blob: 866e1aba195049013e41e3ffe5dd0bac9a073d6b [file] [log] [blame]
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in actions in gmock-actions.h.
#include "gmock/gmock-more-actions.h"
#include <functional>
#include <memory>
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4577)
namespace testing {
namespace gmock_more_actions_test {
using ::std::plus;
using ::std::string;
using testing::Action;
using testing::DeleteArg;
using testing::Invoke;
using testing::ReturnArg;
using testing::ReturnPointee;
using testing::SaveArg;
using testing::SaveArgPointee;
using testing::SetArgReferee;
using testing::Unused;
using testing::WithArg;
using testing::WithoutArgs;
// For suppressing compiler warnings on conversion possibly losing precision.
inline short Short(short n) { return n; } // NOLINT
inline char Char(char ch) { return ch; }
// Sample functions and functors for testing Invoke() and etc.
int Nullary() { return 1; }
bool g_done = false;
bool Unary(int x) { return x < 0; }
bool ByConstRef(const std::string& s) { return s == "Hi"; }
const double g_double = 0;
bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; }
struct UnaryFunctor {
int operator()(bool x) { return x ? 1 : -1; }
};
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
int SumOfFirst2(int a, int b, Unused, Unused) { return a + b; }
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; }
struct SumOf5Functor {
int operator()(int a, int b, int c, int d, int e) {
return a + b + c + d + e;
}
};
int SumOf6(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
struct SumOf6Functor {
int operator()(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
};
std::string Concat7(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7;
}
std::string Concat8(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8;
}
std::string Concat9(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9;
}
std::string Concat10(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9,
const char* s10) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10;
}
class Foo {
public:
Foo() : value_(123) {}
int Nullary() const { return value_; }
short Unary(long x) { return static_cast<short>(value_ + x); } // NOLINT
std::string Binary(const std::string& str, char c) const { return str + c; }
int Ternary(int x, bool y, char z) { return value_ + x + y * z; }
int SumOf4(int a, int b, int c, int d) const {
return a + b + c + d + value_;
}
int SumOfLast2(Unused, Unused, int a, int b) const { return a + b; }
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; }
int SumOf6(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;
}
std::string Concat7(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7;
}
std::string Concat8(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8;
}
std::string Concat9(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9;
}
std::string Concat10(const char* s1, const char* s2, const char* s3,
const char* s4, const char* s5, const char* s6,
const char* s7, const char* s8, const char* s9,
const char* s10) {
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10;
}
private:
int value_;
};
// Tests using Invoke() with a nullary function.
TEST(InvokeTest, Nullary) {
Action<int()> a = Invoke(Nullary); // NOLINT
EXPECT_EQ(1, a.Perform(std::make_tuple()));
}
// Tests using Invoke() with a unary function.
TEST(InvokeTest, Unary) {
Action<bool(int)> a = Invoke(Unary); // NOLINT
EXPECT_FALSE(a.Perform(std::make_tuple(1)));
EXPECT_TRUE(a.Perform(std::make_tuple(-1)));
}
// Tests using Invoke() with a binary function.
TEST(InvokeTest, Binary) {
Action<const char*(const char*, short)> a = Invoke(Binary); // NOLINT
const char* p = "Hello";
EXPECT_EQ(p + 2, a.Perform(std::make_tuple(p, Short(2))));
}
// Tests using Invoke() with a ternary function.
TEST(InvokeTest, Ternary) {
Action<int(int, char, short)> a = Invoke(Ternary); // NOLINT
EXPECT_EQ(6, a.Perform(std::make_tuple(1, '\2', Short(3))));
}
// Tests using Invoke() with a 4-argument function.
TEST(InvokeTest, FunctionThatTakes4Arguments) {
Action<int(int, int, int, int)> a = Invoke(SumOf4); // NOLINT
EXPECT_EQ(1234, a.Perform(std::make_tuple(1000, 200, 30, 4)));
}
// Tests using Invoke() with a 5-argument function.
TEST(InvokeTest, FunctionThatTakes5Arguments) {
Action<int(int, int, int, int, int)> a = Invoke(SumOf5); // NOLINT
EXPECT_EQ(12345, a.Perform(std::make_tuple(10000, 2000, 300, 40, 5)));
}
// Tests using Invoke() with a 6-argument function.
TEST(InvokeTest, FunctionThatTakes6Arguments) {
Action<int(int, int, int, int, int, int)> a = Invoke(SumOf6); // NOLINT
EXPECT_EQ(123456,
a.Perform(std::make_tuple(100000, 20000, 3000, 400, 50, 6)));
}
// A helper that turns the type of a C-string literal from const
// char[N] to const char*.
inline const char* CharPtr(const char* s) { return s; }
// Tests using Invoke() with a 7-argument function.
TEST(InvokeTest, FunctionThatTakes7Arguments) {
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*)>
a = Invoke(Concat7);
EXPECT_EQ("1234567",
a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"))));
}
// Tests using Invoke() with a 8-argument function.
TEST(InvokeTest, FunctionThatTakes8Arguments) {
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*)>
a = Invoke(Concat8);
EXPECT_EQ("12345678",
a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"))));
}
// Tests using Invoke() with a 9-argument function.
TEST(InvokeTest, FunctionThatTakes9Arguments) {
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*)>
a = Invoke(Concat9);
EXPECT_EQ("123456789", a.Perform(std::make_tuple(
CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"))));
}
// Tests using Invoke() with a 10-argument function.
TEST(InvokeTest, FunctionThatTakes10Arguments) {
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*, const char*)>
a = Invoke(Concat10);
EXPECT_EQ("1234567890",
a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"),
CharPtr("0"))));
}
// Tests using Invoke() with functions with parameters declared as Unused.
TEST(InvokeTest, FunctionWithUnusedParameters) {
Action<int(int, int, double, const std::string&)> a1 = Invoke(SumOfFirst2);
std::tuple<int, int, double, std::string> dummy =
std::make_tuple(10, 2, 5.6, std::string("hi"));
EXPECT_EQ(12, a1.Perform(dummy));
Action<int(int, int, bool, int*)> a2 = Invoke(SumOfFirst2);
EXPECT_EQ(
23, a2.Perform(std::make_tuple(20, 3, true, static_cast<int*>(nullptr))));
}
// Tests using Invoke() with methods with parameters declared as Unused.
