| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file tests the built-in actions. |
| |
| #include "gmock/gmock-actions.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <iterator> |
| #include <memory> |
| #include <sstream> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gmock/internal/gmock-port.h" |
| #include "gtest/gtest-spi.h" |
| #include "gtest/gtest.h" |
| |
| // Silence C4100 (unreferenced formal parameter) and C4503 (decorated name |
| // length exceeded) for MSVC. |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100 4503) |
| #if defined(_MSC_VER) && (_MSC_VER == 1900) |
| // and silence C4800 (C4800: 'int *const ': forcing value |
| // to bool 'true' or 'false') for MSVC 15 |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800) |
| #endif |
| |
| namespace testing { |
| namespace { |
| |
| using ::testing::internal::BuiltInDefaultValue; |
| |
| TEST(TypeTraits, Negation) { |
| // Direct use with std types. |
| static_assert(std::is_base_of<std::false_type, |
| internal::negation<std::true_type>>::value, |
| ""); |
| |
| static_assert(std::is_base_of<std::true_type, |
| internal::negation<std::false_type>>::value, |
| ""); |
| |
| // With other types that fit the requirement of a value member that is |
| // convertible to bool. |
| static_assert(std::is_base_of< |
| std::true_type, |
| internal::negation<std::integral_constant<int, 0>>>::value, |
| ""); |
| |
| static_assert(std::is_base_of< |
| std::false_type, |
| internal::negation<std::integral_constant<int, 1>>>::value, |
| ""); |
| |
| static_assert(std::is_base_of< |
| std::false_type, |
| internal::negation<std::integral_constant<int, -1>>>::value, |
| ""); |
| } |
| |
| // Weird false/true types that aren't actually bool constants (but should still |
| // be legal according to [meta.logical] because `bool(T::value)` is valid), are |
| // distinct from std::false_type and std::true_type, and are distinct from other |
| // instantiations of the same template. |
| // |
| // These let us check finicky details mandated by the standard like |
| // "std::conjunction should evaluate to a type that inherits from the first |
| // false-y input". |
| template <int> |
| struct MyFalse : std::integral_constant<int, 0> {}; |
| |
| template <int> |
| struct MyTrue : std::integral_constant<int, -1> {}; |
| |
| TEST(TypeTraits, Conjunction) { |
| // Base case: always true. |
| static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value, |
| ""); |
| |
| // One predicate: inherits from that predicate, regardless of value. |
| static_assert( |
| std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value, |
| ""); |
| |
| static_assert( |
| std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, ""); |
| |
| // Multiple predicates, with at least one false: inherits from that one. |
| static_assert( |
| std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, |
| MyTrue<2>>>::value, |
| ""); |
| |
| static_assert( |
| std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, |
| MyFalse<2>>>::value, |
| ""); |
| |
| // Short circuiting: in the case above, additional predicates need not even |
| // define a value member. |
| struct Empty {}; |
| static_assert( |
| std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, |
| Empty>>::value, |
| ""); |
| |
| // All predicates true: inherits from the last. |
| static_assert( |
| std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>, |
| MyTrue<2>>>::value, |
| ""); |
| } |
| |
| TEST(TypeTraits, Disjunction) { |
| // Base case: always false. |
| static_assert( |
| std::is_base_of<std::false_type, internal::disjunction<>>::value, ""); |
| |
| // One predicate: inherits from that predicate, regardless of value. |
| static_assert( |
| std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value, |
| ""); |
| |
| static_assert( |
| std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, ""); |
| |
| // Multiple predicates, with at least one true: inherits from that one. |
| static_assert( |
| std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, |
| MyFalse<2>>>::value, |
| ""); |
| |
| static_assert( |
| std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, |
| MyTrue<2>>>::value, |
| ""); |
| |
| // Short circuiting: in the case above, additional predicates need not even |
| // define a value member. |
| struct Empty {}; |
| static_assert( |
| std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, |
| Empty>>::value, |
| ""); |
| |
| // All predicates false: inherits from the last. |
| static_assert( |
| std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>, |
| MyFalse<2>>>::value, |
| ""); |
| } |
| |
| TEST(TypeTraits, IsInvocableRV) { |
| struct C { |
| int operator()() const { return 0; } |
| void operator()(int) & {} |
| std::string operator()(int) && { return ""; }; |
| }; |
| |
| // The first overload is callable for const and non-const rvalues and lvalues. |
| // It can be used to obtain an int, cv void, or anything int is convertible |
| // to. |
| static_assert(internal::is_callable_r<int, C>::value, ""); |
| static_assert(internal::is_callable_r<int, C&>::value, ""); |
| static_assert(internal::is_callable_r<int, const C>::value, ""); |
| static_assert(internal::is_callable_r<int, const C&>::value, ""); |
| |
| static_assert(internal::is_callable_r<void, C>::value, ""); |
| static_assert(internal::is_callable_r<const volatile void, C>::value, ""); |
| static_assert(internal::is_callable_r<char, C>::value, ""); |
| |
| // It's possible to provide an int. If it's given to an lvalue, the result is |
| // void. Otherwise it is std::string (which is also treated as allowed for a |
| // void result type). |
| static_assert(internal::is_callable_r<void, C&, int>::value, ""); |
| static_assert(!internal::is_callable_r<int, C&, int>::value, ""); |
| static_assert(!internal::is_callable_r<std::string, C&, int>::value, ""); |
| static_assert(!internal::is_callable_r<void, const C&, int>::value, ""); |
| |
| static_assert(internal::is_callable_r<std::string, C, int>::value, ""); |
| static_assert(internal::is_callable_r<void, C, int>::value, ""); |
| static_assert(!internal::is_callable_r<int, C, int>::value, ""); |
| |
| // It's not possible to provide other arguments. |
| static_assert(!internal::is_callable_r<void, C, std::string>::value, ""); |
| static_assert(!internal::is_callable_r<void, C, int, int>::value, ""); |
| |
| // In C++17 and above, where it's guaranteed that functions can return |
| // non-moveable objects, everything should work fine for non-moveable rsult |
| // types too. |
| #if defined(__cplusplus) && __cplusplus >= 201703L |
| { |
| struct NonMoveable { |
| NonMoveable() = default; |
| NonMoveable(NonMoveable&&) = delete; |
| }; |
| |
| static_assert(!std::is_move_constructible_v<NonMoveable>); |
| |
| struct Callable { |
| NonMoveable operator()() { return NonMoveable(); } |
| }; |
| |
| static_assert(internal::is_callable_r<NonMoveable, Callable>::value); |
| static_assert(internal::is_callable_r<void, Callable>::value); |
| static_assert( |
| internal::is_callable_r<const volatile void, Callable>::value); |
| |
| static_assert(!internal::is_callable_r<int, Callable>::value); |
| static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value); |
| } |
| #endif // C++17 and above |
| |
| // Nothing should choke when we try to call other arguments besides directly |
| // callable objects, but they should not show up as callable. |
| static_assert(!internal::is_callable_r<void, int>::value, ""); |
| static_assert(!internal::is_callable_r<void, void (C::*)()>::value, ""); |
| static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, ""); |
| } |
| |
| // Tests that BuiltInDefaultValue<T*>::Get() returns NULL. |
| TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) { |
| EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr); |
| EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr); |
| EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr); |
| } |
| |
| // Tests that BuiltInDefaultValue<T*>::Exists() return true. |
| TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) { |
| EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a |
| // built-in numeric type. |
| TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) { |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<char>::Get()); |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| #if !defined(__WCHAR_UNSIGNED__) |
| EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get()); |
| #else |
| EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get()); |
| #endif |
| #endif |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<int>::Get()); |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT |
| EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT |
| EXPECT_EQ(0, BuiltInDefaultValue<float>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<double>::Get()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
| // built-in numeric type. |
| TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) { |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<char>::Exists()); |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists()); |
| #endif |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<int>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT |
| EXPECT_TRUE(BuiltInDefaultValue<float>::Exists()); |
| EXPECT_TRUE(BuiltInDefaultValue<double>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<bool>::Get() returns false. |
| TEST(BuiltInDefaultValueTest, IsFalseForBool) { |
| EXPECT_FALSE(BuiltInDefaultValue<bool>::Get()); |
| } |
| |
| // Tests that BuiltInDefaultValue<bool>::Exists() returns true. |
| TEST(BuiltInDefaultValueTest, BoolExists) { |
| EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a |
| // string type. |
| TEST(BuiltInDefaultValueTest, IsEmptyStringForString) { |
| EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a |
| // string type. |
| TEST(BuiltInDefaultValueTest, ExistsForString) { |
| EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<const T>::Get() returns the same |
| // value as BuiltInDefaultValue<T>::Get() does. |
| TEST(BuiltInDefaultValueTest, WorksForConstTypes) { |
| EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get()); |
| EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get()); |
| EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr); |
| EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get()); |
| } |
| |
| // A type that's default constructible. |
| class MyDefaultConstructible { |
| public: |
| MyDefaultConstructible() : value_(42) {} |
| |
| int value() const { return value_; } |
| |
| private: |
| int value_; |
| }; |
| |
| // A type that's not default constructible. |
| class MyNonDefaultConstructible { |
| public: |
| // Does not have a default ctor. |
| explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {} |
| |
| int value() const { return value_; } |
| |
| private: |
| int value_; |
| }; |
| |
| TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) { |
| EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists()); |
| } |
| |
| TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) { |
| EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value()); |
| } |
| |
| TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) { |
| EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists()); |
| } |
| |
| // Tests that BuiltInDefaultValue<T&>::Get() aborts the program. |
| TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) { |
| EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, ""); |
| EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, ""); |
| } |
| |
| TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) { |
| EXPECT_DEATH_IF_SUPPORTED( |
| { BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, ""); |
| } |
| |
| // Tests that DefaultValue<T>::IsSet() is false initially. |
| TEST(DefaultValueTest, IsInitiallyUnset) { |
| EXPECT_FALSE(DefaultValue<int>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); |
| } |
| |
| // Tests that DefaultValue<T> can be set and then unset. |
| TEST(DefaultValueTest, CanBeSetAndUnset) { |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
| |
| DefaultValue<int>::Set(1); |
| DefaultValue<const MyNonDefaultConstructible>::Set( |
| MyNonDefaultConstructible(42)); |
| |
| EXPECT_EQ(1, DefaultValue<int>::Get()); |
| EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value()); |
| |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
| |
| DefaultValue<int>::Clear(); |
| DefaultValue<const MyNonDefaultConstructible>::Clear(); |
| |
| EXPECT_FALSE(DefaultValue<int>::IsSet()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); |
| |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); |
| } |
| |
| // Tests that DefaultValue<T>::Get() returns the |
| // BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is |
| // false. |
| TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
| EXPECT_FALSE(DefaultValue<int>::IsSet()); |
| EXPECT_TRUE(DefaultValue<int>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists()); |
| |
| EXPECT_EQ(0, DefaultValue<int>::Get()); |
| |
| EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); }, |
| ""); |
| } |
| |
| TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) { |
| EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); |
| EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr); |
| DefaultValue<std::unique_ptr<int>>::SetFactory( |
| [] { return std::make_unique<int>(42); }); |
| EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); |
| std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get(); |
| EXPECT_EQ(42, *i); |
| } |
| |
| // Tests that DefaultValue<void>::Get() returns void. |
| TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); } |
| |
| // Tests using DefaultValue with a reference type. |
| |
| // Tests that DefaultValue<T&>::IsSet() is false initially. |
| TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) { |
| EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
| } |
| |
| // Tests that DefaultValue<T&>::Exists is false initially. |
| TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) { |
| EXPECT_FALSE(DefaultValue<int&>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
| } |
| |
| // Tests that DefaultValue<T&> can be set and then unset. |
| TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) { |
| int n = 1; |
| DefaultValue<const int&>::Set(n); |
| MyNonDefaultConstructible x(42); |
| DefaultValue<MyNonDefaultConstructible&>::Set(x); |
| |
| EXPECT_TRUE(DefaultValue<const int&>::Exists()); |
| EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
| |
| EXPECT_EQ(&n, &(DefaultValue<const int&>::Get())); |
| EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get())); |
| |
| DefaultValue<const int&>::Clear(); |
| DefaultValue<MyNonDefaultConstructible&>::Clear(); |
| |
| EXPECT_FALSE(DefaultValue<const int&>::Exists()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); |
| |
| EXPECT_FALSE(DefaultValue<const int&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
| } |
| |
| // Tests that DefaultValue<T&>::Get() returns the |
| // BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is |
| // false. |
| TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { |
| EXPECT_FALSE(DefaultValue<int&>::IsSet()); |
| EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); |
| |
| EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, ""); |
| EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); }, |
| ""); |
| } |
| |
| // Tests that ActionInterface can be implemented by defining the |
| // Perform method. |
| |
| typedef int MyGlobalFunction(bool, int); |
| |
| class MyActionImpl : public ActionInterface<MyGlobalFunction> { |
| public: |
| int Perform(const std::tuple<bool, int>& args) override { |
| return std::get<0>(args) ? std::get<1>(args) : 0; |
| } |
| }; |
| |
| TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) { |
| MyActionImpl my_action_impl; |
| (void)my_action_impl; |
| } |
| |
| TEST(ActionInterfaceTest, MakeAction) { |
| Action<MyGlobalFunction> action = MakeAction(new MyActionImpl); |
| |
| // When exercising the Perform() method of Action<F>, we must pass |
| // it a tuple whose size and type are compatible with F's argument |
| // types. For example, if F is int(), then Perform() takes a |
| // 0-tuple; if F is void(bool, int), then Perform() takes a |
| // std::tuple<bool, int>, and so on. |
| EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5))); |
| } |
| |
| // Tests that Action<F> can be constructed from a pointer to |
| // ActionInterface<F>. |
| TEST(ActionTest, CanBeConstructedFromActionInterface) { |
| Action<MyGlobalFunction> action(new MyActionImpl); |
| } |
| |
| // Tests that Action<F> delegates actual work to ActionInterface<F>. |
| TEST(ActionTest, DelegatesWorkToActionInterface) { |
| const Action<MyGlobalFunction> action(new MyActionImpl); |
| |
| EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5))); |
| EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1))); |
| } |
| |
| // Tests that Action<F> can be copied. |
| TEST(ActionTest, IsCopyable) { |
| Action<MyGlobalFunction> a1(new MyActionImpl); |
| Action<MyGlobalFunction> a2(a1); // Tests the copy constructor. |
| |
| // a1 should continue to work after being copied from. |
| EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); |
| EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1))); |
| |
| // a2 should work like the action it was copied from. |
| EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5))); |
| EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1))); |
| |
| a2 = a1; // Tests the assignment operator. |
| |
