blob: 7a642707d3d4905ec4dee885849e0822c84290e3 [file] [log] [blame]
/*
* Copyright (c) 2016 DeNA Co., Ltd., Kazuho Oku
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef picotls_h
#define picotls_h
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _WINDOWS
#include "wincompat.h"
#endif
#include <assert.h>
#include <inttypes.h>
#include <string.h>
#include <sys/types.h>
#if __GNUC__ >= 3
#define PTLS_LIKELY(x) __builtin_expect(!!(x), 1)
#define PTLS_UNLIKELY(x) __builtin_expect(!!(x), 0)
#define PTLS_BUILD_ASSERT_EXPR(cond) (sizeof(char[2 * !!(!__builtin_constant_p(cond) || (cond)) - 1]) != 0)
#define PTLS_BUILD_ASSERT(cond) ((void)PTLS_BUILD_ASSERT_EXPR(cond))
#else
#define PTLS_LIKELY(x) (x)
#define PTLS_UNLIKELY(x) (x)
#define PTLS_BUILD_ASSERT(cond) 1
#endif
/* __builtin_types_compatible_p yields incorrect results when older versions of GCC is used; see #303.
* Clang with Xcode 9.4 or prior is known to not work correctly when a pointer is const-qualified; see
* https://github.com/h2o/quicly/pull/306#issuecomment-626037269. Older versions of clang upstream works fine, but we do not need
* best coverage. This macro is for preventing misuse going into the master branch, having it work one of the compilers supported in
* our CI is enough.
*/
#if ((defined(__clang__) && __clang_major__ >= 10) || __GNUC__ >= 6) && !defined(__cplusplus)
#define PTLS_ASSERT_IS_ARRAY_EXPR(a) PTLS_BUILD_ASSERT_EXPR(__builtin_types_compatible_p(__typeof__(a[0])[], __typeof__(a)))
#else
#define PTLS_ASSERT_IS_ARRAY_EXPR(a) 1
#endif
#define PTLS_ELEMENTSOF(x) (PTLS_ASSERT_IS_ARRAY_EXPR(x) * sizeof(x) / sizeof((x)[0]))
#ifdef _WINDOWS
#define PTLS_THREADLOCAL __declspec(thread)
#else
#define PTLS_THREADLOCAL __thread
#define PTLS_HAVE_LOG 1
#endif
#ifndef PTLS_FUZZ_HANDSHAKE
#define PTLS_FUZZ_HANDSHAKE 0
#endif
#define PTLS_HELLO_RANDOM_SIZE 32
#define PTLS_AES128_KEY_SIZE 16
#define PTLS_AES256_KEY_SIZE 32
#define PTLS_AES_BLOCK_SIZE 16
#define PTLS_AES_IV_SIZE 16
#define PTLS_AESGCM_IV_SIZE 12
#define PTLS_AESGCM_TAG_SIZE 16
#define PTLS_AESGCM_CONFIDENTIALITY_LIMIT 0x2000000 /* 2^25 */
#define PTLS_AESGCM_INTEGRITY_LIMIT UINT64_C(0x40000000000000) /* 2^54 */
#define PTLS_AESCCM_CONFIDENTIALITY_LIMIT 0xB504F3 /* 2^23.5 */
#define PTLS_AESCCM_INTEGRITY_LIMIT 0xB504F3 /* 2^23.5 */
#define PTLS_CHACHA20_KEY_SIZE 32
#define PTLS_CHACHA20_IV_SIZE 16 /* contrary to RFC 7539, follow OpenSSL way of using first 32 bits as ctr and latter 96 as IV */
#define PTLS_CHACHA20POLY1305_IV_SIZE 12
#define PTLS_CHACHA20POLY1305_TAG_SIZE 16
#define PTLS_CHACHA20POLY1305_CONFIDENTIALITY_LIMIT UINT64_MAX /* at least 2^64 */
#define PTLS_CHACHA20POLY1305_INTEGRITY_LIMIT UINT64_C(0x1000000000) /* 2^36 */
#define PTLS_AEGIS128L_KEY_SIZE 16
#define PTLS_AEGIS128L_IV_SIZE 16
#define PTLS_AEGIS128L_TAG_SIZE 16
#define PTLS_AEGIS128L_CONFIDENTIALITY_LIMIT UINT64_MAX /* at least 2^64 */