TEST(InvokeTest, MethodWithUnusedParameters) {
Foo foo;
Action<int(std::string, bool, int, int)> a1 = Invoke(&foo, &Foo::SumOfLast2);
EXPECT_EQ(12, a1.Perform(std::make_tuple(CharPtr("hi"), true, 10, 2)));
Action<int(char, double, int, int)> a2 = Invoke(&foo, &Foo::SumOfLast2);
EXPECT_EQ(23, a2.Perform(std::make_tuple('a', 2.5, 20, 3)));
}
// Tests using Invoke() with a functor.
TEST(InvokeTest, Functor) {
Action<long(long, int)> a = Invoke(plus<long>()); // NOLINT
EXPECT_EQ(3L, a.Perform(std::make_tuple(1, 2)));
}
// Tests using Invoke(f) as an action of a compatible type.
TEST(InvokeTest, FunctionWithCompatibleType) {
Action<long(int, short, char, bool)> a = Invoke(SumOf4); // NOLINT
EXPECT_EQ(4321, a.Perform(std::make_tuple(4000, Short(300), Char(20), true)));
}
// Tests using Invoke() with an object pointer and a method pointer.
// Tests using Invoke() with a nullary method.
TEST(InvokeMethodTest, Nullary) {
Foo foo;
Action<int()> a = Invoke(&foo, &Foo::Nullary); // NOLINT
EXPECT_EQ(123, a.Perform(std::make_tuple()));
}
// Tests using Invoke() with a unary method.
TEST(InvokeMethodTest, Unary) {
Foo foo;
Action<short(long)> a = Invoke(&foo, &Foo::Unary); // NOLINT
EXPECT_EQ(4123, a.Perform(std::make_tuple(4000)));
}
// Tests using Invoke() with a binary method.
TEST(InvokeMethodTest, Binary) {
Foo foo;
Action<std::string(const std::string&, char)> a = Invoke(&foo, &Foo::Binary);
std::string s("Hell");
std::tuple<std::string, char> dummy = std::make_tuple(s, 'o');
EXPECT_EQ("Hello", a.Perform(dummy));
}
// Tests using Invoke() with a ternary method.
TEST(InvokeMethodTest, Ternary) {
Foo foo;
Action<int(int, bool, char)> a = Invoke(&foo, &Foo::Ternary); // NOLINT
EXPECT_EQ(1124, a.Perform(std::make_tuple(1000, true, Char(1))));
}
// Tests using Invoke() with a 4-argument method.
TEST(InvokeMethodTest, MethodThatTakes4Arguments) {
Foo foo;
Action<int(int, int, int, int)> a = Invoke(&foo, &Foo::SumOf4); // NOLINT
EXPECT_EQ(1357, a.Perform(std::make_tuple(1000, 200, 30, 4)));
}
// Tests using Invoke() with a 5-argument method.
TEST(InvokeMethodTest, MethodThatTakes5Arguments) {
Foo foo;
Action<int(int, int, int, int, int)> a =
Invoke(&foo, &Foo::SumOf5); // NOLINT
EXPECT_EQ(12345, a.Perform(std::make_tuple(10000, 2000, 300, 40, 5)));
}
// Tests using Invoke() with a 6-argument method.
TEST(InvokeMethodTest, MethodThatTakes6Arguments) {
Foo foo;
Action<int(int, int, int, int, int, int)> a = // NOLINT
Invoke(&foo, &Foo::SumOf6);
EXPECT_EQ(123456,
a.Perform(std::make_tuple(100000, 20000, 3000, 400, 50, 6)));
}
// Tests using Invoke() with a 7-argument method.
TEST(InvokeMethodTest, MethodThatTakes7Arguments) {
Foo foo;
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*)>
a = Invoke(&foo, &Foo::Concat7);
EXPECT_EQ("1234567",
a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"))));
}
// Tests using Invoke() with a 8-argument method.
TEST(InvokeMethodTest, MethodThatTakes8Arguments) {
Foo foo;
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*)>
a = Invoke(&foo, &Foo::Concat8);
EXPECT_EQ("12345678",
a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"))));
}
// Tests using Invoke() with a 9-argument method.
TEST(InvokeMethodTest, MethodThatTakes9Arguments) {
Foo foo;
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*)>
a = Invoke(&foo, &Foo::Concat9);
EXPECT_EQ("123456789", a.Perform(std::make_tuple(
CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"))));
}
// Tests using Invoke() with a 10-argument method.
TEST(InvokeMethodTest, MethodThatTakes10Arguments) {
Foo foo;
Action<std::string(const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*,
const char*, const char*)>
a = Invoke(&foo, &Foo::Concat10);
EXPECT_EQ("1234567890",
a.Perform(std::make_tuple(CharPtr("1"), CharPtr("2"), CharPtr("3"),
CharPtr("4"), CharPtr("5"), CharPtr("6"),
CharPtr("7"), CharPtr("8"), CharPtr("9"),
CharPtr("0"))));
}
// Tests using Invoke(f) as an action of a compatible type.
TEST(InvokeMethodTest, MethodWithCompatibleType) {
Foo foo;
Action<long(int, short, char, bool)> a = // NOLINT
Invoke(&foo, &Foo::SumOf4);
EXPECT_EQ(4444, a.Perform(std::make_tuple(4000, Short(300), Char(20), true)));
}
// Tests using WithoutArgs with an action that takes no argument.
TEST(WithoutArgsTest, NoArg) {
Action<int(int n)> a = WithoutArgs(Invoke(Nullary)); // NOLINT
EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
}
// Tests using WithArg with an action that takes 1 argument.
