| /* Copyright 2008, Google Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Google Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * curve25519-donna: Curve25519 elliptic curve, public key function |
| * |
| * http://code.google.com/p/curve25519-donna/ |
| * |
| * Adam Langley <agl@imperialviolet.org> |
| * |
| * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to> |
| * |
| * More information about curve25519 can be found here |
| * http://cr.yp.to/ecdh.html |
| * |
| * djb's sample implementation of curve25519 is written in a special assembly |
| * language called qhasm and uses the floating point registers. |
| * |
| * This is, almost, a clean room reimplementation from the curve25519 paper. It |
| * uses many of the tricks described therein. Only the crecip function is taken |
| * from the sample implementation. */ |
| |
| #include "curve25519.h" |
| |
| #include <string.h> |
| #include <stdint.h> |
| |
| #ifdef _MSC_VER |
| #define inline __inline |
| #endif |
| |
| typedef uint8_t u8; |
| typedef int32_t s32; |
| typedef int64_t limb; |
| |
| /* Field element representation: |
| * |
| * Field elements are written as an array of signed, 64-bit limbs, least |
| * significant first. The value of the field element is: |
| * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... |
| * |
| * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */ |
| |
| /* Sum two numbers: output += in */ |
| static void fsum(limb *output, const limb *in) { |
| unsigned i; |
| for (i = 0; i < 10; i += 2) { |
| output[0+i] = output[0+i] + in[0+i]; |
| output[1+i] = output[1+i] + in[1+i]; |
| } |
| } |
| |
| /* Find the difference of two numbers: output = in - output |
| * (note the order of the arguments!). */ |
| static void fdifference(limb *output, const limb *in) { |
| unsigned i; |
| for (i = 0; i < 10; ++i) { |
| output[i] = in[i] - output[i]; |
| } |
| } |
| |
| /* Multiply a number by a scalar: output = in * scalar */ |
| static void fscalar_product(limb *output, const limb *in, const limb scalar) { |
| unsigned i; |
| for (i = 0; i < 10; ++i) { |
| output[i] = in[i] * scalar; |
| } |
| } |
| |
| /* Multiply two numbers: output = in2 * in |
| * |
| * output must be distinct to both inputs. The inputs are reduced coefficient |
| * form, the output is not. |
| * |
| * output[x] <= 14 * the largest product of the input limbs. */ |
| static void fproduct(limb *output, const limb *in2, const limb *in) { |
| output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); |
| output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) + |
| ((limb) ((s32) in2[1])) * ((s32) in[0]); |
| output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) + |
| ((limb) ((s32) in2[0])) * ((s32) in[2]) + |
| ((limb) ((s32) in2[2])) * ((s32) in[0]); |
| output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) + |
| ((limb) ((s32) in2[2])) * ((s32) in[1]) + |
| ((limb) ((s32) in2[0])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[3])) * ((s32) in[0]); |
| output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) + |
| 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[3])) * ((s32) in[1])) + |
| ((limb) ((s32) in2[0])) * ((s32) in[4]) + |
| ((limb) ((s32) in2[4])) * ((s32) in[0]); |
| output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[3])) * ((s32) in[2]) + |
| ((limb) ((s32) in2[1])) * ((s32) in[4]) + |
| ((limb) ((s32) in2[4])) * ((s32) in[1]) + |
| ((limb) ((s32) in2[0])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[5])) * ((s32) in[0]); |
| output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[1])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[5])) * ((s32) in[1])) + |
| ((limb) ((s32) in2[2])) * ((s32) in[4]) + |
