eq(expected_container)`
+or simply `expected_container` to match a container exactly. If you want to
+write the elements in-line, match them more flexibly, or get more informative
+messages, you can use:
+
+| Matcher                                   | Description                      |
+| :---------------------------------------- | :------------------------------- |
+| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. |
+| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
+| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
+| `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. |
+| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. |
+| `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
+| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
+| `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. |
+| `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. |
+| `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
+| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
+| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. |
+| `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
+| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. |
+| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. |
+| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. |
+
+**Notes:**
+
+*   These matchers can also match:
+    1.  a native array passed by reference (e.g. in `Foo(const int (&a)[5])`),
+        and
+    2.  an array passed as a pointer and a count (e.g. in `Bar(const T* buffer,
+        int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
+*   The array being matched may be multi-dimensional (i.e. its elements can be
+    arrays).
+*   `m` in `Pointwise(m, ...)` and `UnorderedPointwise(m, ...)` should be a
+    matcher for `::std::tuple<T, U>` where `T` and `U` are the element type of
+    the actual container and the expected container, respectively. For example,
+    to compare two `Foo` containers where `Foo` doesn't support `operator==`,
+    one might write:
+
+    ```cpp
+    using ::std::get;
+    MATCHER(FooEq, "") {
+      return std::get<0>(arg).Equals(std::get<1>(arg));
+    }
+    ...
+    EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
+    ```
+
+### Member Matchers
+
+| Matcher                         | Description                                |
+| :------------------------------ | :----------------------------------------- |
+| `Field(&class::field, m)`       | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
+| `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. |
+| `Key(e)`                        | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. |
+| `Pair(m1, m2)`                  | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
+| `FieldsAre(m...)`                   | `argument` is a compatible object where each field matches piecewise with the matchers `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. |
+| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. |
+| `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message.
+
+**Notes:**
+
+*   You can use `FieldsAre()` to match any type that supports structured
+    bindings, such as `std::tuple`, `std::pair`, `std::array`, and aggregate
+    types. For example:
+
+    ```cpp
+    std::tuple<int, std::string> my_tuple{7, "hello world"};
+    EXPECT_THAT(my_tuple, FieldsAre(Ge(0), HasSubstr("hello")));
+
+    struct MyStruct {
+      int value = 42;
+      std::string greeting = "aloha";
+    };
+    MyStruct s;
+    EXPECT_THAT(s, FieldsAre(42, "aloha"));
+    ```
+
+*   Don't use `Property()` against member functions that you do not own, because
+    taking addresses of functions is fragile and generally not part of the
+    contract of the function.
+
+### Matching the Result of a Function, Functor, or Callback
+
+| Matcher          | Description                                       |
+| :--------------- | :------------------------------------------------ |
+| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. |
+
+### Pointer Matchers
+
+| Matcher                   | Description                                     |
+| :------------------------ | :---------------------------------------------- |
+| `Address(m)`              | the result of `std::addressof(argument)` matches `m`. |
+| `Pointee(m)`              | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. |
+| `Pointer(m)`              | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. |
+| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
+
+### Multi-argument Matchers {#MultiArgMatchers}
+
+Technically, all matchers match a *single* value. A "multi-argument" matcher is
+just one that matches a *tuple*. The following matchers can be used to match a
+tuple `(x, y)`:
+
+Matcher | Description
+:------ | :----------
+`Eq()`  | `x == y`
+`Ge()`  | `x >= y`
+`Gt()`  | `x > y`
+`Le()`  | `x <= y`
+`Lt()`  | `x < y`
+`Ne()`  | `x != y`
+
+You can use the following selectors to pick a subset of the arguments (or
+reorder them) to participate in the matching:
+
+| Matcher                    | Description                                     |
+| :------------------------- | :---------------------------------------------- |
+| `AllArgs(m)`               | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. |
+| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. |
+
+### Composite Matchers
+
+You can make a matcher from one or more other matchers:
+
+| Matcher                          | Description                             |
+| :------------------------------- | :-------------------------------------- |
+| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. |
+| `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
+| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. |
+| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
+| `Not(m)` | `argument` doesn't match matcher `m`. |
+
+### Adapters for Matchers
+
+| Matcher                 | Description                           |
+| :---------------------- | :------------------------------------ |
+| `MatcherCast<T>(m)`     | casts matcher `m` to type `Matcher<T>`. |
+| `SafeMatcherCast<T>(m)` | [safely casts](gmock_cook_book.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
+| `Truly(predicate)`      | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. |
+
+`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`,
+which must be a permanent callback.
+
+### Using Matchers as Predicates {#MatchersAsPredicatesCheat}
+
+| Matcher                       | Description                                 |
+| :---------------------------- | :------------------------------------------ |
+| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. |
+| `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
+| `Value(value, m)` | evaluates to `true` if `value` matches `m`. |
+
+### Defining Matchers
+
+| Matcher                              | Description                           |
+| :----------------------------------- | :------------------------------------ |
+| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
+| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. |
+| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
+
+**Notes:**
+
+1.  The `MATCHER*` macros cannot be used inside a function or class.
+2.  The matcher body must be *purely functional* (i.e. it cannot have any side
+    effect, and the result must not depend on anything other than the value
+    being matched and the matcher parameters).
+3.  You can use `PrintToString(x)` to convert a value `x` of any type to a
+    string.
+4.  You can use `ExplainMatchResult()` in a custom matcher to wrap another
+    matcher, for example:
+
+    ```cpp
+    MATCHER_P(NestedPropertyMatches, matcher, "") {
+      return ExplainMatchResult(matcher, arg.nested().property(), result_listener);
+    }
+    ```