TEST(WithArgTest, OneArg) {
Action<bool(double x, int n)> b = WithArg<1>(Invoke(Unary)); // NOLINT
EXPECT_TRUE(b.Perform(std::make_tuple(1.5, -1)));
EXPECT_FALSE(b.Perform(std::make_tuple(1.5, 1)));
}
TEST(ReturnArgActionTest, WorksForOneArgIntArg0) {
const Action<int(int)> a = ReturnArg<0>();
EXPECT_EQ(5, a.Perform(std::make_tuple(5)));
}
TEST(ReturnArgActionTest, WorksForMultiArgBoolArg0) {
const Action<bool(bool, bool, bool)> a = ReturnArg<0>();
EXPECT_TRUE(a.Perform(std::make_tuple(true, false, false)));
}
TEST(ReturnArgActionTest, WorksForMultiArgStringArg2) {
const Action<std::string(int, int, std::string, int)> a = ReturnArg<2>();
EXPECT_EQ("seven", a.Perform(std::make_tuple(5, 6, std::string("seven"), 8)));
}
TEST(ReturnArgActionTest, WorksForNonConstRefArg0) {
const Action<std::string&(std::string&)> a = ReturnArg<0>();
std::string s = "12345";
EXPECT_EQ(&s, &a.Perform(std::forward_as_tuple(s)));
}
TEST(SaveArgActionTest, WorksForSameType) {
int result = 0;
const Action<void(int n)> a1 = SaveArg<0>(&result);
a1.Perform(std::make_tuple(5));
EXPECT_EQ(5, result);
}
TEST(SaveArgActionTest, WorksForCompatibleType) {
int result = 0;
const Action<void(bool, char)> a1 = SaveArg<1>(&result);
a1.Perform(std::make_tuple(true, 'a'));
EXPECT_EQ('a', result);
}
TEST(SaveArgPointeeActionTest, WorksForSameType) {
int result = 0;
const int value = 5;
const Action<void(const int*)> a1 = SaveArgPointee<0>(&result);
a1.Perform(std::make_tuple(&value));
EXPECT_EQ(5, result);
}
TEST(SaveArgPointeeActionTest, WorksForCompatibleType) {
int result = 0;
char value = 'a';
const Action<void(bool, char*)> a1 = SaveArgPointee<1>(&result);
a1.Perform(std::make_tuple(true, &value));
EXPECT_EQ('a', result);
}
TEST(SetArgRefereeActionTest, WorksForSameType) {
int value = 0;
const Action<void(int&)> a1 = SetArgReferee<0>(1);
a1.Perform(std::tuple<int&>(value));
EXPECT_EQ(1, value);
}
TEST(SetArgRefereeActionTest, WorksForCompatibleType) {
int value = 0;
const Action<void(int, int&)> a1 = SetArgReferee<1>('a');
a1.Perform(std::tuple<int, int&>(0, value));
EXPECT_EQ('a', value);
}
TEST(SetArgRefereeActionTest, WorksWithExtraArguments) {
int value = 0;
const Action<void(bool, int, int&, const char*)> a1 = SetArgReferee<2>('a');
a1.Perform(std::tuple<bool, int, int&, const char*>(true, 0, value, "hi"));
EXPECT_EQ('a', value);
}
// A class that can be used to verify that its destructor is called: it will set
// the bool provided to the constructor to true when destroyed.
class DeletionTester {
public:
explicit DeletionTester(bool* is_deleted) : is_deleted_(is_deleted) {
// Make sure the bit is set to false.
*is_deleted_ = false;
}
~DeletionTester() { *is_deleted_ = true; }
private:
bool* is_deleted_;
};
TEST(DeleteArgActionTest, OneArg) {
bool is_deleted = false;
DeletionTester* t = new DeletionTester(&is_deleted);
const Action<void(DeletionTester*)> a1 = DeleteArg<0>(); // NOLINT
EXPECT_FALSE(is_deleted);
a1.Perform(std::make_tuple(t));
EXPECT_TRUE(is_deleted);
}
TEST(DeleteArgActionTest, TenArgs) {
bool is_deleted = false;
DeletionTester* t = new DeletionTester(&is_deleted);
const Action<void(bool, int, int, const char*, bool, int, int, int, int,
DeletionTester*)>
a1 = DeleteArg<9>();
EXPECT_FALSE(is_deleted);
a1.Perform(std::make_tuple(true, 5, 6, CharPtr("hi"), false, 7, 8, 9, 10, t));
EXPECT_TRUE(is_deleted);
}
#if GTEST_HAS_EXCEPTIONS
TEST(ThrowActionTest, ThrowsGivenExceptionInVoidFunction) {
const Action<void(int n)> a = Throw('a');
EXPECT_THROW(a.Perform(std::make_tuple(0)), char);
}
class MyException {};
TEST(ThrowActionTest, ThrowsGivenExceptionInNonVoidFunction) {
const Action<double(char ch)> a = Throw(MyException());
EXPECT_THROW(a.Perform(std::make_tuple('0')), MyException);
}
TEST(ThrowActionTest, ThrowsGivenExceptionInNullaryFunction) {
const Action<double()> a = Throw(MyException());
EXPECT_THROW(a.Perform(std::make_tuple()), MyException);
}
class Object {
public:
virtual ~Object() {}
virtual void Func() {}
};
class MockObject : public Object {
public:
~MockObject() override {}
MOCK_METHOD(void, Func, (), (override));
};
TEST(ThrowActionTest, Times0) {
EXPECT_NONFATAL_FAILURE(
[] {
try {
MockObject m;
ON_CALL(m, Func()).WillByDefault([] { throw "something"; });
EXPECT_CALL(m, Func()).Times(0);
m.Func();
} catch (...) {
// Exception is caught but Times(0) still triggers a failure.
}
}(),
"");
}
#endif // GTEST_HAS_EXCEPTIONS
// Tests that SetArrayArgument<N>(first, last) sets the elements of the array
// pointed to by the N-th (0-based) argument to values in range [first, last).
TEST(SetArrayArgumentTest, SetsTheNthArray) {
using MyFunction = void(bool, int*, char*);
int numbers[] = {1, 2, 3};
Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers + 3);
int n[4] = {};
int* pn = n;
char ch[4] = {};
char* pch = ch;
a.Perform(std::make_tuple(true, pn, pch));
EXPECT_EQ(1, n[0]);
EXPECT_EQ(2, n[1]);
EXPECT_EQ(3, n[2]);
EXPECT_EQ(0, n[3]);
EXPECT_EQ('\0', ch[0]);
EXPECT_EQ('\0', ch[1]);
EXPECT_EQ('\0', ch[2]);
EXPECT_EQ('\0', ch[3]);
// Tests first and last are iterators.
std::string letters = "abc";
a = SetArrayArgument<2>(letters.begin(), letters.end());
std::fill_n(n, 4, 0);
std::fill_n(ch, 4, '\0');
a.Perform(std::make_tuple(true, pn, pch));
EXPECT_EQ(0, n[0]);
EXPECT_EQ(0, n[1]);
EXPECT_EQ(0, n[2]);
EXPECT_EQ(0, n[3]);
EXPECT_EQ('a', ch[0]);
EXPECT_EQ('b', ch[1]);
EXPECT_EQ('c', ch[2]);
EXPECT_EQ('\0', ch[3]);
}
// Tests SetArrayArgument<N>(first, last) where first == last.