#define PTLS_AEGIS128L_INTEGRITY_LIMIT UINT64_C(0x1000000000000) /* 2^48 */
#define PTLS_AEGIS256_KEY_SIZE 32
#define PTLS_AEGIS256_IV_SIZE 32
#define PTLS_AEGIS256_TAG_SIZE 16
#define PTLS_AEGIS256_CONFIDENTIALITY_LIMIT UINT64_MAX /* at least 2^64 */
#define PTLS_AEGIS256_INTEGRITY_LIMIT UINT64_C(0x1000000000000) /* 2^48 */
#define PTLS_BLOWFISH_KEY_SIZE 16
#define PTLS_BLOWFISH_BLOCK_SIZE 8
#define PTLS_SHA256_BLOCK_SIZE 64
#define PTLS_SHA256_DIGEST_SIZE 32
#define PTLS_SHA384_BLOCK_SIZE 128
#define PTLS_SHA384_DIGEST_SIZE 48
#define PTLS_SHA512_BLOCK_SIZE 128
#define PTLS_SHA512_DIGEST_SIZE 64
#define PTLS_MAX_SECRET_SIZE 32
#define PTLS_MAX_IV_SIZE 32
#define PTLS_MAX_DIGEST_SIZE 64
/* versions */
#define PTLS_PROTOCOL_VERSION_TLS12 0x0303
#define PTLS_PROTOCOL_VERSION_TLS13 0x0304
/* cipher-suites */
#define PTLS_CIPHER_SUITE_AES_128_GCM_SHA256 0x1301
#define PTLS_CIPHER_SUITE_NAME_AES_128_GCM_SHA256 "TLS_AES_128_GCM_SHA256"
#define PTLS_CIPHER_SUITE_AES_256_GCM_SHA384 0x1302
#define PTLS_CIPHER_SUITE_NAME_AES_256_GCM_SHA384 "TLS_AES_256_GCM_SHA384"
#define PTLS_CIPHER_SUITE_CHACHA20_POLY1305_SHA256 0x1303
#define PTLS_CIPHER_SUITE_NAME_CHACHA20_POLY1305_SHA256 "TLS_CHACHA20_POLY1305_SHA256"
#define PTLS_CIPHER_SUITE_AEGIS256_SHA512 0x1306
#define PTLS_CIPHER_SUITE_NAME_AEGIS256_SHA512 "TLS_AEGIS_256_SHA512"
#define PTLS_CIPHER_SUITE_AEGIS128L_SHA256 0x1307
#define PTLS_CIPHER_SUITE_NAME_AEGIS128L_SHA256 "TLS_AEGIS_128L_SHA256"
/* TLS/1.2 cipher-suites that we support (for compatibility, OpenSSL names are used) */
#define PTLS_CIPHER_SUITE_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xc02b
#define PTLS_CIPHER_SUITE_NAME_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 "ECDHE-ECDSA-AES128-GCM-SHA256"
#define PTLS_CIPHER_SUITE_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xc02c
#define PTLS_CIPHER_SUITE_NAME_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 "ECDHE-ECDSA-AES256-GCM-SHA384"
#define PTLS_CIPHER_SUITE_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xc02f
#define PTLS_CIPHER_SUITE_NAME_ECDHE_RSA_WITH_AES_128_GCM_SHA256 "ECDHE-RSA-AES128-GCM-SHA256"
#define PTLS_CIPHER_SUITE_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xc030
#define PTLS_CIPHER_SUITE_NAME_ECDHE_RSA_WITH_AES_256_GCM_SHA384 "ECDHE-RSA-AES256-GCM-SHA384"
#define PTLS_CIPHER_SUITE_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xcca8
#define PTLS_CIPHER_SUITE_NAME_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 "ECDHE-RSA-CHACHA20-POLY1305"
#define PTLS_CIPHER_SUITE_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xcca9
#define PTLS_CIPHER_SUITE_NAME_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 "ECDHE-ECDSA-CHACHA20-POLY1305"
/* negotiated_groups */
#define PTLS_GROUP_SECP256R1 23
#define PTLS_GROUP_NAME_SECP256R1 "secp256r1"
