| /* |
| version 20081011 |
| Matthew Dempsky |
| Public domain. |
| Derived from public domain code by D. J. Bernstein. |
| */ |
| #include "curve25519.h" |
| |
| static void add(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) |
| { |
| unsigned int j; |
| unsigned int u; |
| u = 0; |
| for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } |
| u += a[31] + b[31]; out[31] = u; |
| } |
| |
| static void sub(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) |
| { |
| unsigned int j; |
| unsigned int u; |
| u = 218; |
| for (j = 0;j < 31;++j) { |
| u += a[j] + 65280 - b[j]; |
| out[j] = u & 255; |
| u >>= 8; |
| } |
| u += a[31] - b[31]; |
| out[31] = u; |
| } |
| |
| static void squeeze(unsigned int a[32]) |
| { |
| unsigned int j; |
| unsigned int u; |
| u = 0; |
| for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } |
| u += a[31]; a[31] = u & 127; |
| u = 19 * (u >> 7); |
| for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } |
| u += a[31]; a[31] = u; |
| } |
| |
| static const unsigned int minusp[32] = { |
| 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 |
| } ; |
| |
| static void freeze(unsigned int a[32]) |
| { |
| unsigned int aorig[32]; |
| unsigned int j; |
| unsigned int negative; |
| |
| for (j = 0;j < 32;++j) aorig[j] = a[j]; |
| add(a,a,minusp); |
| negative = -((a[31] >> 7) & 1); |
| for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]); |
| } |
| |
| static void mult(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) |
| { |
| unsigned int i; |
| unsigned int j; |
| unsigned int u; |
| |
| for (i = 0;i < 32;++i) { |
| u = 0; |
| for (j = 0;j <= i;++j) u += a[j] * b[i - j]; |
| for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; |
| out[i] = u; |
| } |
| squeeze(out); |
| } |
| |
| static void mult121665(unsigned int out[32],const unsigned int a[32]) |
| { |
| unsigned int j; |
| unsigned int u; |
| |
| u = 0; |
| for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; } |
| u += 121665 * a[31]; out[31] = u & 127; |
| u = 19 * (u >> 7); |
| for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } |
| u += out[j]; out[j] = u; |
| } |
| |
| static void square(unsigned int out[32],const unsigned int a[32]) |
| { |
| unsigned int i; |
| unsigned int j; |
| unsigned int u; |
| |
| for (i = 0;i < 32;++i) { |
| u = 0; |
| for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; |
| for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; |
| u *= 2; |
| if ((i & 1) == 0) { |
| u += a[i / 2] * a[i / 2]; |
| u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; |
| } |
| out[i] = u; |
| } |
| squeeze(out); |
| } |
| |
| static void select(unsigned int p[64],unsigned int q[64],const unsigned int r[64],const unsigned int s[64],unsigned int b) |
| { |
| unsigned int j; |
| unsigned int t; |
| unsigned int bminus1; |
| |
| bminus1 = b - 1; |
| for (j = 0;j < 64;++j) { |
| t = bminus1 & (r[j] ^ s[j]); |
| p[j] = s[j] ^ t; |
| q[j] = r[j] ^ t; |
| } |
| } |
| |
| static void mainloop(unsigned int work[64],const unsigned char e[32]) |
| { |
| unsigned int xzm1[64]; |
| unsigned int xzm[64]; |
| unsigned int xzmb[64]; |
| unsigned int xzm1b[64]; |
| unsigned int xznb[64]; |
| unsigned int xzn1b[64]; |
| unsigned int a0[64]; |
| unsigned int a1[64]; |
| unsigned int b0[64]; |
| unsigned int b1[64]; |
| unsigned int c1[64]; |
| unsigned int r[32]; |
| unsigned int s[32]; |
| unsigned int t[32]; |
| unsigned int u[32]; |
| unsigned int j; |
| unsigned int b; |
| int pos; |
| |
| for (j = 0;j < 32;++j) xzm1[j] = work[j]; |
| xzm1[32] = 1; |
| for (j = 33;j < 64;++j) xzm1[j] = 0; |
| |
| xzm[0] = 1; |
| for (j = 1;j < 64;++j) xzm[j] = 0; |
| |
| for (pos = 254;pos >= 0;--pos) { |
| b = e[pos / 8] >> (pos & 7); |