TEST(SetArrayArgumentTest, SetsTheNthArrayWithEmptyRange) {
using MyFunction = void(bool, int*);
int numbers[] = {1, 2, 3};
Action<MyFunction> a = SetArrayArgument<1>(numbers, numbers);
int n[4] = {};
int* pn = n;
a.Perform(std::make_tuple(true, pn));
EXPECT_EQ(0, n[0]);
EXPECT_EQ(0, n[1]);
EXPECT_EQ(0, n[2]);
EXPECT_EQ(0, n[3]);
}
// Tests SetArrayArgument<N>(first, last) where *first is convertible
// (but not equal) to the argument type.
TEST(SetArrayArgumentTest, SetsTheNthArrayWithConvertibleType) {
using MyFunction = void(bool, int*);
char chars[] = {97, 98, 99};
Action<MyFunction> a = SetArrayArgument<1>(chars, chars + 3);
int codes[4] = {111, 222, 333, 444};
int* pcodes = codes;
a.Perform(std::make_tuple(true, pcodes));
EXPECT_EQ(97, codes[0]);
EXPECT_EQ(98, codes[1]);
EXPECT_EQ(99, codes[2]);
EXPECT_EQ(444, codes[3]);
}
// Test SetArrayArgument<N>(first, last) with iterator as argument.
TEST(SetArrayArgumentTest, SetsTheNthArrayWithIteratorArgument) {
using MyFunction = void(bool, std::back_insert_iterator<std::string>);
std::string letters = "abc";
Action<MyFunction> a = SetArrayArgument<1>(letters.begin(), letters.end());
std::string s;
a.Perform(std::make_tuple(true, back_inserter(s)));
EXPECT_EQ(letters, s);
}
TEST(ReturnPointeeTest, Works) {
int n = 42;
const Action<int()> a = ReturnPointee(&n);
EXPECT_EQ(42, a.Perform(std::make_tuple()));
n = 43;
EXPECT_EQ(43, a.Perform(std::make_tuple()));
}
// Tests InvokeArgument<N>(...).
// Tests using InvokeArgument with a nullary function.
TEST(InvokeArgumentTest, Function0) {
Action<int(int, int (*)())> a = InvokeArgument<1>(); // NOLINT
EXPECT_EQ(1, a.Perform(std::make_tuple(2, &Nullary)));
}
// Tests using InvokeArgument with a unary function.
TEST(InvokeArgumentTest, Functor1) {
Action<int(UnaryFunctor)> a = InvokeArgument<0>(true); // NOLINT
EXPECT_EQ(1, a.Perform(std::make_tuple(UnaryFunctor())));
}
// Tests using InvokeArgument with a 5-ary function.
TEST(InvokeArgumentTest, Function5) {
Action<int(int (*)(int, int, int, int, int))> a = // NOLINT
InvokeArgument<0>(10000, 2000, 300, 40, 5);
EXPECT_EQ(12345, a.Perform(std::make_tuple(&SumOf5)));
}
// Tests using InvokeArgument with a 5-ary functor.
TEST(InvokeArgumentTest, Functor5) {
Action<int(SumOf5Functor)> a = // NOLINT
InvokeArgument<0>(10000, 2000, 300, 40, 5);
EXPECT_EQ(12345, a.Perform(std::make_tuple(SumOf5Functor())));
}
// Tests using InvokeArgument with a 6-ary function.
TEST(InvokeArgumentTest, Function6) {
Action<int(int (*)(int, int, int, int, int, int))> a = // NOLINT
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6);
EXPECT_EQ(123456, a.Perform(std::make_tuple(&SumOf6)));
}
// Tests using InvokeArgument with a 6-ary functor.
TEST(InvokeArgumentTest, Functor6) {
Action<int(SumOf6Functor)> a = // NOLINT
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6);
EXPECT_EQ(123456, a.Perform(std::make_tuple(SumOf6Functor())));
}
// Tests using InvokeArgument with a 7-ary function.
TEST(InvokeArgumentTest, Function7) {
Action<std::string(std::string(*)(const char*, const char*, const char*,
const char*, const char*, const char*,
const char*))>
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7");
EXPECT_EQ("1234567", a.Perform(std::make_tuple(&Concat7)));
}
// Tests using InvokeArgument with a 8-ary function.
TEST(InvokeArgumentTest, Function8) {
Action<std::string(std::string(*)(const char*, const char*, const char*,
const char*, const char*, const char*,
const char*, const char*))>
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8");
EXPECT_EQ("12345678", a.Perform(std::make_tuple(&Concat8)));
}
// Tests using InvokeArgument with a 9-ary function.
TEST(InvokeArgumentTest, Function9) {
Action<std::string(std::string(*)(const char*, const char*, const char*,
const char*, const char*, const char*,
const char*, const char*, const char*))>
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9");
EXPECT_EQ("123456789", a.Perform(std::make_tuple(&Concat9)));
}
// Tests using InvokeArgument with a 10-ary function.
TEST(InvokeArgumentTest, Function10) {
Action<std::string(std::string(*)(
const char*, const char*, const char*, const char*, const char*,
const char*, const char*, const char*, const char*, const char*))>
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9", "0");
EXPECT_EQ("1234567890", a.Perform(std::make_tuple(&Concat10)));
}
// Tests using InvokeArgument with a function that takes a pointer argument.
TEST(InvokeArgumentTest, ByPointerFunction) {
Action<const char*(const char* (*)(const char* input, short n))> // NOLINT
a = InvokeArgument<0>(static_cast<const char*>("Hi"), Short(1));
EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary)));
}
// Tests using InvokeArgument with a function that takes a const char*
// by passing it a C-string literal.
TEST(InvokeArgumentTest, FunctionWithCStringLiteral) {
Action<const char*(const char* (*)(const char* input, short n))> // NOLINT
a = InvokeArgument<0>("Hi", Short(1));
EXPECT_STREQ("i", a.Perform(std::make_tuple(&Binary)));
}
// Tests using InvokeArgument with a function that takes a const reference.
TEST(InvokeArgumentTest, ByConstReferenceFunction) {
Action<bool(bool (*function)(const std::string& s))> a = // NOLINT
InvokeArgument<0>(std::string("Hi"));
// When action 'a' is constructed, it makes a copy of the temporary
// string object passed to it, so it's OK to use 'a' later, when the
// temporary object has already died.
EXPECT_TRUE(a.Perform(std::make_tuple(&ByConstRef)));
}
// Tests using InvokeArgument with ByRef() and a function that takes a
// const reference.
TEST(InvokeArgumentTest, ByExplicitConstReferenceFunction) {
Action<bool(bool (*)(const double& x))> a = // NOLINT
InvokeArgument<0>(ByRef(g_double));
// The above line calls ByRef() on a const value.