#define PTLS_GROUP_SECP384R1 24
#define PTLS_GROUP_NAME_SECP384R1 "secp384r1"
#define PTLS_GROUP_SECP521R1 25
#define PTLS_GROUP_NAME_SECP521R1 "secp521r1"
#define PTLS_GROUP_X25519 29
#define PTLS_GROUP_NAME_X25519 "x25519"
#define PTLS_GROUP_X448 30
#define PTLS_GROUP_NAME_X448 "x448"
/* signature algorithms */
#define PTLS_SIGNATURE_RSA_PKCS1_SHA1 0x0201
#define PTLS_SIGNATURE_RSA_PKCS1_SHA256 0x0401
#define PTLS_SIGNATURE_ECDSA_SECP256R1_SHA256 0x0403
#define PTLS_SIGNATURE_ECDSA_SECP384R1_SHA384 0x0503
#define PTLS_SIGNATURE_ECDSA_SECP521R1_SHA512 0x0603
#define PTLS_SIGNATURE_RSA_PSS_RSAE_SHA256 0x0804
#define PTLS_SIGNATURE_RSA_PSS_RSAE_SHA384 0x0805
#define PTLS_SIGNATURE_RSA_PSS_RSAE_SHA512 0x0806
#define PTLS_SIGNATURE_ED25519 0x0807
/* HPKE */
#define PTLS_HPKE_MODE_BASE 0
#define PTLS_HPKE_MODE_PSK 1
#define PTLS_HPKE_MODE_AUTH 2
#define PTLS_HPKE_MODE_AUTH_PSK 3
#define PTLS_HPKE_KEM_P256_SHA256 16
#define PTLS_HPKE_KEM_P384_SHA384 17
#define PTLS_HPKE_KEM_X25519_SHA256 32
#define PTLS_HPKE_HKDF_SHA256 1
#define PTLS_HPKE_HKDF_SHA384 2
#define PTLS_HPKE_HKDF_SHA512 3
#define PTLS_HPKE_AEAD_AES_128_GCM 1
#define PTLS_HPKE_AEAD_AES_256_GCM 2
#define PTLS_HPKE_AEAD_CHACHA20POLY1305 3
/* error classes and macros */
#define PTLS_ERROR_CLASS_SELF_ALERT 0
#define PTLS_ERROR_CLASS_PEER_ALERT 0x100
#define PTLS_ERROR_CLASS_INTERNAL 0x200
#define PTLS_ERROR_GET_CLASS(e) ((e) & ~0xff)
#define PTLS_ALERT_TO_SELF_ERROR(e) ((e) + PTLS_ERROR_CLASS_SELF_ALERT)
#define PTLS_ALERT_TO_PEER_ERROR(e) ((e) + PTLS_ERROR_CLASS_PEER_ALERT)
#define PTLS_ERROR_TO_ALERT(e) ((e)&0xff)
/* the HKDF prefix */
#define PTLS_HKDF_EXPAND_LABEL_PREFIX "tls13 "
/* alerts */
#define PTLS_ALERT_LEVEL_WARNING 1
#define PTLS_ALERT_LEVEL_FATAL 2
#define PTLS_ALERT_CLOSE_NOTIFY 0
#define PTLS_ALERT_UNEXPECTED_MESSAGE 10
#define PTLS_ALERT_BAD_RECORD_MAC 20
#define PTLS_ALERT_HANDSHAKE_FAILURE 40
#define PTLS_ALERT_BAD_CERTIFICATE 42
#define PTLS_ALERT_UNSUPPORTED_CERTIFICATE 43
#define PTLS_ALERT_CERTIFICATE_REVOKED 44
#define PTLS_ALERT_CERTIFICATE_EXPIRED 45
#define PTLS_ALERT_CERTIFICATE_UNKNOWN 46
#define PTLS_ALERT_ILLEGAL_PARAMETER 47
#define PTLS_ALERT_UNKNOWN_CA 48
#define PTLS_ALERT_ACCESS_DENIED 49
#define PTLS_ALERT_DECODE_ERROR 50
#define PTLS_ALERT_DECRYPT_ERROR 51
#define PTLS_ALERT_PROTOCOL_VERSION 70
#define PTLS_ALERT_INTERNAL_ERROR 80
#define PTLS_ALERT_USER_CANCELED 90
#define PTLS_ALERT_MISSING_EXTENSION 109
#define PTLS_ALERT_UNSUPPORTED_EXTENSION 110
#define PTLS_ALERT_UNRECOGNIZED_NAME 112
#define PTLS_ALERT_CERTIFICATE_REQUIRED 116
#define PTLS_ALERT_NO_APPLICATION_PROTOCOL 120
#define PTLS_ALERT_ECH_REQUIRED 121
/* TLS 1.2 */
#define PTLS_TLS12_MASTER_SECRET_SIZE 48
#define PTLS_TLS12_AAD_SIZE 13
#define PTLS_TLS12_AESGCM_FIXED_IV_SIZE 4
#define PTLS_TLS12_AESGCM_RECORD_IV_SIZE 8
#define PTLS_TLS12_CHACHAPOLY_FIXED_IV_SIZE 12