| ((limb) ((s32) in2[4])) * ((s32) in[2]) + |
| ((limb) ((s32) in2[0])) * ((s32) in[6]) + |
| ((limb) ((s32) in2[6])) * ((s32) in[0]); |
| output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) + |
| ((limb) ((s32) in2[4])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[2])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[5])) * ((s32) in[2]) + |
| ((limb) ((s32) in2[1])) * ((s32) in[6]) + |
| ((limb) ((s32) in2[6])) * ((s32) in[1]) + |
| ((limb) ((s32) in2[0])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[7])) * ((s32) in[0]); |
| output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) + |
| 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[5])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[1])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[7])) * ((s32) in[1])) + |
| ((limb) ((s32) in2[2])) * ((s32) in[6]) + |
| ((limb) ((s32) in2[6])) * ((s32) in[2]) + |
| ((limb) ((s32) in2[0])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[0]); |
| output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[5])) * ((s32) in[4]) + |
| ((limb) ((s32) in2[3])) * ((s32) in[6]) + |
| ((limb) ((s32) in2[6])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[2])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[7])) * ((s32) in[2]) + |
| ((limb) ((s32) in2[1])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[1]) + |
| ((limb) ((s32) in2[0])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[0]); |
| output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[3])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[7])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[1])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[1])) + |
| ((limb) ((s32) in2[4])) * ((s32) in[6]) + |
| ((limb) ((s32) in2[6])) * ((s32) in[4]) + |
| ((limb) ((s32) in2[2])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[2]); |
| output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) + |
| ((limb) ((s32) in2[6])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[4])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[7])) * ((s32) in[4]) + |
| ((limb) ((s32) in2[3])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[3]) + |
| ((limb) ((s32) in2[2])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[2]); |
| output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) + |
| 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[7])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[3])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[3])) + |
| ((limb) ((s32) in2[4])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[4]); |
| output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[7])) * ((s32) in[6]) + |
| ((limb) ((s32) in2[5])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[5]) + |
| ((limb) ((s32) in2[4])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[4]); |
| output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[5])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[5])) + |
| ((limb) ((s32) in2[6])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[6]); |
| output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) + |
| ((limb) ((s32) in2[8])) * ((s32) in[7]) + |
| ((limb) ((s32) in2[6])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[6]); |
| output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) + |
| 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[7])); |
| output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) + |
| ((limb) ((s32) in2[9])) * ((s32) in[8]); |
| output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]); |
| } |
| |
| /* Reduce a long form to a short form by taking the input mod 2^255 - 19. |