EXPECT_TRUE(a.Perform(std::make_tuple(&ReferencesGlobalDouble)));
double x = 0;
a = InvokeArgument<0>(ByRef(x)); // This calls ByRef() on a non-const.
EXPECT_FALSE(a.Perform(std::make_tuple(&ReferencesGlobalDouble)));
}
// Tests DoAll(a1, a2).
TEST(DoAllTest, TwoActions) {
int n = 0;
Action<int(int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT
Return(2));
EXPECT_EQ(2, a.Perform(std::make_tuple(&n)));
EXPECT_EQ(1, n);
}
// Tests DoAll(a1, a2, a3).
TEST(DoAllTest, ThreeActions) {
int m = 0, n = 0;
Action<int(int*, int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT
SetArgPointee<1>(2), Return(3));
EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
}
// Tests DoAll(a1, a2, a3, a4).
TEST(DoAllTest, FourActions) {
int m = 0, n = 0;
char ch = '\0';
Action<int(int*, int*, char*)> a = // NOLINT
DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'),
Return(3));
EXPECT_EQ(3, a.Perform(std::make_tuple(&m, &n, &ch)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', ch);
}
// Tests DoAll(a1, a2, a3, a4, a5).
TEST(DoAllTest, FiveActions) {
int m = 0, n = 0;
char a = '\0', b = '\0';
Action<int(int*, int*, char*, char*)> action = // NOLINT
DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'),
SetArgPointee<3>('b'), Return(3));
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
}
// Tests DoAll(a1, a2, ..., a6).
TEST(DoAllTest, SixActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0';
Action<int(int*, int*, char*, char*, char*)> action = // NOLINT
DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'),
SetArgPointee<3>('b'), SetArgPointee<4>('c'), Return(3));
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
}
// Tests DoAll(a1, a2, ..., a7).
TEST(DoAllTest, SevenActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0';
Action<int(int*, int*, char*, char*, char*, char*)> action = // NOLINT
DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'),
SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'),
Return(3));
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
}
// Tests DoAll(a1, a2, ..., a8).
TEST(DoAllTest, EightActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0';
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
char*)>
action =
DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'),
SetArgPointee<3>('b'), SetArgPointee<4>('c'),
SetArgPointee<5>('d'), SetArgPointee<6>('e'), Return(3));
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
EXPECT_EQ('e', e);
}
// Tests DoAll(a1, a2, ..., a9).
TEST(DoAllTest, NineActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0', f = '\0';
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
char*, char*)>
action = DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2),
SetArgPointee<2>('a'), SetArgPointee<3>('b'),
SetArgPointee<4>('c'), SetArgPointee<5>('d'),
SetArgPointee<6>('e'), SetArgPointee<7>('f'), Return(3));
EXPECT_EQ(3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
EXPECT_EQ('e', e);
EXPECT_EQ('f', f);
}
// Tests DoAll(a1, a2, ..., a10).
TEST(DoAllTest, TenActions) {
int m = 0, n = 0;
char a = '\0', b = '\0', c = '\0', d = '\0';
char e = '\0', f = '\0', g = '\0';
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
char*, char*, char*)>
action =
DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'),
SetArgPointee<3>('b'), SetArgPointee<4>('c'),
SetArgPointee<5>('d'), SetArgPointee<6>('e'),
SetArgPointee<7>('f'), SetArgPointee<8>('g'), Return(3));
EXPECT_EQ(
3, action.Perform(std::make_tuple(&m, &n, &a, &b, &c, &d, &e, &f, &g)));
EXPECT_EQ(1, m);
EXPECT_EQ(2, n);
EXPECT_EQ('a', a);
EXPECT_EQ('b', b);
EXPECT_EQ('c', c);
EXPECT_EQ('d', d);
EXPECT_EQ('e', e);
EXPECT_EQ('f', f);
EXPECT_EQ('g', g);
}
TEST(DoAllTest, NoArgs) {
bool ran_first = false;
Action<bool()> a =
DoAll([&] { ran_first = true; }, [&] { return ran_first; });
EXPECT_TRUE(a.Perform({}));
}
TEST(DoAllTest, MoveOnlyArgs) {
bool ran_first = false;
Action<int(std::unique_ptr<int>)> a =
DoAll(InvokeWithoutArgs([&] { ran_first = true; }),
[](std::unique_ptr<int> p) { return *p; });
EXPECT_EQ(7, a.Perform(std::make_tuple(std::unique_ptr<int>(new int(7)))));
EXPECT_TRUE(ran_first);
}
TEST(DoAllTest, ImplicitlyConvertsActionArguments) {
bool ran_first = false;
// Action<void(std::vector<int>)> isn't an
// Action<void(const std::vector<int>&) but can be converted.
Action<void(std::vector<int>)> first = [&] { ran_first = true; };
Action<int(std::vector<int>)> a =
DoAll(first, [](std::vector<int> arg) { return arg.front(); });
EXPECT_EQ(7, a.Perform(std::make_tuple(std::vector<int>{7})));
EXPECT_TRUE(ran_first);
}
// The ACTION*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma. Therefore
// we suppress them here.
// Also suppress C4503 decorated name length exceeded, name was truncated
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100 4503)
// Tests the ACTION*() macro family.
// Tests that ACTION() can define an action that doesn't reference the
// mock function arguments.
ACTION(Return5) { return 5; }
TEST(ActionMacroTest, WorksWhenNotReferencingArguments) {
Action<double()> a1 = Return5();
EXPECT_DOUBLE_EQ(5, a1.Perform(std::make_tuple()));
Action<int(double, bool)> a2 = Return5();
EXPECT_EQ(5, a2.Perform(std::make_tuple(1, true)));
}
// Tests that ACTION() can define an action that returns void.
ACTION(IncrementArg1) { (*arg1)++; }
TEST(ActionMacroTest, WorksWhenReturningVoid) {
Action<void(int, int*)> a1 = IncrementArg1();
int n = 0;
a1.Perform(std::make_tuple(5, &n));
EXPECT_EQ(1, n);
}
// Tests that the body of ACTION() can reference the type of the
// argument.
ACTION(IncrementArg2) {
StaticAssertTypeEq<int*, arg2_type>();
arg2_type temp = arg2;
(*temp)++;
}
TEST(ActionMacroTest, CanReferenceArgumentType) {
Action<void(int, bool, int*)> a1 = IncrementArg2();
int n = 0;
a1.Perform(std::make_tuple(5, false, &n));
EXPECT_EQ(1, n);
}
// Tests that the body of ACTION() can reference the argument tuple
// via args_type and args.
