blob: cb46b303c692f47b619210497a224ab6ebd5d9e4 [file] [log] [blame]
/*
* cifra - embedded cryptography library
* Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all
* copyright and related and neighboring rights to this software to the
* public domain worldwide. This software is distributed without any
* warranty.
*
* You should have received a copy of the CC0 Public Domain Dedication
* along with this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <string.h>
#include "sha2.h"
#include "blockwise.h"
#include "bitops.h"
#include "handy.h"
#include "tassert.h"
static const uint64_t K[80] = {
UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
};
# define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
# define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
# define BSIG0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
# define BSIG1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
# define SSIG0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
# define SSIG1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
void cf_sha512_init(cf_sha512_context *ctx)
{
memset(ctx, 0, sizeof *ctx);
ctx->H[0] = UINT64_C(0x6a09e667f3bcc908);
ctx->H[1] = UINT64_C(0xbb67ae8584caa73b);
ctx->H[2] = UINT64_C(0x3c6ef372fe94f82b);
ctx->H[3] = UINT64_C(0xa54ff53a5f1d36f1);
ctx->H[4] = UINT64_C(0x510e527fade682d1);
ctx->H[5] = UINT64_C(0x9b05688c2b3e6c1f);
ctx->H[6] = UINT64_C(0x1f83d9abfb41bd6b);
ctx->H[7] = UINT64_C(0x5be0cd19137e2179);
}
void cf_sha384_init(cf_sha512_context *ctx)
{
memset(ctx, 0, sizeof *ctx);
ctx->H[0] = UINT64_C(0xcbbb9d5dc1059ed8);
ctx->H[1] = UINT64_C(0x629a292a367cd507);
ctx->H[2] = UINT64_C(0x9159015a3070dd17);
ctx->H[3] = UINT64_C(0x152fecd8f70e5939);
ctx->H[4] = UINT64_C(0x67332667ffc00b31);
ctx->H[5] = UINT64_C(0x8eb44a8768581511);
ctx->H[6] = UINT64_C(0xdb0c2e0d64f98fa7);
ctx->H[7] = UINT64_C(0x47b5481dbefa4fa4);
}
static void sha512_update_block(void *vctx, const uint8_t *inp)
{
cf_sha512_context *ctx = vctx;
uint64_t W[16];
uint64_t a = ctx->H[0],
b = ctx->H[1],
c = ctx->H[2],
d = ctx->H[3],
e = ctx->H[4],
f = ctx->H[5],
g = ctx->H[6],
h = ctx->H[7],
Wt;
size_t t;
for (t = 0; t < 80; t++)
{
if (t < 16)
{
W[t] = Wt = read64_be(inp);
inp += 8;
} else {
Wt = SSIG1(W[(t - 2) % 16]) +
W[(t - 7) % 16] +
SSIG0(W[(t - 15) % 16]) +
W[(t - 16) % 16];
W[t % 16] = Wt;
}
uint64_t T1 = h + BSIG1(e) + CH(e, f, g) + K[t] + Wt;
uint64_t T2 = BSIG0(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
ctx->H[0] += a;
ctx->H[1] += b;
ctx->H[2] += c;
ctx->H[3] += d;
ctx->H[4] += e;
ctx->H[5] += f;
ctx->H[6] += g;
ctx->H[7] += h;
ctx->blocks++;
}
void cf_sha512_update(cf_sha512_context *ctx, const void *data, size_t nbytes)
{
cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial,
data, nbytes,
sha512_update_block, ctx);
}
void cf_sha384_update(cf_sha512_context *ctx, const void *data, size_t nbytes)
{
cf_sha512_update(ctx, data, nbytes);
}
void cf_sha512_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ])
{
/* We copy the context, so the finalisation doesn't effect the caller's
* context. This means the caller can do:
*
* x = init()
* x.update('hello')
* h1 = x.digest()
* x.update(' world')
* h2 = x.digest()
*
* to get h1 = H('hello') and h2 = H('hello world')
*
* This wouldn't work if we applied MD-padding to *ctx.
*/
cf_sha512_context ours = *ctx;
cf_sha512_digest_final(&ours, hash);
}
void cf_sha512_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ])
{
uint64_t digested_bytes = ctx->blocks;
digested_bytes = digested_bytes * CF_SHA512_BLOCKSZ + ctx->npartial;
uint64_t digested_bits = digested_bytes * 8;
size_t padbytes = CF_SHA512_BLOCKSZ - ((digested_bytes + 16) % CF_SHA512_BLOCKSZ);
/* Hash 0x80 00 ... block first. */
cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial,
0x80, 0x00, 0x00, padbytes,
sha512_update_block, ctx);
/* Now hash length (this is 128 bits long). */
uint8_t buf[8];
write64_be(0, buf);
cf_sha512_update(ctx, buf, 8);
write64_be(digested_bits, buf);
cf_sha512_update(ctx, buf, 8);
/* We ought to have got our padding calculation right! */
assert(ctx->npartial == 0);
write64_be(ctx->H[0], hash + 0);
write64_be(ctx->H[1], hash + 8);
write64_be(ctx->H[2], hash + 16);
write64_be(ctx->H[3], hash + 24);
write64_be(ctx->H[4], hash + 32);
write64_be(ctx->H[5], hash + 40);
write64_be(ctx->H[6], hash + 48);
write64_be(ctx->H[7], hash + 56);
memset(ctx, 0, sizeof *ctx);
}
void cf_sha384_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ])
{
uint8_t full[CF_SHA512_HASHSZ];
cf_sha512_digest(ctx, full);
memcpy(hash, full, CF_SHA384_HASHSZ);
}
void cf_sha384_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ])
{
uint8_t full[CF_SHA512_HASHSZ];
cf_sha512_digest_final(ctx, full);
memcpy(hash, full, CF_SHA384_HASHSZ);
}
const cf_chash cf_sha384 = {
.hashsz = CF_SHA384_HASHSZ,
.blocksz = CF_SHA384_BLOCKSZ,
.init = (cf_chash_init) cf_sha384_init,
.update = (cf_chash_update) cf_sha384_update,
.digest = (cf_chash_digest) cf_sha384_digest
};
const cf_chash cf_sha512 = {
.hashsz = CF_SHA512_HASHSZ,
.blocksz = CF_SHA512_BLOCKSZ,
.init = (cf_chash_init) cf_sha512_init,
.update = (cf_chash_update) cf_sha512_update,
.digest = (cf_chash_digest) cf_sha512_digest
};