| * |
| * On entry: |output[i]| < 14*2^54 |
| * On exit: |output[0..8]| < 280*2^54 */ |
| static void freduce_degree(limb *output) { |
| /* Each of these shifts and adds ends up multiplying the value by 19. |
| * |
| * For output[0..8], the absolute entry value is < 14*2^54 and we add, at |
| * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */ |
| output[8] += output[18] << 4; |
| output[8] += output[18] << 1; |
| output[8] += output[18]; |
| output[7] += output[17] << 4; |
| output[7] += output[17] << 1; |
| output[7] += output[17]; |
| output[6] += output[16] << 4; |
| output[6] += output[16] << 1; |
| output[6] += output[16]; |
| output[5] += output[15] << 4; |
| output[5] += output[15] << 1; |
| output[5] += output[15]; |
| output[4] += output[14] << 4; |
| output[4] += output[14] << 1; |
| output[4] += output[14]; |
| output[3] += output[13] << 4; |
| output[3] += output[13] << 1; |
| output[3] += output[13]; |
| output[2] += output[12] << 4; |
| output[2] += output[12] << 1; |
| output[2] += output[12]; |
| output[1] += output[11] << 4; |
| output[1] += output[11] << 1; |
| output[1] += output[11]; |
| output[0] += output[10] << 4; |
| output[0] += output[10] << 1; |
| output[0] += output[10]; |
| } |
| |
| #if (-1 & 3) != 3 |
| #error "This code only works on a two's complement system" |
| #endif |
| |
| /* return v / 2^26, using only shifts and adds. |
| * |
| * On entry: v can take any value. */ |
| static inline limb |
| div_by_2_26(const limb v) |
| { |
| /* High word of v; no shift needed. */ |
| const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); |
| /* Set to all 1s if v was negative; else set to 0s. */ |
| const int32_t sign = ((int32_t) highword) >> 31; |
| /* Set to 0x3ffffff if v was negative; else set to 0. */ |
| const int32_t roundoff = ((uint32_t) sign) >> 6; |
| /* Should return v / (1<<26) */ |
| return (v + roundoff) >> 26; |
| } |
| |
| /* return v / (2^25), using only shifts and adds. |
| * |
| * On entry: v can take any value. */ |
| static inline limb |
| div_by_2_25(const limb v) |
| { |
| /* High word of v; no shift needed*/ |
| const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); |
| /* Set to all 1s if v was negative; else set to 0s. */ |
| const int32_t sign = ((int32_t) highword) >> 31; |
| /* Set to 0x1ffffff if v was negative; else set to 0. */ |
| const int32_t roundoff = ((uint32_t) sign) >> 7; |
| /* Should return v / (1<<25) */ |
| return (v + roundoff) >> 25; |
| } |
| |
| /* Reduce all coefficients of the short form input so that |x| < 2^26. |
| * |
| * On entry: |output[i]| < 280*2^54 */ |
| static void freduce_coefficients(limb *output) { |
| unsigned i; |
| |
| output[10] = 0; |
| |
| for (i = 0; i < 10; i += 2) { |
| limb over = div_by_2_26(output[i]); |
| /* The entry condition (that |output[i]| < 280*2^54) means that over is, at |
| * most, 280*2^28 in the first iteration of this loop. This is added to the |
| * next limb and we can approximate the resulting bound of that limb by |
| * 281*2^54. */ |
| output[i] -= over << 26; |
| output[i+1] += over; |
| |
| /* For the first iteration, |output[i+1]| < 281*2^54, thus |over| < |
| * 281*2^29. When this is added to the next limb, the resulting bound can |
| * be approximated as 281*2^54. |
| * |
| * For subsequent iterations of the loop, 281*2^54 remains a conservative |
| * bound and no overflow occurs. */ |
| over = div_by_2_25(output[i+1]); |
| output[i+1] -= over << 25; |
| output[i+2] += over; |
| } |
| /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */ |
| output[0] += output[10] << 4; |
| output[0] += output[10] << 1; |
| output[0] += output[10]; |
| |
| output[10] = 0; |
| |