| // a1 should continue to work after being copied from. |
| EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); |
| EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1))); |
| |
| // a2 should work like the action it was copied from. |
| EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5))); |
| EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1))); |
| } |
| |
| // Tests that an Action<From> object can be converted to a |
| // compatible Action<To> object. |
| |
| class IsNotZero : public ActionInterface<bool(int)> { // NOLINT |
| public: |
| bool Perform(const std::tuple<int>& arg) override { |
| return std::get<0>(arg) != 0; |
| } |
| }; |
| |
| TEST(ActionTest, CanBeConvertedToOtherActionType) { |
| const Action<bool(int)> a1(new IsNotZero); // NOLINT |
| const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT |
| EXPECT_EQ(1, a2.Perform(std::make_tuple('a'))); |
| EXPECT_EQ(0, a2.Perform(std::make_tuple('\0'))); |
| } |
| |
| // The following two classes are for testing MakePolymorphicAction(). |
| |
| // Implements a polymorphic action that returns the second of the |
| // arguments it receives. |
| class ReturnSecondArgumentAction { |
| public: |
| // We want to verify that MakePolymorphicAction() can work with a |
| // polymorphic action whose Perform() method template is either |
| // const or not. This lets us verify the non-const case. |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) { |
| return std::get<1>(args); |
| } |
| }; |
| |
| // Implements a polymorphic action that can be used in a nullary |
| // function to return 0. |
| class ReturnZeroFromNullaryFunctionAction { |
| public: |
| // For testing that MakePolymorphicAction() works when the |
| // implementation class' Perform() method template takes only one |
| // template parameter. |
| // |
| // We want to verify that MakePolymorphicAction() can work with a |
| // polymorphic action whose Perform() method template is either |
| // const or not. This lets us verify the const case. |
| template <typename Result> |
| Result Perform(const std::tuple<>&) const { |
| return 0; |
| } |
| }; |
| |
| // These functions verify that MakePolymorphicAction() returns a |
| // PolymorphicAction<T> where T is the argument's type. |
| |
| PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() { |
| return MakePolymorphicAction(ReturnSecondArgumentAction()); |
| } |
| |
| PolymorphicAction<ReturnZeroFromNullaryFunctionAction> |
| ReturnZeroFromNullaryFunction() { |
| return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction()); |
| } |
| |
| // Tests that MakePolymorphicAction() turns a polymorphic action |
| // implementation class into a polymorphic action. |
| TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) { |
| Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT |
| EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0))); |
| } |
| |
| // Tests that MakePolymorphicAction() works when the implementation |
| // class' Perform() method template has only one template parameter. |
| TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) { |
| Action<int()> a1 = ReturnZeroFromNullaryFunction(); |
| EXPECT_EQ(0, a1.Perform(std::make_tuple())); |
| |
| Action<void*()> a2 = ReturnZeroFromNullaryFunction(); |
| EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr); |
| } |
| |
| // Tests that Return() works as an action for void-returning |
| // functions. |
| TEST(ReturnTest, WorksForVoid) { |
| const Action<void(int)> ret = Return(); // NOLINT |
| return ret.Perform(std::make_tuple(1)); |
| } |
| |
| // Tests that Return(v) returns v. |
| TEST(ReturnTest, ReturnsGivenValue) { |
| Action<int()> ret = Return(1); // NOLINT |
| EXPECT_EQ(1, ret.Perform(std::make_tuple())); |
| |
| ret = Return(-5); |
| EXPECT_EQ(-5, ret.Perform(std::make_tuple())); |
| } |
| |
| // Tests that Return("string literal") works. |
| TEST(ReturnTest, AcceptsStringLiteral) { |
| Action<const char*()> a1 = Return("Hello"); |
| EXPECT_STREQ("Hello", a1.Perform(std::make_tuple())); |
| |
| Action<std::string()> a2 = Return("world"); |
| EXPECT_EQ("world", a2.Perform(std::make_tuple())); |
| } |
| |
| // Return(x) should work fine when the mock function's return type is a |
| // reference-like wrapper for decltype(x), as when x is a std::string and the |
| // mock function returns std::string_view. |
| TEST(ReturnTest, SupportsReferenceLikeReturnType) { |
| // A reference wrapper for std::vector<int>, implicitly convertible from it. |
| struct Result { |
| const std::vector<int>* v; |
| Result(const std::vector<int>& vec) : v(&vec) {} // NOLINT |
| }; |
| |
| // Set up an action for a mock function that returns the reference wrapper |
| // type, initializing it with an actual vector. |
| // |
| // The returned wrapper should be initialized with a copy of that vector |
| // that's embedded within the action itself (which should stay alive as long |
| // as the mock object is alive), rather than e.g. a reference to the temporary |
| // we feed to Return. This should work fine both for WillOnce and |
| // WillRepeatedly. |
| MockFunction<Result()> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(Return(std::vector<int>{17, 19, 23})) |
| .WillRepeatedly(Return(std::vector<int>{29, 31, 37})); |
| |
| EXPECT_THAT(mock.AsStdFunction()(), |
| Field(&Result::v, Pointee(ElementsAre(17, 19, 23)))); |
| |
| EXPECT_THAT(mock.AsStdFunction()(), |
| Field(&Result::v, Pointee(ElementsAre(29, 31, 37)))); |
| } |
| |
| TEST(ReturnTest, PrefersConversionOperator) { |
| // Define types In and Out such that: |
| // |
| // * In is implicitly convertible to Out. |
| // * Out also has an explicit constructor from In. |
| // |
| struct In; |
| struct Out { |
| int x; |
| |
| explicit Out(const int val) : x(val) {} |
| explicit Out(const In&) : x(0) {} |
| }; |
| |
| struct In { |
| operator Out() const { return Out{19}; } // NOLINT |
| }; |
| |
| // Assumption check: the C++ language rules are such that a function that |
| // returns Out which uses In a return statement will use the implicit |
| // conversion path rather than the explicit constructor. |
| EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19)); |
| |
| // Return should work the same way: if the mock function's return type is Out |
| // and we feed Return an In value, then the Out should be created through the |
| // implicit conversion path rather than the explicit constructor. |
| MockFunction<Out()> mock; |
| EXPECT_CALL(mock, Call).WillOnce(Return(In())); |
| EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19)); |
| } |
| |
| // It should be possible to use Return(R) with a mock function result type U |
| // that is convertible from const R& but *not* R (such as |
| // std::reference_wrapper). This should work for both WillOnce and |
| // WillRepeatedly. |
| TEST(ReturnTest, ConversionRequiresConstLvalueReference) { |
| using R = int; |
| using U = std::reference_wrapper<const int>; |
| |
| static_assert(std::is_convertible<const R&, U>::value, ""); |
| static_assert(!std::is_convertible<R, U>::value, ""); |
| |
| MockFunction<U()> mock; |
| EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19)); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| EXPECT_EQ(19, mock.AsStdFunction()()); |
| } |
| |
| // Return(x) should not be usable with a mock function result type that's |
| // implicitly convertible from decltype(x) but requires a non-const lvalue |
| // reference to the input. It doesn't make sense for the conversion operator to |
| // modify the input. |
| TEST(ReturnTest, ConversionRequiresMutableLvalueReference) { |
| // Set up a type that is implicitly convertible from std::string&, but not |
| // std::string&& or `const std::string&`. |
| // |
| // Avoid asserting about conversion from std::string on MSVC, which seems to |
| // implement std::is_convertible incorrectly in this case. |
| struct S { |
| S(std::string&) {} // NOLINT |
| }; |
| |
| static_assert(std::is_convertible<std::string&, S>::value, ""); |
| #ifndef _MSC_VER |
| static_assert(!std::is_convertible<std::string&&, S>::value, ""); |
| #endif |
| static_assert(!std::is_convertible<const std::string&, S>::value, ""); |
| |
| // It shouldn't be possible to use the result of Return(std::string) in a |
| // context where an S is needed. |
| // |
| // Here too we disable the assertion for MSVC, since its incorrect |
| // implementation of is_convertible causes our SFINAE to be wrong. |
| using RA = decltype(Return(std::string())); |
| |
| static_assert(!std::is_convertible<RA, Action<S()>>::value, ""); |
| #ifndef _MSC_VER |
| static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, ""); |
| #endif |
| } |
| |
| TEST(ReturnTest, MoveOnlyResultType) { |
| // Return should support move-only result types when used with WillOnce. |
| { |
| MockFunction<std::unique_ptr<int>()> mock; |