| b &= 1; |
| select(xzmb,xzm1b,xzm,xzm1,b); |
| add(a0,xzmb,xzmb + 32); |
| sub(a0 + 32,xzmb,xzmb + 32); |
| add(a1,xzm1b,xzm1b + 32); |
| sub(a1 + 32,xzm1b,xzm1b + 32); |
| square(b0,a0); |
| square(b0 + 32,a0 + 32); |
| mult(b1,a1,a0 + 32); |
| mult(b1 + 32,a1 + 32,a0); |
| add(c1,b1,b1 + 32); |
| sub(c1 + 32,b1,b1 + 32); |
| square(r,c1 + 32); |
| sub(s,b0,b0 + 32); |
| mult121665(t,s); |
| add(u,t,b0); |
| mult(xznb,b0,b0 + 32); |
| mult(xznb + 32,s,u); |
| square(xzn1b,c1); |
| mult(xzn1b + 32,r,work); |
| select(xzm,xzm1,xznb,xzn1b,b); |
| } |
| |
| for (j = 0;j < 64;++j) work[j] = xzm[j]; |
| } |
| |
| static void recip(unsigned int out[32],const unsigned int z[32]) |
| { |
| unsigned int z2[32]; |
| unsigned int z9[32]; |
| unsigned int z11[32]; |
| unsigned int z2_5_0[32]; |
| unsigned int z2_10_0[32]; |
| unsigned int z2_20_0[32]; |
| unsigned int z2_50_0[32]; |
| unsigned int z2_100_0[32]; |
| unsigned int t0[32]; |
| unsigned int t1[32]; |
| int i; |
| |
| /* 2 */ square(z2,z); |
| /* 4 */ square(t1,z2); |
| /* 8 */ square(t0,t1); |
| /* 9 */ mult(z9,t0,z); |
| /* 11 */ mult(z11,z9,z2); |
| /* 22 */ square(t0,z11); |
| /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9); |
| |
| /* 2^6 - 2^1 */ square(t0,z2_5_0); |
| /* 2^7 - 2^2 */ square(t1,t0); |
| /* 2^8 - 2^3 */ square(t0,t1); |
| /* 2^9 - 2^4 */ square(t1,t0); |
| /* 2^10 - 2^5 */ square(t0,t1); |
| /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0); |
| |
| /* 2^11 - 2^1 */ square(t0,z2_10_0); |
| /* 2^12 - 2^2 */ square(t1,t0); |
| /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); } |
| /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0); |
| |
| /* 2^21 - 2^1 */ square(t0,z2_20_0); |
| /* 2^22 - 2^2 */ square(t1,t0); |
| /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); } |
| /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0); |
| |
| /* 2^41 - 2^1 */ square(t1,t0); |
| /* 2^42 - 2^2 */ square(t0,t1); |
| /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); } |
| /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0); |
| |
| /* 2^51 - 2^1 */ square(t0,z2_50_0); |
| /* 2^52 - 2^2 */ square(t1,t0); |
| /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } |
| /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0); |
| |
| /* 2^101 - 2^1 */ square(t1,z2_100_0); |
| /* 2^102 - 2^2 */ square(t0,t1); |
| /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); } |
| /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0); |
| |
| /* 2^201 - 2^1 */ square(t0,t1); |
| /* 2^202 - 2^2 */ square(t1,t0); |
| /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } |
| /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0); |
| |
| /* 2^251 - 2^1 */ square(t1,t0); |
| /* 2^252 - 2^2 */ square(t0,t1); |
| /* 2^253 - 2^3 */ square(t1,t0); |
| /* 2^254 - 2^4 */ square(t0,t1); |
| /* 2^255 - 2^5 */ square(t1,t0); |
| /* 2^255 - 21 */ mult(out,t1,z11); |
| } |
| |
| static void crypto_scalarmult(unsigned char *q, |
| const unsigned char *n, |
| const unsigned char *p) |
| { |
| unsigned int work[96]; |
| unsigned char e[32]; |
| unsigned int i; |
| for (i = 0;i < 32;++i) e[i] = n[i]; |
| e[0] &= 248; |
| e[31] &= 127; |
| e[31] |= 64; |
| for (i = 0;i < 32;++i) work[i] = p[i]; |
| mainloop(work,e); |
| recip(work + 32,work + 32); |
| mult(work + 64,work,work + 32); |
| freeze(work + 64); |
| for (i = 0;i < 32;++i) q[i] = work[64 + i]; |
| } |
| |
| void cf_curve25519_mul(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) |
| { |
| crypto_scalarmult(out, scalar, point); |
| } |
| |
| void cf_curve25519_mul_base(uint8_t out[32], const uint8_t scalar[32]) |
| { |
| uint8_t base_point[32] = { 9 }; |
| cf_curve25519_mul(out, scalar, base_point); |
| } |