| /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 |
| * So |over| will be no more than 2^16. */ |
| { |
| limb over = div_by_2_26(output[0]); |
| output[0] -= over << 26; |
| output[1] += over; |
| } |
| |
| /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The |
| * bound on |output[1]| is sufficient to meet our needs. */ |
| } |
| |
| /* A helpful wrapper around fproduct: output = in * in2. |
| * |
| * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. |
| * |
| * output must be distinct to both inputs. The output is reduced degree |
| * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */ |
| static void |
| fmul(limb *output, const limb *in, const limb *in2) { |
| limb t[19]; |
| fproduct(t, in, in2); |
| /* |t[i]| < 14*2^54 */ |
| freduce_degree(t); |
| freduce_coefficients(t); |
| /* |t[i]| < 2^26 */ |
| memcpy(output, t, sizeof(limb) * 10); |
| } |
| |
| /* Square a number: output = in**2 |
| * |
| * output must be distinct from the input. The inputs are reduced coefficient |
| * form, the output is not. |
| * |
| * output[x] <= 14 * the largest product of the input limbs. */ |
| static void fsquare_inner(limb *output, const limb *in) { |
| output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); |
| output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]); |
| output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + |
| ((limb) ((s32) in[0])) * ((s32) in[2])); |
| output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + |
| ((limb) ((s32) in[0])) * ((s32) in[3])); |
| output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) + |
| 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) + |
| 2 * ((limb) ((s32) in[0])) * ((s32) in[4]); |
| output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + |
| ((limb) ((s32) in[1])) * ((s32) in[4]) + |
| ((limb) ((s32) in[0])) * ((s32) in[5])); |
| output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + |
| ((limb) ((s32) in[2])) * ((s32) in[4]) + |
| ((limb) ((s32) in[0])) * ((s32) in[6]) + |
| 2 * ((limb) ((s32) in[1])) * ((s32) in[5])); |
| output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + |
| ((limb) ((s32) in[2])) * ((s32) in[5]) + |
| ((limb) ((s32) in[1])) * ((s32) in[6]) + |
| ((limb) ((s32) in[0])) * ((s32) in[7])); |
| output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) + |
| 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + |
| ((limb) ((s32) in[0])) * ((s32) in[8]) + |
| 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + |
| ((limb) ((s32) in[3])) * ((s32) in[5]))); |
| output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + |
| ((limb) ((s32) in[3])) * ((s32) in[6]) + |
| ((limb) ((s32) in[2])) * ((s32) in[7]) + |
| ((limb) ((s32) in[1])) * ((s32) in[8]) + |
| ((limb) ((s32) in[0])) * ((s32) in[9])); |
| output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + |
| ((limb) ((s32) in[4])) * ((s32) in[6]) + |
| ((limb) ((s32) in[2])) * ((s32) in[8]) + |
| 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + |
| ((limb) ((s32) in[1])) * ((s32) in[9]))); |
| output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + |
| ((limb) ((s32) in[4])) * ((s32) in[7]) + |
| ((limb) ((s32) in[3])) * ((s32) in[8]) + |
| ((limb) ((s32) in[2])) * ((s32) in[9])); |
| output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) + |
| 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + |
| 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + |
| ((limb) ((s32) in[3])) * ((s32) in[9]))); |
| output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + |
| ((limb) ((s32) in[5])) * ((s32) in[8]) + |
| ((limb) ((s32) in[4])) * ((s32) in[9])); |
| output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + |
| ((limb) ((s32) in[6])) * ((s32) in[8]) + |
| 2 * ((limb) ((s32) in[5])) * ((s32) in[9])); |
| output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + |
| ((limb) ((s32) in[6])) * ((s32) in[9])); |
| output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) + |
| 4 * ((limb) ((s32) in[7])) * ((s32) in[9]); |
| output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]); |
| output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]); |
| } |
| |
| /* fsquare sets output = in^2. |
| * |
| * On entry: The |in| argument is in reduced coefficients form and |in[i]| < |
| * 2^27. |
| * |
| * On exit: The |output| argument is in reduced coefficients form (indeed, one |
| * need only provide storage for 10 limbs) and |out[i]| < 2^26. */ |
| static void |
| fsquare(limb *output, const limb *in) { |
| limb t[19]; |
| fsquare_inner(t, in); |
| /* |t[i]| < 14*2^54 because the largest product of two limbs will be < |
| * 2^(27+27) and fsquare_inner adds together, at most, 14 of those |
| * products. */ |
| freduce_degree(t); |
| freduce_coefficients(t); |
| /* |t[i]| < 2^26 */ |
| memcpy(output, t, sizeof(limb) * 10); |
| } |
| |
| /* Take a little-endian, 32-byte number and expand it into polynomial form */ |
| static void |
| fexpand(limb *output, const u8 *input) { |
| #define F(n,start,shift,mask) \ |
| output[n] = ((((limb) input[start + 0]) | \ |
| ((limb) input[start + 1]) << 8 | \ |
| ((limb) input[start + 2]) << 16 | \ |
| ((limb) input[start + 3]) << 24) >> shift) & mask; |
| F(0, 0, 0, 0x3ffffff); |
| F(1, 3, 2, 0x1ffffff); |
| F(2, 6, 3, 0x3ffffff); |
| F(3, 9, 5, 0x1ffffff); |
| F(4, 12, 6, 0x3ffffff); |
| F(5, 16, 0, 0x1ffffff); |
| F(6, 19, 1, 0x3ffffff); |
| F(7, 22, 3, 0x1ffffff); |
| F(8, 25, 4, 0x3ffffff); |
| F(9, 28, 6, 0x1ffffff); |
| #undef F |
| } |
| |
| #if (-32 >> 1) != -16 |
| #error "This code only works when >> does sign-extension on negative numbers" |
| #endif |
| |
| /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */ |
| static s32 s32_eq(s32 a, s32 b) { |
| a = ~(a ^ b); |
| a &= a << 16; |
| a &= a << 8; |
| a &= a << 4; |
| a &= a << 2; |
| a &= a << 1; |
| return a >> 31; |
| } |
| |
| /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are |
| * both non-negative. */ |
| static s32 s32_gte(s32 a, s32 b) { |
| a -= b; |
| /* a >= 0 iff a >= b. */ |
| return ~(a >> 31); |
| } |
| |
| /* Take a fully reduced polynomial form number and contract it into a |
| * little-endian, 32-byte array. |
| * |
| * On entry: |input_limbs[i]| < 2^26 */ |
| static void |
| fcontract(u8 *output, limb *input_limbs) { |
| int i; |
| int j; |
| s32 input[10]; |
| s32 mask; |
| |
| /* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */ |
| for (i = 0; i < 10; i++) { |
| input[i] = input_limbs[i]; |
| } |
| |
| for (j = 0; j < 2; ++j) { |
| for (i = 0; i < 9; ++i) { |
| if ((i & 1) == 1) { |
| /* This calculation is a time-invariant way to make input[i] |
| * non-negative by borrowing from the next-larger limb. */ |
| const s32 mask = input[i] >> 31; |
| const s32 carry = -((input[i] & mask) >> 25); |
| input[i] = input[i] + (carry << 25); |
| input[i+1] = input[i+1] - carry; |
| } else { |
| const s32 mask = input[i] >> 31; |
| const s32 carry = -((input[i] & mask) >> 26); |
| input[i] = input[i] + (carry << 26); |
| input[i+1] = input[i+1] - carry; |
| } |
| } |
| |
| /* There's no greater limb for input[9] to borrow from, but we can multiply |
| * by 19 and borrow from input[0], which is valid mod 2^255-19. */ |
| { |
| const s32 mask = input[9] >> 31; |
| const s32 carry = -((input[9] & mask) >> 25); |
| input[9] = input[9] + (carry << 25); |
| input[0] = input[0] - (carry * 19); |
| } |
| |