| EXPECT_CALL(mock, Call) |
| // NOLINTNEXTLINE |
| .WillOnce(Return(std::unique_ptr<int>(new int(17)))); |
| |
| EXPECT_THAT(mock.AsStdFunction()(), Pointee(17)); |
| } |
| |
| // The result of Return should not be convertible to Action (so it can't be |
| // used with WillRepeatedly). |
| static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())), |
| Action<std::unique_ptr<int>()>>::value, |
| ""); |
| } |
| |
| // Tests that Return(v) is covariant. |
| |
| struct Base { |
| bool operator==(const Base&) { return true; } |
| }; |
| |
| struct Derived : public Base { |
| bool operator==(const Derived&) { return true; } |
| }; |
| |
| TEST(ReturnTest, IsCovariant) { |
| Base base; |
| Derived derived; |
| Action<Base*()> ret = Return(&base); |
| EXPECT_EQ(&base, ret.Perform(std::make_tuple())); |
| |
| ret = Return(&derived); |
| EXPECT_EQ(&derived, ret.Perform(std::make_tuple())); |
| } |
| |
| // Tests that the type of the value passed into Return is converted into T |
| // when the action is cast to Action<T(...)> rather than when the action is |
| // performed. See comments on testing::internal::ReturnAction in |
| // gmock-actions.h for more information. |
| class FromType { |
| public: |
| explicit FromType(bool* is_converted) : converted_(is_converted) {} |
| bool* converted() const { return converted_; } |
| |
| private: |
| bool* const converted_; |
| }; |
| |
| class ToType { |
| public: |
| // Must allow implicit conversion due to use in ImplicitCast_<T>. |
| ToType(const FromType& x) { *x.converted() = true; } // NOLINT |
| }; |
| |
| TEST(ReturnTest, ConvertsArgumentWhenConverted) { |
| bool converted = false; |
| FromType x(&converted); |
| Action<ToType()> action(Return(x)); |
| EXPECT_TRUE(converted) << "Return must convert its argument in its own " |
| << "conversion operator."; |
| converted = false; |
| action.Perform(std::tuple<>()); |
| EXPECT_FALSE(converted) << "Action must NOT convert its argument " |
| << "when performed."; |
| } |
| |
| // Tests that ReturnNull() returns NULL in a pointer-returning function. |
| TEST(ReturnNullTest, WorksInPointerReturningFunction) { |
| const Action<int*()> a1 = ReturnNull(); |
| EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr); |
| |
| const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT |
| EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr); |
| } |
| |
| // Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning |
| // functions. |
| TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) { |
| const Action<std::unique_ptr<const int>()> a1 = ReturnNull(); |
| EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr); |
| |
| const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull(); |
| EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr); |
| } |
| |
| // Tests that ReturnRef(v) works for reference types. |
| TEST(ReturnRefTest, WorksForReference) { |
| const int n = 0; |
| const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT |
| |
| EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true))); |
| } |
| |
| // Tests that ReturnRef(v) is covariant. |
| TEST(ReturnRefTest, IsCovariant) { |
| Base base; |
| Derived derived; |
| Action<Base&()> a = ReturnRef(base); |
| EXPECT_EQ(&base, &a.Perform(std::make_tuple())); |
| |
| a = ReturnRef(derived); |
| EXPECT_EQ(&derived, &a.Perform(std::make_tuple())); |
| } |
| |
| template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))> |
| bool CanCallReturnRef(T&&) { |
| return true; |
| } |
| bool CanCallReturnRef(Unused) { return false; } |
| |
| // Tests that ReturnRef(v) is working with non-temporaries (T&) |
| TEST(ReturnRefTest, WorksForNonTemporary) { |
| int scalar_value = 123; |
| EXPECT_TRUE(CanCallReturnRef(scalar_value)); |
| |
| std::string non_scalar_value("ABC"); |
| EXPECT_TRUE(CanCallReturnRef(non_scalar_value)); |
| |
| const int const_scalar_value{321}; |
| EXPECT_TRUE(CanCallReturnRef(const_scalar_value)); |
| |
| const std::string const_non_scalar_value("CBA"); |
| EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value)); |
| } |
| |
| // Tests that ReturnRef(v) is not working with temporaries (T&&) |
| TEST(ReturnRefTest, DoesNotWorkForTemporary) { |
| auto scalar_value = []() -> int { return 123; }; |
| EXPECT_FALSE(CanCallReturnRef(scalar_value())); |
| |
| auto non_scalar_value = []() -> std::string { return "ABC"; }; |
| EXPECT_FALSE(CanCallReturnRef(non_scalar_value())); |
| |
| // cannot use here callable returning "const scalar type", |
| // because such const for scalar return type is ignored |
| EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321))); |
| |
| auto const_non_scalar_value = []() -> const std::string { return "CBA"; }; |
| EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value())); |
| } |
| |
| // Tests that ReturnRefOfCopy(v) works for reference types. |
| TEST(ReturnRefOfCopyTest, WorksForReference) { |
| int n = 42; |
| const Action<const int&()> ret = ReturnRefOfCopy(n); |
| |
| EXPECT_NE(&n, &ret.Perform(std::make_tuple())); |
| EXPECT_EQ(42, ret.Perform(std::make_tuple())); |
| |
| n = 43; |
| EXPECT_NE(&n, &ret.Perform(std::make_tuple())); |
| EXPECT_EQ(42, ret.Perform(std::make_tuple())); |
| } |
| |
| // Tests that ReturnRefOfCopy(v) is covariant. |
| TEST(ReturnRefOfCopyTest, IsCovariant) { |
| Base base; |
| Derived derived; |
| Action<Base&()> a = ReturnRefOfCopy(base); |
| EXPECT_NE(&base, &a.Perform(std::make_tuple())); |
| |
| a = ReturnRefOfCopy(derived); |
| EXPECT_NE(&derived, &a.Perform(std::make_tuple())); |
| } |
| |
| // Tests that ReturnRoundRobin(v) works with initializer lists |
| TEST(ReturnRoundRobinTest, WorksForInitList) { |
| Action<int()> ret = ReturnRoundRobin({1, 2, 3}); |
| |
| EXPECT_EQ(1, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(2, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(3, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(1, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(2, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(3, ret.Perform(std::make_tuple())); |
| } |
| |
| // Tests that ReturnRoundRobin(v) works with vectors |
| TEST(ReturnRoundRobinTest, WorksForVector) { |
| std::vector<double> v = {4.4, 5.5, 6.6}; |
| Action<double()> ret = ReturnRoundRobin(v); |
| |
| EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); |
| EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); |
| } |
| |
| // Tests that DoDefault() does the default action for the mock method. |
| |
| class MockClass { |
| public: |
| MockClass() = default; |
| |
| MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT |
| MOCK_METHOD0(Foo, MyNonDefaultConstructible()); |
| MOCK_METHOD0(MakeUnique, std::unique_ptr<int>()); |
| MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>()); |
| MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>()); |
| MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>)); |
| MOCK_METHOD2(TakeUnique, |
| int(const std::unique_ptr<int>&, std::unique_ptr<int>)); |
| |
| private: |
| MockClass(const MockClass&) = delete; |
| MockClass& operator=(const MockClass&) = delete; |
| }; |
| |
| // Tests that DoDefault() returns the built-in default value for the |
| // return type by default. |
| TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) { |
| MockClass mock; |
| EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); |
| EXPECT_EQ(0, mock.IntFunc(true)); |
| } |
| |
| // Tests that DoDefault() throws (when exceptions are enabled) or aborts |
| // the process when there is no built-in default value for the return type. |
| TEST(DoDefaultDeathTest, DiesForUnknowType) { |
| MockClass mock; |
| EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault()); |
| #if GTEST_HAS_EXCEPTIONS |
| EXPECT_ANY_THROW(mock.Foo()); |
| #else |
| EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, ""); |
| #endif |
| } |
| |
| // Tests that using DoDefault() inside a composite action leads to a |
| // run-time error. |
| |
| void VoidFunc(bool /* flag */) {} |
| |
| TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) { |
| MockClass mock; |
| EXPECT_CALL(mock, IntFunc(_)) |
| .WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault())); |
| |
| // Ideally we should verify the error message as well. Sadly, |
| // EXPECT_DEATH() can only capture stderr, while Google Mock's |
| // errors are printed on stdout. Therefore we have to settle for |
| // not verifying the message. |
| EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, ""); |
| } |
| |
| // Tests that DoDefault() returns the default value set by |
| // DefaultValue<T>::Set() when it's not overridden by an ON_CALL(). |
| TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) { |
| DefaultValue<int>::Set(1); |
| MockClass mock; |
| EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); |
| EXPECT_EQ(1, mock.IntFunc(false)); |