ACTION(Sum2) {
StaticAssertTypeEq<std::tuple<int, char, int*>, args_type>();
args_type args_copy = args;
return std::get<0>(args_copy) + std::get<1>(args_copy);
}
TEST(ActionMacroTest, CanReferenceArgumentTuple) {
Action<int(int, char, int*)> a1 = Sum2();
int dummy = 0;
EXPECT_EQ(11, a1.Perform(std::make_tuple(5, Char(6), &dummy)));
}
namespace {
// Tests that the body of ACTION() can reference the mock function
// type.
int Dummy(bool flag) { return flag ? 1 : 0; }
} // namespace
ACTION(InvokeDummy) {
StaticAssertTypeEq<int(bool), function_type>();
function_type* fp = &Dummy;
return (*fp)(true);
}
TEST(ActionMacroTest, CanReferenceMockFunctionType) {
Action<int(bool)> a1 = InvokeDummy();
EXPECT_EQ(1, a1.Perform(std::make_tuple(true)));
EXPECT_EQ(1, a1.Perform(std::make_tuple(false)));
}
// Tests that the body of ACTION() can reference the mock function's
// return type.
ACTION(InvokeDummy2) {
StaticAssertTypeEq<int, return_type>();
return_type result = Dummy(true);
return result;
}
TEST(ActionMacroTest, CanReferenceMockFunctionReturnType) {
Action<int(bool)> a1 = InvokeDummy2();
EXPECT_EQ(1, a1.Perform(std::make_tuple(true)));
EXPECT_EQ(1, a1.Perform(std::make_tuple(false)));
}
// Tests that ACTION() works for arguments passed by const reference.
ACTION(ReturnAddrOfConstBoolReferenceArg) {
StaticAssertTypeEq<const bool&, arg1_type>();
return &arg1;
}
TEST(ActionMacroTest, WorksForConstReferenceArg) {
Action<const bool*(int, const bool&)> a = ReturnAddrOfConstBoolReferenceArg();
const bool b = false;
EXPECT_EQ(&b, a.Perform(std::tuple<int, const bool&>(0, b)));
}
// Tests that ACTION() works for arguments passed by non-const reference.
ACTION(ReturnAddrOfIntReferenceArg) {
StaticAssertTypeEq<int&, arg0_type>();
return &arg0;
}
TEST(ActionMacroTest, WorksForNonConstReferenceArg) {
Action<int*(int&, bool, int)> a = ReturnAddrOfIntReferenceArg();
int n = 0;
EXPECT_EQ(&n, a.Perform(std::tuple<int&, bool, int>(n, true, 1)));
}
// Tests that ACTION() can be used in a namespace.
namespace action_test {
ACTION(Sum) { return arg0 + arg1; }
} // namespace action_test
TEST(ActionMacroTest, WorksInNamespace) {
Action<int(int, int)> a1 = action_test::Sum();
EXPECT_EQ(3, a1.Perform(std::make_tuple(1, 2)));
}
// Tests that the same ACTION definition works for mock functions with
// different argument numbers.
ACTION(PlusTwo) { return arg0 + 2; }
TEST(ActionMacroTest, WorksForDifferentArgumentNumbers) {
Action<int(int)> a1 = PlusTwo();
EXPECT_EQ(4, a1.Perform(std::make_tuple(2)));
Action<double(float, void*)> a2 = PlusTwo();
int dummy;
EXPECT_DOUBLE_EQ(6, a2.Perform(std::make_tuple(4.0f, &dummy)));
}
// Tests that ACTION_P can define a parameterized action.
ACTION_P(Plus, n) { return arg0 + n; }
TEST(ActionPMacroTest, DefinesParameterizedAction) {
Action<int(int m, bool t)> a1 = Plus(9);
EXPECT_EQ(10, a1.Perform(std::make_tuple(1, true)));
}
// Tests that the body of ACTION_P can reference the argument types
// and the parameter type.
ACTION_P(TypedPlus, n) {
arg0_type t1 = arg0;
n_type t2 = n;
return t1 + t2;
}
TEST(ActionPMacroTest, CanReferenceArgumentAndParameterTypes) {
Action<int(char m, bool t)> a1 = TypedPlus(9);
EXPECT_EQ(10, a1.Perform(std::make_tuple(Char(1), true)));
}
// Tests that a parameterized action can be used in any mock function
// whose type is compatible.
TEST(ActionPMacroTest, WorksInCompatibleMockFunction) {
Action<std::string(const std::string& s)> a1 = Plus("tail");
const std::string re = "re";
std::tuple<const std::string> dummy = std::make_tuple(re);
EXPECT_EQ("retail", a1.Perform(dummy));
}
// Tests that we can use ACTION*() to define actions overloaded on the
// number of parameters.
ACTION(OverloadedAction) { return arg0 ? arg1 : "hello"; }
ACTION_P(OverloadedAction, default_value) {
return arg0 ? arg1 : default_value;
}
ACTION_P2(OverloadedAction, true_value, false_value) {
return arg0 ? true_value : false_value;
}
TEST(ActionMacroTest, CanDefineOverloadedActions) {
using MyAction = Action<const char*(bool, const char*)>;
const MyAction a1 = OverloadedAction();
EXPECT_STREQ("hello", a1.Perform(std::make_tuple(false, CharPtr("world"))));
EXPECT_STREQ("world", a1.Perform(std::make_tuple(true, CharPtr("world"))));
const MyAction a2 = OverloadedAction("hi");
EXPECT_STREQ("hi", a2.Perform(std::make_tuple(false, CharPtr("world"))));
EXPECT_STREQ("world", a2.Perform(std::make_tuple(true, CharPtr("world"))));
const MyAction a3 = OverloadedAction("hi", "you");
EXPECT_STREQ("hi", a3.Perform(std::make_tuple(true, CharPtr("world"))));
EXPECT_STREQ("you", a3.Perform(std::make_tuple(false, CharPtr("world"))));
}
// Tests ACTION_Pn where n >= 3.