| /* After the first iteration, input[1..9] are non-negative and fit within |
| * 25 or 26 bits, depending on position. However, input[0] may be |
| * negative. */ |
| } |
| |
| /* The first borrow-propagation pass above ended with every limb |
| except (possibly) input[0] non-negative. |
| |
| If input[0] was negative after the first pass, then it was because of a |
| carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most, |
| one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19. |
| |
| In the second pass, each limb is decreased by at most one. Thus the second |
| borrow-propagation pass could only have wrapped around to decrease |
| input[0] again if the first pass left input[0] negative *and* input[1] |
| through input[9] were all zero. In that case, input[1] is now 2^25 - 1, |
| and this last borrow-propagation step will leave input[1] non-negative. */ |
| { |
| const s32 mask = input[0] >> 31; |
| const s32 carry = -((input[0] & mask) >> 26); |
| input[0] = input[0] + (carry << 26); |
| input[1] = input[1] - carry; |
| } |
| |
| /* All input[i] are now non-negative. However, there might be values between |
| * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */ |
| for (j = 0; j < 2; j++) { |
| for (i = 0; i < 9; i++) { |
| if ((i & 1) == 1) { |
| const s32 carry = input[i] >> 25; |
| input[i] &= 0x1ffffff; |
| input[i+1] += carry; |
| } else { |
| const s32 carry = input[i] >> 26; |
| input[i] &= 0x3ffffff; |
| input[i+1] += carry; |
| } |
| } |
| |
| { |
| const s32 carry = input[9] >> 25; |
| input[9] &= 0x1ffffff; |
| input[0] += 19*carry; |
| } |
| } |
| |
| /* If the first carry-chain pass, just above, ended up with a carry from |
| * input[9], and that caused input[0] to be out-of-bounds, then input[0] was |
| * < 2^26 + 2*19, because the carry was, at most, two. |
| * |
| * If the second pass carried from input[9] again then input[0] is < 2*19 and |
| * the input[9] -> input[0] carry didn't push input[0] out of bounds. */ |
| |
| /* It still remains the case that input might be between 2^255-19 and 2^255. |
| * In this case, input[1..9] must take their maximum value and input[0] must |
| * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */ |
| mask = s32_gte(input[0], 0x3ffffed); |
| for (i = 1; i < 10; i++) { |
| if ((i & 1) == 1) { |
| mask &= s32_eq(input[i], 0x1ffffff); |
| } else { |
| mask &= s32_eq(input[i], 0x3ffffff); |
| } |
| } |
| |
| /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus |
| * this conditionally subtracts 2^255-19. */ |
| input[0] -= mask & 0x3ffffed; |
| |
| for (i = 1; i < 10; i++) { |
| if ((i & 1) == 1) { |
| input[i] -= mask & 0x1ffffff; |
| } else { |
| input[i] -= mask & 0x3ffffff; |
| } |
| } |
| |
| input[1] <<= 2; |
| input[2] <<= 3; |
| input[3] <<= 5; |
| input[4] <<= 6; |
| input[6] <<= 1; |
| input[7] <<= 3; |
| input[8] <<= 4; |
| input[9] <<= 6; |
| #define F(i, s) \ |
| output[s+0] |= input[i] & 0xff; \ |
| output[s+1] = (input[i] >> 8) & 0xff; \ |
| output[s+2] = (input[i] >> 16) & 0xff; \ |
| output[s+3] = (input[i] >> 24) & 0xff; |
| output[0] = 0; |
| output[16] = 0; |
| F(0,0); |
| F(1,3); |
| F(2,6); |
| F(3,9); |
| F(4,12); |
| F(5,16); |
| F(6,19); |
| F(7,22); |
| F(8,25); |
| F(9,28); |
| #undef F |
| } |
| |
| /* Input: Q, Q', Q-Q' |
| * Output: 2Q, Q+Q' |
| * |
| * x2 z3: long form |
| * x3 z3: long form |
| * x z: short form, destroyed |
| * xprime zprime: short form, destroyed |
| * qmqp: short form, preserved |
| * |
| * On entry and exit, the absolute value of the limbs of all inputs and outputs |
| * are < 2^26. */ |
| static void fmonty(limb *x2, limb *z2, /* output 2Q */ |
| limb *x3, limb *z3, /* output Q + Q' */ |
| limb *x, limb *z, /* input Q */ |