| DefaultValue<int>::Clear(); |
| } |
| |
| // Tests that DoDefault() does the action specified by ON_CALL(). |
| TEST(DoDefaultTest, DoesWhatOnCallSpecifies) { |
| MockClass mock; |
| ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2)); |
| EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); |
| EXPECT_EQ(2, mock.IntFunc(false)); |
| } |
| |
| // Tests that using DoDefault() in ON_CALL() leads to a run-time failure. |
| TEST(DoDefaultTest, CannotBeUsedInOnCall) { |
| MockClass mock; |
| EXPECT_NONFATAL_FAILURE( |
| { // NOLINT |
| ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault()); |
| }, |
| "DoDefault() cannot be used in ON_CALL()"); |
| } |
| |
| // Tests that SetArgPointee<N>(v) sets the variable pointed to by |
| // the N-th (0-based) argument to v. |
| TEST(SetArgPointeeTest, SetsTheNthPointee) { |
| typedef void MyFunction(bool, int*, char*); |
| Action<MyFunction> a = SetArgPointee<1>(2); |
| |
| int n = 0; |
| char ch = '\0'; |
| a.Perform(std::make_tuple(true, &n, &ch)); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('\0', ch); |
| |
| a = SetArgPointee<2>('a'); |
| n = 0; |
| ch = '\0'; |
| a.Perform(std::make_tuple(true, &n, &ch)); |
| EXPECT_EQ(0, n); |
| EXPECT_EQ('a', ch); |
| } |
| |
| // Tests that SetArgPointee<N>() accepts a string literal. |
| TEST(SetArgPointeeTest, AcceptsStringLiteral) { |
| typedef void MyFunction(std::string*, const char**); |
| Action<MyFunction> a = SetArgPointee<0>("hi"); |
| std::string str; |
| const char* ptr = nullptr; |
| a.Perform(std::make_tuple(&str, &ptr)); |
| EXPECT_EQ("hi", str); |
| EXPECT_TRUE(ptr == nullptr); |
| |
| a = SetArgPointee<1>("world"); |
| str = ""; |
| a.Perform(std::make_tuple(&str, &ptr)); |
| EXPECT_EQ("", str); |
| EXPECT_STREQ("world", ptr); |
| } |
| |
| TEST(SetArgPointeeTest, AcceptsWideStringLiteral) { |
| typedef void MyFunction(const wchar_t**); |
| Action<MyFunction> a = SetArgPointee<0>(L"world"); |
| const wchar_t* ptr = nullptr; |
| a.Perform(std::make_tuple(&ptr)); |
| EXPECT_STREQ(L"world", ptr); |
| |
| #if GTEST_HAS_STD_WSTRING |
| |
| typedef void MyStringFunction(std::wstring*); |
| Action<MyStringFunction> a2 = SetArgPointee<0>(L"world"); |
| std::wstring str = L""; |
| a2.Perform(std::make_tuple(&str)); |
| EXPECT_EQ(L"world", str); |
| |
| #endif |
| } |
| |
| // Tests that SetArgPointee<N>() accepts a char pointer. |
| TEST(SetArgPointeeTest, AcceptsCharPointer) { |
| typedef void MyFunction(bool, std::string*, const char**); |
| const char* const hi = "hi"; |
| Action<MyFunction> a = SetArgPointee<1>(hi); |
| std::string str; |
| const char* ptr = nullptr; |
| a.Perform(std::make_tuple(true, &str, &ptr)); |
| EXPECT_EQ("hi", str); |
| EXPECT_TRUE(ptr == nullptr); |
| |
| char world_array[] = "world"; |
| char* const world = world_array; |
| a = SetArgPointee<2>(world); |
| str = ""; |
| a.Perform(std::make_tuple(true, &str, &ptr)); |
| EXPECT_EQ("", str); |
| EXPECT_EQ(world, ptr); |
| } |
| |
| TEST(SetArgPointeeTest, AcceptsWideCharPointer) { |
| typedef void MyFunction(bool, const wchar_t**); |
| const wchar_t* const hi = L"hi"; |
| Action<MyFunction> a = SetArgPointee<1>(hi); |
| const wchar_t* ptr = nullptr; |
| a.Perform(std::make_tuple(true, &ptr)); |
| EXPECT_EQ(hi, ptr); |
| |
| #if GTEST_HAS_STD_WSTRING |
| |
| typedef void MyStringFunction(bool, std::wstring*); |
| wchar_t world_array[] = L"world"; |
| wchar_t* const world = world_array; |
| Action<MyStringFunction> a2 = SetArgPointee<1>(world); |
| std::wstring str; |
| a2.Perform(std::make_tuple(true, &str)); |
| EXPECT_EQ(world_array, str); |
| #endif |
| } |
| |
| // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by |
| // the N-th (0-based) argument to v. |
| TEST(SetArgumentPointeeTest, SetsTheNthPointee) { |
| typedef void MyFunction(bool, int*, char*); |
| Action<MyFunction> a = SetArgumentPointee<1>(2); |
| |
| int n = 0; |
| char ch = '\0'; |
| a.Perform(std::make_tuple(true, &n, &ch)); |
| EXPECT_EQ(2, n); |
| EXPECT_EQ('\0', ch); |
| |
| a = SetArgumentPointee<2>('a'); |
| n = 0; |
| ch = '\0'; |
| a.Perform(std::make_tuple(true, &n, &ch)); |
| EXPECT_EQ(0, n); |
| EXPECT_EQ('a', ch); |
| } |
| |
| // Sample functions and functors for testing Invoke() and etc. |
| int Nullary() { return 1; } |
| |
| class NullaryFunctor { |
| public: |
| int operator()() { return 2; } |
| }; |
| |
| bool g_done = false; |
| void VoidNullary() { g_done = true; } |
| |
| class VoidNullaryFunctor { |
| public: |
| void operator()() { g_done = true; } |
| }; |
| |
| short Short(short n) { return n; } // NOLINT |
| char Char(char ch) { return ch; } |
| |
| const char* CharPtr(const char* s) { return s; } |
| |
| bool Unary(int x) { return x < 0; } |
| |
| const char* Binary(const char* input, short n) { return input + n; } // NOLINT |
| |
| void VoidBinary(int, char) { g_done = true; } |
| |
| int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT |
| |
| int SumOf4(int a, int b, int c, int d) { return a + b + c + d; } |
| |
| class Foo { |
| public: |
| Foo() : value_(123) {} |
| |
| int Nullary() const { return value_; } |
| |
| private: |
| int value_; |
| }; |
| |
| // Tests InvokeWithoutArgs(function). |
| TEST(InvokeWithoutArgsTest, Function) { |
| // As an action that takes one argument. |
| Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT |
| EXPECT_EQ(1, a.Perform(std::make_tuple(2))); |
| |
| // As an action that takes two arguments. |
| Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT |
| EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5))); |
| |
| // As an action that returns void. |
| Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT |
| g_done = false; |
| a3.Perform(std::make_tuple(1)); |
| EXPECT_TRUE(g_done); |
| } |
| |
| // Tests InvokeWithoutArgs(functor). |
| TEST(InvokeWithoutArgsTest, Functor) { |
| // As an action that takes no argument. |
| Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT |
| EXPECT_EQ(2, a.Perform(std::make_tuple())); |
| |
| // As an action that takes three arguments. |
| Action<int(int, double, char)> a2 = // NOLINT |
| InvokeWithoutArgs(NullaryFunctor()); |
| EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a'))); |
| |
| // As an action that returns void. |
| Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor()); |
| g_done = false; |
| a3.Perform(std::make_tuple()); |
| EXPECT_TRUE(g_done); |
| } |
| |
| // Tests InvokeWithoutArgs(obj_ptr, method). |
| TEST(InvokeWithoutArgsTest, Method) { |
| Foo foo; |
| Action<int(bool, char)> a = // NOLINT |
| InvokeWithoutArgs(&foo, &Foo::Nullary); |
| EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a'))); |
| } |
| |
| // Tests using IgnoreResult() on a polymorphic action. |
| TEST(IgnoreResultTest, PolymorphicAction) { |
| Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT |
| a.Perform(std::make_tuple(1)); |
| } |
| |
| // Tests using IgnoreResult() on a monomorphic action. |
| |
| int ReturnOne() { |
| g_done = true; |
| return 1; |
| } |
| |
| TEST(IgnoreResultTest, MonomorphicAction) { |
| g_done = false; |
| Action<void()> a = IgnoreResult(Invoke(ReturnOne)); |
| a.Perform(std::make_tuple()); |
| EXPECT_TRUE(g_done); |
| } |
| |
| // Tests using IgnoreResult() on an action that returns a class type. |
| |
| MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) { |
| g_done = true; |
| return MyNonDefaultConstructible(42); |
| } |
| |
| TEST(IgnoreResultTest, ActionReturningClass) { |
| g_done = false; |
| Action<void(int)> a = |
| IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT |
| a.Perform(std::make_tuple(2)); |
| EXPECT_TRUE(g_done); |
| } |
| |
| TEST(AssignTest, Int) { |
| int x = 0; |
| Action<void(int)> a = Assign(&x, 5); |
| a.Perform(std::make_tuple(0)); |
| EXPECT_EQ(5, x); |
| } |
| |
| TEST(AssignTest, String) { |
| ::std::string x; |
| Action<void(void)> a = Assign(&x, "Hello, world"); |
| a.Perform(std::make_tuple()); |
| EXPECT_EQ("Hello, world", x); |
| } |
| |
| TEST(AssignTest, CompatibleTypes) { |
| double x = 0; |
| Action<void(int)> a = Assign(&x, 5); |
| a.Perform(std::make_tuple(0)); |
| EXPECT_DOUBLE_EQ(5, x); |
| } |
| |
| // DoAll should support &&-qualified actions when used with WillOnce. |
| TEST(DoAll, SupportsRefQualifiedActions) { |
| struct InitialAction { |
| void operator()(const int arg) && { EXPECT_EQ(17, arg); } |
| }; |
| |
| struct FinalAction { |
| int operator()() && { return 19; } |
| }; |
| |
| MockFunction<int(int)> mock; |
| EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{})); |
| EXPECT_EQ(19, mock.AsStdFunction()(17)); |
| } |
| |
| // DoAll should never provide rvalue references to the initial actions. If the |
| // mock action itself accepts an rvalue reference or a non-scalar object by |
| // value then the final action should receive an rvalue reference, but initial |
| // actions should receive only lvalue references. |