ACTION_P3(Plus, m, n, k) { return arg0 + m + n + k; }
TEST(ActionPnMacroTest, WorksFor3Parameters) {
Action<double(int m, bool t)> a1 = Plus(100, 20, 3.4);
EXPECT_DOUBLE_EQ(3123.4, a1.Perform(std::make_tuple(3000, true)));
Action<std::string(const std::string& s)> a2 = Plus("tail", "-", ">");
const std::string re = "re";
std::tuple<const std::string> dummy = std::make_tuple(re);
EXPECT_EQ("retail->", a2.Perform(dummy));
}
ACTION_P4(Plus, p0, p1, p2, p3) { return arg0 + p0 + p1 + p2 + p3; }
TEST(ActionPnMacroTest, WorksFor4Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4);
EXPECT_EQ(10 + 1 + 2 + 3 + 4, a1.Perform(std::make_tuple(10)));
}
ACTION_P5(Plus, p0, p1, p2, p3, p4) { return arg0 + p0 + p1 + p2 + p3 + p4; }
TEST(ActionPnMacroTest, WorksFor5Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5, a1.Perform(std::make_tuple(10)));
}
ACTION_P6(Plus, p0, p1, p2, p3, p4, p5) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5;
}
TEST(ActionPnMacroTest, WorksFor6Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6, a1.Perform(std::make_tuple(10)));
}
ACTION_P7(Plus, p0, p1, p2, p3, p4, p5, p6) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6;
}
TEST(ActionPnMacroTest, WorksFor7Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7, a1.Perform(std::make_tuple(10)));
}
ACTION_P8(Plus, p0, p1, p2, p3, p4, p5, p6, p7) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7;
}
TEST(ActionPnMacroTest, WorksFor8Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
a1.Perform(std::make_tuple(10)));
}
ACTION_P9(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8) {
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8;
}
TEST(ActionPnMacroTest, WorksFor9Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
a1.Perform(std::make_tuple(10)));
}
ACTION_P10(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8, last_param) {
arg0_type t0 = arg0;
last_param_type t9 = last_param;
return t0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + t9;
}
TEST(ActionPnMacroTest, WorksFor10Parameters) {
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
a1.Perform(std::make_tuple(10)));
}
// Tests that the action body can promote the parameter types.
ACTION_P2(PadArgument, prefix, suffix) {
// The following lines promote the two parameters to desired types.
std::string prefix_str(prefix);
char suffix_char = static_cast<char>(suffix);
return prefix_str + arg0 + suffix_char;
}
TEST(ActionPnMacroTest, SimpleTypePromotion) {
Action<std::string(const char*)> no_promo =
PadArgument(std::string("foo"), 'r');
Action<std::string(const char*)> promo =
PadArgument("foo", static_cast<int>('r'));
EXPECT_EQ("foobar", no_promo.Perform(std::make_tuple(CharPtr("ba"))));
EXPECT_EQ("foobar", promo.Perform(std::make_tuple(CharPtr("ba"))));
}
// Tests that we can partially restrict parameter types using a
// straight-forward pattern.
// Defines a generic action that doesn't restrict the types of its
// parameters.
ACTION_P3(ConcatImpl, a, b, c) {
std::stringstream ss;
ss << a << b << c;
return ss.str();
}
// Next, we try to restrict that either the first parameter is a
// string, or the second parameter is an int.
// Defines a partially specialized wrapper that restricts the first
// parameter to std::string.
template <typename T1, typename T2>
// ConcatImplActionP3 is the class template ACTION_P3 uses to
// implement ConcatImpl. We shouldn't change the name as this
// pattern requires the user to use it directly.
ConcatImplActionP3<std::string, T1, T2> Concat(const std::string& a, T1 b,
T2 c) {
GTEST_INTENTIONAL_CONST_COND_PUSH_()
if (true) {
GTEST_INTENTIONAL_CONST_COND_POP_()
// This branch verifies that ConcatImpl() can be invoked without
// explicit template arguments.
return ConcatImpl(a, b, c);
} else {
// This branch verifies that ConcatImpl() can also be invoked with
// explicit template arguments. It doesn't really need to be
// executed as this is a compile-time verification.
return ConcatImpl<std::string, T1, T2>(a, b, c);
}
}
// Defines another partially specialized wrapper that restricts the
// second parameter to int.
template <typename T1, typename T2>
ConcatImplActionP3<T1, int, T2> Concat(T1 a, int b, T2 c) {
return ConcatImpl(a, b, c);
}
TEST(ActionPnMacroTest, CanPartiallyRestrictParameterTypes) {
Action<const std::string()> a1 = Concat("Hello", "1", 2);
EXPECT_EQ("Hello12", a1.Perform(std::make_tuple()));
a1 = Concat(1, 2, 3);
EXPECT_EQ("123", a1.Perform(std::make_tuple()));
}
// Verifies the type of an ACTION*.
ACTION(DoFoo) {}
ACTION_P(DoFoo, p) {}
ACTION_P2(DoFoo, p0, p1) {}
TEST(ActionPnMacroTest, TypesAreCorrect) {
// DoFoo() must be assignable to a DoFooAction variable.
DoFooAction a0 = DoFoo();
// DoFoo(1) must be assignable to a DoFooActionP variable.
DoFooActionP<int> a1 = DoFoo(1);
// DoFoo(p1, ..., pk) must be assignable to a DoFooActionPk
// variable, and so on.
DoFooActionP2<int, char> a2 = DoFoo(1, '2');
PlusActionP3<int, int, char> a3 = Plus(1, 2, '3');
PlusActionP4<int, int, int, char> a4 = Plus(1, 2, 3, '4');
PlusActionP5<int, int, int, int, char> a5 = Plus(1, 2, 3, 4, '5');
PlusActionP6<int, int, int, int, int, char> a6 = Plus(1, 2, 3, 4, 5, '6');
PlusActionP7<int, int, int, int, int, int, char> a7 =
Plus(1, 2, 3, 4, 5, 6, '7');
PlusActionP8<int, int, int, int, int, int, int, char> a8 =
Plus(1, 2, 3, 4, 5, 6, 7, '8');
PlusActionP9<int, int, int, int, int, int, int, int, char> a9 =
Plus(1, 2, 3, 4, 5, 6, 7, 8, '9');
PlusActionP10<int, int, int, int, int, int, int, int, int, char> a10 =
Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, '0');
// Avoid "unused variable" warnings.
(void)a0;
(void)a1;
(void)a2;
(void)a3;
(void)a4;
(void)a5;
(void)a6;
(void)a7;
(void)a8;
(void)a9;
(void)a10;
}
// Tests that an ACTION_P*() action can be explicitly instantiated
// with reference-typed parameters.