| limb *xprime, limb *zprime, /* input Q' */ |
| const limb *qmqp /* input Q - Q' */) { |
| limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], |
| zzprime[19], zzzprime[19], xxxprime[19]; |
| |
| memcpy(origx, x, 10 * sizeof(limb)); |
| fsum(x, z); |
| /* |x[i]| < 2^27 */ |
| fdifference(z, origx); /* does x - z */ |
| /* |z[i]| < 2^27 */ |
| |
| memcpy(origxprime, xprime, sizeof(limb) * 10); |
| fsum(xprime, zprime); |
| /* |xprime[i]| < 2^27 */ |
| fdifference(zprime, origxprime); |
| /* |zprime[i]| < 2^27 */ |
| fproduct(xxprime, xprime, z); |
| /* |xxprime[i]| < 14*2^54: the largest product of two limbs will be < |
| * 2^(27+27) and fproduct adds together, at most, 14 of those products. |
| * (Approximating that to 2^58 doesn't work out.) */ |
| fproduct(zzprime, x, zprime); |
| /* |zzprime[i]| < 14*2^54 */ |
| freduce_degree(xxprime); |
| freduce_coefficients(xxprime); |
| /* |xxprime[i]| < 2^26 */ |
| freduce_degree(zzprime); |
| freduce_coefficients(zzprime); |
| /* |zzprime[i]| < 2^26 */ |
| memcpy(origxprime, xxprime, sizeof(limb) * 10); |
| fsum(xxprime, zzprime); |
| /* |xxprime[i]| < 2^27 */ |
| fdifference(zzprime, origxprime); |
| /* |zzprime[i]| < 2^27 */ |
| fsquare(xxxprime, xxprime); |
| /* |xxxprime[i]| < 2^26 */ |
| fsquare(zzzprime, zzprime); |
| /* |zzzprime[i]| < 2^26 */ |
| fproduct(zzprime, zzzprime, qmqp); |
| /* |zzprime[i]| < 14*2^52 */ |
| freduce_degree(zzprime); |
| freduce_coefficients(zzprime); |
| /* |zzprime[i]| < 2^26 */ |
| memcpy(x3, xxxprime, sizeof(limb) * 10); |
| memcpy(z3, zzprime, sizeof(limb) * 10); |
| |
| fsquare(xx, x); |
| /* |xx[i]| < 2^26 */ |
| fsquare(zz, z); |
| /* |zz[i]| < 2^26 */ |
| fproduct(x2, xx, zz); |
| /* |x2[i]| < 14*2^52 */ |
| freduce_degree(x2); |
| freduce_coefficients(x2); |
| /* |x2[i]| < 2^26 */ |
| fdifference(zz, xx); // does zz = xx - zz |
| /* |zz[i]| < 2^27 */ |
| memset(zzz + 10, 0, sizeof(limb) * 9); |
| fscalar_product(zzz, zz, 121665); |
| /* |zzz[i]| < 2^(27+17) */ |
| /* No need to call freduce_degree here: |
| fscalar_product doesn't increase the degree of its input. */ |
| freduce_coefficients(zzz); |
| /* |zzz[i]| < 2^26 */ |
| fsum(zzz, xx); |
| /* |zzz[i]| < 2^27 */ |
| fproduct(z2, zz, zzz); |
| /* |z2[i]| < 14*2^(26+27) */ |
| freduce_degree(z2); |
| freduce_coefficients(z2); |
| /* |z2|i| < 2^26 */ |
| } |
| |
| /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave |
| * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid |
| * side-channel attacks. |
| * |
| * NOTE that this function requires that 'iswap' be 1 or 0; other values give |
| * wrong results. Also, the two limb arrays must be in reduced-coefficient, |
| * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped, |
| * and all all values in a[0..9],b[0..9] must have magnitude less than |
| * INT32_MAX. */ |
| static void |
| swap_conditional(limb a[19], limb b[19], limb iswap) { |
| unsigned i; |
| const s32 swap = (s32) -iswap; |
| |
| for (i = 0; i < 10; ++i) { |
| const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) ); |
| a[i] = ((s32)a[i]) ^ x; |
| b[i] = ((s32)b[i]) ^ x; |
| } |
| } |
| |
| /* Calculates nQ where Q is the x-coordinate of a point on the curve |
| * |
| * resultx/resultz: the x coordinate of the resulting curve point (short form) |
| * n: a little endian, 32-byte number |
| * q: a point of the curve (short form) */ |
| static void |
| cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { |
| limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; |
| limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; |
| limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; |
| limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; |