| TEST(DoAll, ProvidesLvalueReferencesToInitialActions) { |
| struct Obj {}; |
| |
| // Mock action accepts by value: the initial action should be fed a const |
| // lvalue reference, and the final action an rvalue reference. |
| { |
| struct InitialAction { |
| void operator()(Obj&) const { FAIL() << "Unexpected call"; } |
| void operator()(const Obj&) const {} |
| void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
| void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } |
| }; |
| |
| MockFunction<void(Obj)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) |
| .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); |
| |
| mock.AsStdFunction()(Obj{}); |
| mock.AsStdFunction()(Obj{}); |
| } |
| |
| // Mock action accepts by const lvalue reference: both actions should receive |
| // a const lvalue reference. |
| { |
| struct InitialAction { |
| void operator()(Obj&) const { FAIL() << "Unexpected call"; } |
| void operator()(const Obj&) const {} |
| void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
| void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } |
| }; |
| |
| MockFunction<void(const Obj&)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})) |
| .WillRepeatedly( |
| DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})); |
| |
| mock.AsStdFunction()(Obj{}); |
| mock.AsStdFunction()(Obj{}); |
| } |
| |
| // Mock action accepts by non-const lvalue reference: both actions should get |
| // a non-const lvalue reference if they want them. |
| { |
| struct InitialAction { |
| void operator()(Obj&) const {} |
| void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
| }; |
| |
| MockFunction<void(Obj&)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})) |
| .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); |
| |
| Obj obj; |
| mock.AsStdFunction()(obj); |
| mock.AsStdFunction()(obj); |
| } |
| |
| // Mock action accepts by rvalue reference: the initial actions should receive |
| // a non-const lvalue reference if it wants it, and the final action an rvalue |
| // reference. |
| { |
| struct InitialAction { |
| void operator()(Obj&) const {} |
| void operator()(Obj&&) const { FAIL() << "Unexpected call"; } |
| }; |
| |
| MockFunction<void(Obj&&)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) |
| .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); |
| |
| mock.AsStdFunction()(Obj{}); |
| mock.AsStdFunction()(Obj{}); |
| } |
| |
| // &&-qualified initial actions should also be allowed with WillOnce. |
| { |
| struct InitialAction { |
| void operator()(Obj&) && {} |
| }; |
| |
| MockFunction<void(Obj&)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); |
| |
| Obj obj; |
| mock.AsStdFunction()(obj); |
| } |
| |
| { |
| struct InitialAction { |
| void operator()(Obj&) && {} |
| }; |
| |
| MockFunction<void(Obj&&)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); |
| |
| mock.AsStdFunction()(Obj{}); |
| } |
| } |
| |
| // DoAll should support being used with type-erased Action objects, both through |
| // WillOnce and WillRepeatedly. |
| TEST(DoAll, SupportsTypeErasedActions) { |
| // With only type-erased actions. |
| const Action<void()> initial_action = [] {}; |
| const Action<int()> final_action = [] { return 17; }; |
| |
| MockFunction<int()> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(initial_action, initial_action, final_action)) |
| .WillRepeatedly(DoAll(initial_action, initial_action, final_action)); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| |
| // With &&-qualified and move-only final action. |
| { |
| struct FinalAction { |
| FinalAction() = default; |
| FinalAction(FinalAction&&) = default; |
| |
| int operator()() && { return 17; } |
| }; |
| |
| EXPECT_CALL(mock, Call) |
| .WillOnce(DoAll(initial_action, initial_action, FinalAction{})); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| } |
| } |
| |
| // Tests using WithArgs and with an action that takes 1 argument. |
| TEST(WithArgsTest, OneArg) { |
| Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT |
| EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1))); |
| EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1))); |
| } |
| |
| // Tests using WithArgs with an action that takes 2 arguments. |
| TEST(WithArgsTest, TwoArgs) { |
| Action<const char*(const char* s, double x, short n)> a = // NOLINT |
| WithArgs<0, 2>(Invoke(Binary)); |
| const char s[] = "Hello"; |
| EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2)))); |
| } |
| |
| struct ConcatAll { |
| std::string operator()() const { return {}; } |
| template <typename... I> |
| std::string operator()(const char* a, I... i) const { |
| return a + ConcatAll()(i...); |
| } |
| }; |
| |
| // Tests using WithArgs with an action that takes 10 arguments. |
| TEST(WithArgsTest, TenArgs) { |
| Action<std::string(const char*, const char*, const char*, const char*)> a = |
| WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{})); |
| EXPECT_EQ("0123210123", |
| a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), |
| CharPtr("3")))); |
| } |
| |
| // Tests using WithArgs with an action that is not Invoke(). |
| class SubtractAction : public ActionInterface<int(int, int)> { |
| public: |
| int Perform(const std::tuple<int, int>& args) override { |
| return std::get<0>(args) - std::get<1>(args); |
| } |
| }; |
| |
| TEST(WithArgsTest, NonInvokeAction) { |
| Action<int(const std::string&, int, int)> a = |
| WithArgs<2, 1>(MakeAction(new SubtractAction)); |
| std::tuple<std::string, int, int> dummy = |
| std::make_tuple(std::string("hi"), 2, 10); |
| EXPECT_EQ(8, a.Perform(dummy)); |
| } |
| |
| // Tests using WithArgs to pass all original arguments in the original order. |
| TEST(WithArgsTest, Identity) { |
| Action<int(int x, char y, short z)> a = // NOLINT |
| WithArgs<0, 1, 2>(Invoke(Ternary)); |
| EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3)))); |
| } |
| |
| // Tests using WithArgs with repeated arguments. |
| TEST(WithArgsTest, RepeatedArguments) { |
| Action<int(bool, int m, int n)> a = // NOLINT |
| WithArgs<1, 1, 1, 1>(Invoke(SumOf4)); |
| EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10))); |
| } |
| |
| // Tests using WithArgs with reversed argument order. |
| TEST(WithArgsTest, ReversedArgumentOrder) { |
| Action<const char*(short n, const char* input)> a = // NOLINT |
| WithArgs<1, 0>(Invoke(Binary)); |
| const char s[] = "Hello"; |
| EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s)))); |
| } |
| |
| // Tests using WithArgs with compatible, but not identical, argument types. |
| TEST(WithArgsTest, ArgsOfCompatibleTypes) { |
| Action<long(short x, char y, double z, char c)> a = // NOLINT |
| WithArgs<0, 1, 3>(Invoke(Ternary)); |
| EXPECT_EQ(123, |
| a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3)))); |
| } |
| |
| // Tests using WithArgs with an action that returns void. |
| TEST(WithArgsTest, VoidAction) { |
| Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary)); |
| g_done = false; |
| a.Perform(std::make_tuple(1.5, 'a', 3)); |
| EXPECT_TRUE(g_done); |
| } |
| |
| TEST(WithArgsTest, ReturnReference) { |
| Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; }); |
| int i = 0; |
| const int& res = aa.Perform(std::forward_as_tuple(i, nullptr)); |
| EXPECT_EQ(&i, &res); |
| } |
| |
| TEST(WithArgsTest, InnerActionWithConversion) { |
| Action<Derived*()> inner = [] { return nullptr; }; |
| |
| MockFunction<Base*(double)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(WithoutArgs(inner)) |
| .WillRepeatedly(WithoutArgs(inner)); |
| |
| EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); |
| EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); |
| } |
| |
| // It should be possible to use an &&-qualified inner action as long as the |
| // whole shebang is used as an rvalue with WillOnce. |
| TEST(WithArgsTest, RefQualifiedInnerAction) { |
| struct SomeAction { |
| int operator()(const int arg) && { |
| EXPECT_EQ(17, arg); |
| return 19; |
| } |
| }; |
| |
| MockFunction<int(int, int)> mock; |
| EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{})); |
| EXPECT_EQ(19, mock.AsStdFunction()(0, 17)); |
| } |
| |
| #ifndef GTEST_OS_WINDOWS_MOBILE |
| |
| class SetErrnoAndReturnTest : public testing::Test { |
| protected: |
| void SetUp() override { errno = 0; } |
| void TearDown() override { errno = 0; } |
| }; |
| |
| TEST_F(SetErrnoAndReturnTest, Int) { |
| Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5); |
| EXPECT_EQ(-5, a.Perform(std::make_tuple())); |
| EXPECT_EQ(ENOTTY, errno); |
| } |
| |
| TEST_F(SetErrnoAndReturnTest, Ptr) { |
| int x; |
| Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x); |
| EXPECT_EQ(&x, a.Perform(std::make_tuple())); |
| EXPECT_EQ(ENOTTY, errno); |
| } |
| |
| TEST_F(SetErrnoAndReturnTest, CompatibleTypes) { |
| Action<double()> a = SetErrnoAndReturn(EINVAL, 5); |
| EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple())); |
| EXPECT_EQ(EINVAL, errno); |
| } |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Tests ByRef(). |
| |
| // Tests that the result of ByRef() is copyable. |
| TEST(ByRefTest, IsCopyable) { |
| const std::string s1 = "Hi"; |
| const std::string s2 = "Hello"; |
| |
| auto ref_wrapper = ByRef(s1); |
| const std::string& r1 = ref_wrapper; |
| EXPECT_EQ(&s1, &r1); |
| |
| // Assigns a new value to ref_wrapper. |
| ref_wrapper = ByRef(s2); |
| const std::string& r2 = ref_wrapper; |
| EXPECT_EQ(&s2, &r2); |
| |
| auto ref_wrapper1 = ByRef(s1); |
| // Copies ref_wrapper1 to ref_wrapper. |
| ref_wrapper = ref_wrapper1; |
| const std::string& r3 = ref_wrapper; |
| EXPECT_EQ(&s1, &r3); |
| } |
| |
| // Tests using ByRef() on a const value. |
| TEST(ByRefTest, ConstValue) { |
| const int n = 0; |
| // int& ref = ByRef(n); // This shouldn't compile - we have a |
| // negative compilation test to catch it. |
| const int& const_ref = ByRef(n); |
| EXPECT_EQ(&n, &const_ref); |
| } |
| |
| // Tests using ByRef() on a non-const value. |
| TEST(ByRefTest, NonConstValue) { |
| int n = 0; |
| |
| // ByRef(n) can be used as either an int&, |
| int& ref = ByRef(n); |
| EXPECT_EQ(&n, &ref); |
| |
| // or a const int&. |
| const int& const_ref = ByRef(n); |
| EXPECT_EQ(&n, &const_ref); |
| } |
| |
| // Tests explicitly specifying the type when using ByRef(). |
| TEST(ByRefTest, ExplicitType) { |
| int n = 0; |
| const int& r1 = ByRef<const int>(n); |
| EXPECT_EQ(&n, &r1); |
| |
| // ByRef<char>(n); // This shouldn't compile - we have a negative |
| // compilation test to catch it. |
| |
| Derived d; |
| Derived& r2 = ByRef<Derived>(d); |
| EXPECT_EQ(&d, &r2); |
| |
| const Derived& r3 = ByRef<const Derived>(d); |
| EXPECT_EQ(&d, &r3); |
| |
| Base& r4 = ByRef<Base>(d); |
| EXPECT_EQ(&d, &r4); |
| |
| const Base& r5 = ByRef<const Base>(d); |
| EXPECT_EQ(&d, &r5); |
| |
| // The following shouldn't compile - we have a negative compilation |
| // test for it. |
| // |
| // Base b; |
| // ByRef<Derived>(b); |
| } |
| |
| // Tests that Google Mock prints expression ByRef(x) as a reference to x. |
| TEST(ByRefTest, PrintsCorrectly) { |
| int n = 42; |
| ::std::stringstream expected, actual; |
| testing::internal::UniversalPrinter<const int&>::Print(n, &expected); |
| testing::internal::UniversalPrint(ByRef(n), &actual); |
| EXPECT_EQ(expected.str(), actual.str()); |
| } |
| |
| struct UnaryConstructorClass { |
| explicit UnaryConstructorClass(int v) : value(v) {} |
| int value; |
| }; |
| |
| // Tests using ReturnNew() with a unary constructor. |
| TEST(ReturnNewTest, Unary) { |
| Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000); |
| UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
| EXPECT_EQ(4000, c->value); |
| delete c; |
| } |
| |
| TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) { |
| Action<UnaryConstructorClass*(bool, int)> a = |
| ReturnNew<UnaryConstructorClass>(4000); |
| UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5)); |
| EXPECT_EQ(4000, c->value); |
| delete c; |
| } |
| |
| TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) { |
| Action<const UnaryConstructorClass*()> a = |
| ReturnNew<UnaryConstructorClass>(4000); |
| const UnaryConstructorClass* c = a.Perform(std::make_tuple()); |
| EXPECT_EQ(4000, c->value); |
| delete c; |
| } |
| |
| class TenArgConstructorClass { |
| public: |
| TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7, |
| int a8, int a9, int a10) |
| : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {} |
| int value_; |
| }; |
| |
| // Tests using ReturnNew() with a 10-argument constructor. |
| TEST(ReturnNewTest, ConstructorThatTakes10Arguments) { |
| Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>( |
| 1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90, |
| 0); |
| TenArgConstructorClass* c = a.Perform(std::make_tuple()); |
| EXPECT_EQ(1234567890, c->value_); |
| delete c; |
| } |
| |
| std::unique_ptr<int> UniquePtrSource() { return std::make_unique<int>(19); } |
| |
| std::vector<std::unique_ptr<int>> VectorUniquePtrSource() { |
| std::vector<std::unique_ptr<int>> out; |
| out.emplace_back(new int(7)); |
| return out; |
| } |
| |
| TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) { |
| MockClass mock; |
| std::unique_ptr<int> i(new int(19)); |
| EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i)))); |
| EXPECT_CALL(mock, MakeVectorUnique()) |
| .WillOnce(Return(ByMove(VectorUniquePtrSource()))); |
| Derived* d = new Derived; |
| EXPECT_CALL(mock, MakeUniqueBase()) |
| .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d)))); |
| |
| std::unique_ptr<int> result1 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result1); |
| |
| std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); |
| EXPECT_EQ(1u, vresult.size()); |
| EXPECT_NE(nullptr, vresult[0]); |
| EXPECT_EQ(7, *vresult[0]); |
| |
| std::unique_ptr<Base> result2 = mock.MakeUniqueBase(); |
| EXPECT_EQ(d, result2.get()); |
| } |
| |
| TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) { |
| testing::MockFunction<void()> mock_function; |
| MockClass mock; |
| std::unique_ptr<int> i(new int(19)); |
| EXPECT_CALL(mock_function, Call()); |
| EXPECT_CALL(mock, MakeUnique()) |
| .WillOnce(DoAll(InvokeWithoutArgs(&mock_function, |
| &testing::MockFunction<void()>::Call), |
| Return(ByMove(std::move(i))))); |
| |
| std::unique_ptr<int> result1 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result1); |
| } |
| |
| TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) { |
| MockClass mock; |
| |
| // Check default value |
| DefaultValue<std::unique_ptr<int>>::SetFactory( |
| [] { return std::make_unique<int>(42); }); |
| EXPECT_EQ(42, *mock.MakeUnique()); |
| |
| EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource)); |
| EXPECT_CALL(mock, MakeVectorUnique()) |
| .WillRepeatedly(Invoke(VectorUniquePtrSource)); |
| std::unique_ptr<int> result1 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result1); |
| std::unique_ptr<int> result2 = mock.MakeUnique(); |
| EXPECT_EQ(19, *result2); |
| EXPECT_NE(result1, result2); |
| |
| std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); |
| EXPECT_EQ(1u, vresult.size()); |
| EXPECT_NE(nullptr, vresult[0]); |
| EXPECT_EQ(7, *vresult[0]); |
| } |
| |
| TEST(MockMethodTest, CanTakeMoveOnlyValue) { |
| MockClass mock; |
| auto make = [](int i) { return std::make_unique<int>(i); }; |
| |
| EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) { |
| return *i; |
| }); |
| // DoAll() does not compile, since it would move from its arguments twice. |
| // EXPECT_CALL(mock, TakeUnique(_, _)) |
| // .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}), |
| // Return(1))); |
| EXPECT_CALL(mock, TakeUnique(testing::Pointee(7))) |
| .WillOnce(Return(-7)) |
| .RetiresOnSaturation(); |
| EXPECT_CALL(mock, TakeUnique(testing::IsNull())) |
| .WillOnce(Return(-1)) |
| .RetiresOnSaturation(); |
| |
| EXPECT_EQ(5, mock.TakeUnique(make(5))); |
| EXPECT_EQ(-7, mock.TakeUnique(make(7))); |
| EXPECT_EQ(7, mock.TakeUnique(make(7))); |
| EXPECT_EQ(7, mock.TakeUnique(make(7))); |
| EXPECT_EQ(-1, mock.TakeUnique({})); |
| |
| // Some arguments are moved, some passed by reference. |
| auto lvalue = make(6); |
| EXPECT_CALL(mock, TakeUnique(_, _)) |
| .WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) { |
| return *i * *j; |
| }); |
| EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7))); |
| |
| // The unique_ptr can be saved by the action. |
| std::unique_ptr<int> saved; |
| EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) { |
| saved = std::move(i); |
| return 0; |
| }); |
| EXPECT_EQ(0, mock.TakeUnique(make(42))); |
| EXPECT_EQ(42, *saved); |
| } |
| |
| // It should be possible to use callables with an &&-qualified call operator |
| // with WillOnce, since they will be called only once. This allows actions to |
| // contain and manipulate move-only types. |
| TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) { |
| struct Return17 { |
| int operator()() && { return 17; } |
| }; |
| |
| // Action is directly compatible with mocked function type. |
| { |
| MockFunction<int()> mock; |
| EXPECT_CALL(mock, Call).WillOnce(Return17()); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| } |
| |
| // Action doesn't want mocked function arguments. |
| { |
| MockFunction<int(int)> mock; |
| EXPECT_CALL(mock, Call).WillOnce(Return17()); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()(0)); |
| } |
| } |
| |
| // Edge case: if an action has both a const-qualified and an &&-qualified call |
| // operator, there should be no "ambiguous call" errors. The &&-qualified |
| // operator should be used by WillOnce (since it doesn't need to retain the |
| // action beyond one call), and the const-qualified one by WillRepeatedly. |