ACTION_P(Plus1, x) { return x; }
ACTION_P2(Plus2, x, y) { return x + y; }
ACTION_P3(Plus3, x, y, z) { return x + y + z; }
ACTION_P10(Plus10, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) {
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9;
}
TEST(ActionPnMacroTest, CanExplicitlyInstantiateWithReferenceTypes) {
int x = 1, y = 2, z = 3;
const std::tuple<> empty = std::make_tuple();
Action<int()> a = Plus1<int&>(x);
EXPECT_EQ(1, a.Perform(empty));
a = Plus2<const int&, int&>(x, y);
EXPECT_EQ(3, a.Perform(empty));
a = Plus3<int&, const int&, int&>(x, y, z);
EXPECT_EQ(6, a.Perform(empty));
int n[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
a = Plus10<const int&, int&, const int&, int&, const int&, int&, const int&,
int&, const int&, int&>(n[0], n[1], n[2], n[3], n[4], n[5], n[6],
n[7], n[8], n[9]);
EXPECT_EQ(55, a.Perform(empty));
}
class TenArgConstructorClass {
public:
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
int a8, int a9, int a10)
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
int value_;
};
// Tests that ACTION_TEMPLATE works when there is no value parameter.
ACTION_TEMPLATE(CreateNew, HAS_1_TEMPLATE_PARAMS(typename, T),
AND_0_VALUE_PARAMS()) {
return new T;
}
TEST(ActionTemplateTest, WorksWithoutValueParam) {
const Action<int*()> a = CreateNew<int>();
int* p = a.Perform(std::make_tuple());
delete p;
}
// Tests that ACTION_TEMPLATE works when there are value parameters.
ACTION_TEMPLATE(CreateNew, HAS_1_TEMPLATE_PARAMS(typename, T),
AND_1_VALUE_PARAMS(a0)) {
return new T(a0);
}
TEST(ActionTemplateTest, WorksWithValueParams) {
const Action<int*()> a = CreateNew<int>(42);
int* p = a.Perform(std::make_tuple());
EXPECT_EQ(42, *p);
delete p;
}
// Tests that ACTION_TEMPLATE works for integral template parameters.
ACTION_TEMPLATE(MyDeleteArg, HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
delete std::get<k>(args);
}
// Resets a bool variable in the destructor.
class BoolResetter {
public:
explicit BoolResetter(bool* value) : value_(value) {}
~BoolResetter() { *value_ = false; }
private:
bool* value_;
};
TEST(ActionTemplateTest, WorksForIntegralTemplateParams) {
const Action<void(int*, BoolResetter*)> a = MyDeleteArg<1>();
int n = 0;
bool b = true;
auto* resetter = new BoolResetter(&b);
a.Perform(std::make_tuple(&n, resetter));
EXPECT_FALSE(b); // Verifies that resetter is deleted.
}
// Tests that ACTION_TEMPLATES works for template template parameters.
ACTION_TEMPLATE(ReturnSmartPointer,
HAS_1_TEMPLATE_PARAMS(template <typename Pointee> class,
Pointer),
AND_1_VALUE_PARAMS(pointee)) {
return Pointer<pointee_type>(new pointee_type(pointee));
}
TEST(ActionTemplateTest, WorksForTemplateTemplateParameters) {
const Action<std::shared_ptr<int>()> a =
ReturnSmartPointer<std::shared_ptr>(42);
std::shared_ptr<int> p = a.Perform(std::make_tuple());
EXPECT_EQ(42, *p);
}
// Tests that ACTION_TEMPLATE works for 10 template parameters.
template <typename T1, typename T2, typename T3, int k4, bool k5,
unsigned int k6, typename T7, typename T8, typename T9>
struct GiantTemplate {
public:
explicit GiantTemplate(int a_value) : value(a_value) {}
int value;
};
ACTION_TEMPLATE(ReturnGiant,
HAS_10_TEMPLATE_PARAMS(typename, T1, typename, T2, typename, T3,
int, k4, bool, k5, unsigned int, k6,
class, T7, class, T8, class, T9,
template <typename T> class, T10),
AND_1_VALUE_PARAMS(value)) {
return GiantTemplate<T10<T1>, T2, T3, k4, k5, k6, T7, T8, T9>(value);
}
TEST(ActionTemplateTest, WorksFor10TemplateParameters) {
using Giant = GiantTemplate<std::shared_ptr<int>, bool, double, 5, true, 6,
char, unsigned, int>;
const Action<Giant()> a = ReturnGiant<int, bool, double, 5, true, 6, char,
unsigned, int, std::shared_ptr>(42);
Giant giant = a.Perform(std::make_tuple());
EXPECT_EQ(42, giant.value);
}
// Tests that ACTION_TEMPLATE works for 10 value parameters.
ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number),
AND_10_VALUE_PARAMS(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)) {
return static_cast<Number>(v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10;
}
TEST(ActionTemplateTest, WorksFor10ValueParameters) {
const Action<int()> a = ReturnSum<int>(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
EXPECT_EQ(55, a.Perform(std::make_tuple()));
}
// Tests that ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded
// on the number of value parameters.
ACTION(ReturnSum) { return 0; }
ACTION_P(ReturnSum, x) { return x; }
ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number),
AND_2_VALUE_PARAMS(v1, v2)) {
return static_cast<Number>(v1) + v2;
}
ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number),
AND_3_VALUE_PARAMS(v1, v2, v3)) {
return static_cast<Number>(v1) + v2 + v3;
}
ACTION_TEMPLATE(ReturnSum, HAS_2_TEMPLATE_PARAMS(typename, Number, int, k),
AND_4_VALUE_PARAMS(v1, v2, v3, v4)) {
return static_cast<Number>(v1) + v2 + v3 + v4 + k;
}
TEST(ActionTemplateTest, CanBeOverloadedOnNumberOfValueParameters) {
const Action<int()> a0 = ReturnSum();
const Action<int()> a1 = ReturnSum(1);
const Action<int()> a2 = ReturnSum<int>(1, 2);
const Action<int()> a3 = ReturnSum<int>(1, 2, 3);
const Action<int()> a4 = ReturnSum<int, 10000>(2000, 300, 40, 5);
EXPECT_EQ(0, a0.Perform(std::make_tuple()));
EXPECT_EQ(1, a1.Perform(std::make_tuple()));
EXPECT_EQ(3, a2.Perform(std::make_tuple()));
EXPECT_EQ(6, a3.Perform(std::make_tuple()));
EXPECT_EQ(12345, a4.Perform(std::make_tuple()));
}
} // namespace gmock_more_actions_test
} // namespace testing
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 4503
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4577