| |
| unsigned i, j; |
| |
| memcpy(nqpqx, q, sizeof(limb) * 10); |
| |
| for (i = 0; i < 32; ++i) { |
| u8 byte = n[31 - i]; |
| for (j = 0; j < 8; ++j) { |
| const limb bit = byte >> 7; |
| |
| swap_conditional(nqx, nqpqx, bit); |
| swap_conditional(nqz, nqpqz, bit); |
| fmonty(nqx2, nqz2, |
| nqpqx2, nqpqz2, |
| nqx, nqz, |
| nqpqx, nqpqz, |
| q); |
| swap_conditional(nqx2, nqpqx2, bit); |
| swap_conditional(nqz2, nqpqz2, bit); |
| |
| t = nqx; |
| nqx = nqx2; |
| nqx2 = t; |
| t = nqz; |
| nqz = nqz2; |
| nqz2 = t; |
| t = nqpqx; |
| nqpqx = nqpqx2; |
| nqpqx2 = t; |
| t = nqpqz; |
| nqpqz = nqpqz2; |
| nqpqz2 = t; |
| |
| byte <<= 1; |
| } |
| } |
| |
| memcpy(resultx, nqx, sizeof(limb) * 10); |
| memcpy(resultz, nqz, sizeof(limb) * 10); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Shamelessly copied from djb's code |
| // ----------------------------------------------------------------------------- |
| static void |
| crecip(limb *out, const limb *z) { |
| limb z2[10]; |
| limb z9[10]; |
| limb z11[10]; |
| limb z2_5_0[10]; |
| limb z2_10_0[10]; |
| limb z2_20_0[10]; |
| limb z2_50_0[10]; |
| limb z2_100_0[10]; |
| limb t0[10]; |
| limb t1[10]; |
| int i; |
| |
| /* 2 */ fsquare(z2,z); |
| /* 4 */ fsquare(t1,z2); |
| /* 8 */ fsquare(t0,t1); |
| /* 9 */ fmul(z9,t0,z); |
| /* 11 */ fmul(z11,z9,z2); |
| /* 22 */ fsquare(t0,z11); |
| /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9); |
| |
| /* 2^6 - 2^1 */ fsquare(t0,z2_5_0); |
| /* 2^7 - 2^2 */ fsquare(t1,t0); |
| /* 2^8 - 2^3 */ fsquare(t0,t1); |
| /* 2^9 - 2^4 */ fsquare(t1,t0); |
| /* 2^10 - 2^5 */ fsquare(t0,t1); |
| /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0); |
| |
| /* 2^11 - 2^1 */ fsquare(t0,z2_10_0); |
| /* 2^12 - 2^2 */ fsquare(t1,t0); |
| /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } |
| /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0); |
| |
| /* 2^21 - 2^1 */ fsquare(t0,z2_20_0); |
| /* 2^22 - 2^2 */ fsquare(t1,t0); |
| /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } |
| /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0); |
| |
| /* 2^41 - 2^1 */ fsquare(t1,t0); |
| /* 2^42 - 2^2 */ fsquare(t0,t1); |
| /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } |
| /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0); |
| |
| /* 2^51 - 2^1 */ fsquare(t0,z2_50_0); |
| /* 2^52 - 2^2 */ fsquare(t1,t0); |
| /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } |
| /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0); |
| |
| /* 2^101 - 2^1 */ fsquare(t1,z2_100_0); |
| /* 2^102 - 2^2 */ fsquare(t0,t1); |
| /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } |
| /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0); |
| |
| /* 2^201 - 2^1 */ fsquare(t0,t1); |
| /* 2^202 - 2^2 */ fsquare(t1,t0); |
| /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } |
| /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0); |
| |
| /* 2^251 - 2^1 */ fsquare(t1,t0); |
| /* 2^252 - 2^2 */ fsquare(t0,t1); |
| /* 2^253 - 2^3 */ fsquare(t1,t0); |
| /* 2^254 - 2^4 */ fsquare(t0,t1); |
| /* 2^255 - 2^5 */ fsquare(t1,t0); |
| /* 2^255 - 21 */ fmul(out,t1,z11); |
| } |
| |
| void cf_curve25519_mul(u8 out[32], const u8 scalar[32], const u8 point[32]) |
| { |
| limb bp[10], x[10], z[11], zmone[10]; |
| uint8_t e[32]; |
| int i; |
| |
| for (i = 0; i < 32; ++i) e[i] = scalar[i]; |
| e[0] &= 248; |
| e[31] &= 127; |
| e[31] |= 64; |
| |
| fexpand(bp, point); |
| cmult(x, z, e, bp); |
| crecip(zmone, z); |
| fmul(z, x, zmone); |
| fcontract(out, z); |
| } |
| |
| void cf_curve25519_mul_base(u8 out[32], const u8 scalar[32]) |
| { |
| uint8_t base[32] = { 9 }; |
| cf_curve25519_mul(out, scalar, base); |
| } |