| TEST(MockMethodTest, ActionHasMultipleCallOperators) { |
| struct ReturnInt { |
| int operator()() && { return 17; } |
| int operator()() const& { return 19; } |
| }; |
| |
| // Directly compatible with mocked function type. |
| { |
| MockFunction<int()> mock; |
| EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| EXPECT_EQ(19, mock.AsStdFunction()()); |
| EXPECT_EQ(19, mock.AsStdFunction()()); |
| } |
| |
| // Ignores function arguments. |
| { |
| MockFunction<int(int)> mock; |
| EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()(0)); |
| EXPECT_EQ(19, mock.AsStdFunction()(0)); |
| EXPECT_EQ(19, mock.AsStdFunction()(0)); |
| } |
| } |
| |
| // WillOnce should have no problem coping with a move-only action, whether it is |
| // &&-qualified or not. |
| TEST(MockMethodTest, MoveOnlyAction) { |
| // &&-qualified |
| { |
| struct Return17 { |
| Return17() = default; |
| Return17(Return17&&) = default; |
| |
| Return17(const Return17&) = delete; |
| Return17 operator=(const Return17&) = delete; |
| |
| int operator()() && { return 17; } |
| }; |
| |
| MockFunction<int()> mock; |
| EXPECT_CALL(mock, Call).WillOnce(Return17()); |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| } |
| |
| // Not &&-qualified |
| { |
| struct Return17 { |
| Return17() = default; |
| Return17(Return17&&) = default; |
| |
| Return17(const Return17&) = delete; |
| Return17 operator=(const Return17&) = delete; |
| |
| int operator()() const { return 17; } |
| }; |
| |
| MockFunction<int()> mock; |
| EXPECT_CALL(mock, Call).WillOnce(Return17()); |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| } |
| } |
| |
| // It should be possible to use an action that returns a value with a mock |
| // function that doesn't, both through WillOnce and WillRepeatedly. |
| TEST(MockMethodTest, ActionReturnsIgnoredValue) { |
| struct ReturnInt { |
| int operator()() const { return 0; } |
| }; |
| |
| MockFunction<void()> mock; |
| EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); |
| |
| mock.AsStdFunction()(); |
| mock.AsStdFunction()(); |
| } |
| |
| // Despite the fanciness around move-only actions and so on, it should still be |
| // possible to hand an lvalue reference to a copyable action to WillOnce. |
| TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) { |
| MockFunction<int()> mock; |
| |
| const auto action = [] { return 17; }; |
| EXPECT_CALL(mock, Call).WillOnce(action); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| } |
| |
| // A callable that doesn't use SFINAE to restrict its call operator's overload |
| // set, but is still picky about which arguments it will accept. |
| struct StaticAssertSingleArgument { |
| template <typename... Args> |
| static constexpr bool CheckArgs() { |
| static_assert(sizeof...(Args) == 1, ""); |
| return true; |
| } |
| |
| template <typename... Args, bool = CheckArgs<Args...>()> |
| int operator()(Args...) const { |
| return 17; |
| } |
| }; |
| |
| // WillOnce and WillRepeatedly should both work fine with naïve implementations |
| // of actions that don't use SFINAE to limit the overload set for their call |
| // operator. If they are compatible with the actual mocked signature, we |
| // shouldn't probe them with no arguments and trip a static_assert. |
| TEST(MockMethodTest, ActionSwallowsAllArguments) { |
| MockFunction<int(int)> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(StaticAssertSingleArgument{}) |
| .WillRepeatedly(StaticAssertSingleArgument{}); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()(0)); |
| EXPECT_EQ(17, mock.AsStdFunction()(0)); |
| } |
| |
| struct ActionWithTemplatedConversionOperators { |
| template <typename... Args> |
| operator OnceAction<int(Args...)>() && { // NOLINT |
| return [] { return 17; }; |
| } |
| |
| template <typename... Args> |
| operator Action<int(Args...)>() const { // NOLINT |
| return [] { return 19; }; |
| } |
| }; |
| |
| // It should be fine to hand both WillOnce and WillRepeatedly a function that |
| // defines templated conversion operators to OnceAction and Action. WillOnce |
| // should prefer the OnceAction version. |
| TEST(MockMethodTest, ActionHasTemplatedConversionOperators) { |
| MockFunction<int()> mock; |
| EXPECT_CALL(mock, Call) |
| .WillOnce(ActionWithTemplatedConversionOperators{}) |
| .WillRepeatedly(ActionWithTemplatedConversionOperators{}); |
| |
| EXPECT_EQ(17, mock.AsStdFunction()()); |
| EXPECT_EQ(19, mock.AsStdFunction()()); |
| } |
| |
| // Tests for std::function based action. |
| |
| int Add(int val, int& ref, int* ptr) { // NOLINT |
| int result = val + ref + *ptr; |
| ref = 42; |
| *ptr = 43; |
| return result; |
| } |
| |
| int Deref(std::unique_ptr<int> ptr) { return *ptr; } |
| |
| struct Double { |
| template <typename T> |
| T operator()(T t) { |
| return 2 * t; |
| } |
| }; |
| |
| std::unique_ptr<int> UniqueInt(int i) { return std::make_unique<int>(i); } |
| |
| TEST(FunctorActionTest, ActionFromFunction) { |
| Action<int(int, int&, int*)> a = &Add; |
| int x = 1, y = 2, z = 3; |
| EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z))); |
| EXPECT_EQ(42, y); |
| EXPECT_EQ(43, z); |
| |
| Action<int(std::unique_ptr<int>)> a1 = &Deref; |
| EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7)))); |
| } |
| |
| TEST(FunctorActionTest, ActionFromLambda) { |
| Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; }; |
| EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); |
| EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5))); |
| |
| std::unique_ptr<int> saved; |
| Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) { |
| saved = std::move(p); |
| }; |
| a2.Perform(std::make_tuple(UniqueInt(5))); |
| EXPECT_EQ(5, *saved); |
| } |
| |
| TEST(FunctorActionTest, PolymorphicFunctor) { |
| Action<int(int)> ai = Double(); |
| EXPECT_EQ(2, ai.Perform(std::make_tuple(1))); |
| Action<double(double)> ad = Double(); // Double? Double double! |
| EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5))); |
| } |
| |
| TEST(FunctorActionTest, TypeConversion) { |
| // Numeric promotions are allowed. |
| const Action<bool(int)> a1 = [](int i) { return i > 1; }; |
| const Action<int(bool)> a2 = Action<int(bool)>(a1); |
| EXPECT_EQ(1, a1.Perform(std::make_tuple(42))); |
| EXPECT_EQ(0, a2.Perform(std::make_tuple(42))); |
| |
| // Implicit constructors are allowed. |
| const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); }; |
| const Action<int(const char*)> s2 = Action<int(const char*)>(s1); |
| EXPECT_EQ(0, s2.Perform(std::make_tuple(""))); |
| EXPECT_EQ(1, s2.Perform(std::make_tuple("hello"))); |
| |
| // Also between the lambda and the action itself. |
| const Action<bool(std::string)> x1 = [](Unused) { return 42; }; |
| const Action<bool(std::string)> x2 = [] { return 42; }; |
| EXPECT_TRUE(x1.Perform(std::make_tuple("hello"))); |
| EXPECT_TRUE(x2.Perform(std::make_tuple("hello"))); |
| |
| // Ensure decay occurs where required. |
| std::function<int()> f = [] { return 7; }; |
| Action<int(int)> d = f; |
| f = nullptr; |
| EXPECT_EQ(7, d.Perform(std::make_tuple(1))); |
| |
| // Ensure creation of an empty action succeeds. |
| Action<void(int)>(nullptr); |
| } |
| |
| TEST(FunctorActionTest, UnusedArguments) { |
| // Verify that users can ignore uninteresting arguments. |
| Action<int(int, double y, double z)> a = [](int i, Unused, Unused) { |
| return 2 * i; |
| }; |
| std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44); |
| EXPECT_EQ(6, a.Perform(dummy)); |
| } |
| |
| // Test that basic built-in actions work with move-only arguments. |
| TEST(MoveOnlyArgumentsTest, ReturningActions) { |
| Action<int(std::unique_ptr<int>)> a = Return(1); |
| EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr))); |
| |
| a = testing::WithoutArgs([]() { return 7; }); |
| EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr))); |
| |
| Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3); |
| int x = 0; |
| a2.Perform(std::make_tuple(nullptr, &x)); |
| EXPECT_EQ(x, 3); |
| } |
| |
| ACTION(ReturnArity) { return std::tuple_size<args_type>::value; } |
| |
| TEST(ActionMacro, LargeArity) { |
| EXPECT_EQ( |
| 1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0))); |
| EXPECT_EQ( |
| 10, |
| testing::Action<int(int, int, int, int, int, int, int, int, int, int)>( |
| ReturnArity()) |
| .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); |
| EXPECT_EQ( |
| 20, |
| testing::Action<int(int, int, int, int, int, int, int, int, int, int, int, |
| int, int, int, int, int, int, int, int, int)>( |
| ReturnArity()) |
| .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
| 14, 15, 16, 17, 18, 19))); |
| } |
| |
| } // namespace |
| } // namespace testing |
| |
| #if defined(_MSC_VER) && (_MSC_VER == 1900) |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4800 |
| #endif |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 4503 |