#define PTLS_TLS12_CHACHAPOLY_RECORD_IV_SIZE 0
/* internal errors */
#define PTLS_ERROR_NO_MEMORY (PTLS_ERROR_CLASS_INTERNAL + 1)
#define PTLS_ERROR_IN_PROGRESS (PTLS_ERROR_CLASS_INTERNAL + 2)
#define PTLS_ERROR_LIBRARY (PTLS_ERROR_CLASS_INTERNAL + 3)
#define PTLS_ERROR_INCOMPATIBLE_KEY (PTLS_ERROR_CLASS_INTERNAL + 4)
#define PTLS_ERROR_SESSION_NOT_FOUND (PTLS_ERROR_CLASS_INTERNAL + 5)
#define PTLS_ERROR_STATELESS_RETRY (PTLS_ERROR_CLASS_INTERNAL + 6)
#define PTLS_ERROR_NOT_AVAILABLE (PTLS_ERROR_CLASS_INTERNAL + 7)
#define PTLS_ERROR_COMPRESSION_FAILURE (PTLS_ERROR_CLASS_INTERNAL + 8)
#define PTLS_ERROR_REJECT_EARLY_DATA (PTLS_ERROR_CLASS_INTERNAL + 9)
#define PTLS_ERROR_DELEGATE (PTLS_ERROR_CLASS_INTERNAL + 10)
#define PTLS_ERROR_ASYNC_OPERATION (PTLS_ERROR_CLASS_INTERNAL + 11)
#define PTLS_ERROR_BLOCK_OVERFLOW (PTLS_ERROR_CLASS_INTERNAL + 12)
#define PTLS_ERROR_INCORRECT_BASE64 (PTLS_ERROR_CLASS_INTERNAL + 50)
#define PTLS_ERROR_PEM_LABEL_NOT_FOUND (PTLS_ERROR_CLASS_INTERNAL + 51)
#define PTLS_ERROR_BER_INCORRECT_ENCODING (PTLS_ERROR_CLASS_INTERNAL + 52)
#define PTLS_ERROR_BER_MALFORMED_TYPE (PTLS_ERROR_CLASS_INTERNAL + 53)
#define PTLS_ERROR_BER_MALFORMED_LENGTH (PTLS_ERROR_CLASS_INTERNAL + 54)
#define PTLS_ERROR_BER_EXCESSIVE_LENGTH (PTLS_ERROR_CLASS_INTERNAL + 55)
#define PTLS_ERROR_BER_ELEMENT_TOO_SHORT (PTLS_ERROR_CLASS_INTERNAL + 56)
#define PTLS_ERROR_BER_UNEXPECTED_EOC (PTLS_ERROR_CLASS_INTERNAL + 57)
#define PTLS_ERROR_DER_INDEFINITE_LENGTH (PTLS_ERROR_CLASS_INTERNAL + 58)
#define PTLS_ERROR_INCORRECT_ASN1_SYNTAX (PTLS_ERROR_CLASS_INTERNAL + 59)
#define PTLS_ERROR_INCORRECT_PEM_KEY_VERSION (PTLS_ERROR_CLASS_INTERNAL + 60)
#define PTLS_ERROR_INCORRECT_PEM_ECDSA_KEY_VERSION (PTLS_ERROR_CLASS_INTERNAL + 61)
#define PTLS_ERROR_INCORRECT_PEM_ECDSA_CURVE (PTLS_ERROR_CLASS_INTERNAL + 62)
#define PTLS_ERROR_INCORRECT_PEM_ECDSA_KEYSIZE (PTLS_ERROR_CLASS_INTERNAL + 63)
#define PTLS_ERROR_INCORRECT_ASN1_ECDSA_KEY_SYNTAX (PTLS_ERROR_CLASS_INTERNAL + 64)
#define PTLS_HANDSHAKE_TYPE_CLIENT_HELLO 1
#define PTLS_HANDSHAKE_TYPE_SERVER_HELLO 2
#define PTLS_HANDSHAKE_TYPE_NEW_SESSION_TICKET 4
#define PTLS_HANDSHAKE_TYPE_END_OF_EARLY_DATA 5
#define PTLS_HANDSHAKE_TYPE_ENCRYPTED_EXTENSIONS 8
#define PTLS_HANDSHAKE_TYPE_CERTIFICATE 11
#define PTLS_HANDSHAKE_TYPE_CERTIFICATE_REQUEST 13
#define PTLS_HANDSHAKE_TYPE_CERTIFICATE_VERIFY 15
#define PTLS_HANDSHAKE_TYPE_FINISHED 20
#define PTLS_HANDSHAKE_TYPE_KEY_UPDATE 24
#define PTLS_HANDSHAKE_TYPE_COMPRESSED_CERTIFICATE 25
#define PTLS_HANDSHAKE_TYPE_MESSAGE_HASH 254
#define PTLS_HANDSHAKE_TYPE_PSEUDO_HRR -1
#define PTLS_CERTIFICATE_TYPE_X509 0
#define PTLS_CERTIFICATE_TYPE_RAW_PUBLIC_KEY 2
#define PTLS_ZERO_DIGEST_SHA256 \
{ \
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, \
0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 \
}
#define PTLS_ZERO_DIGEST_SHA384 \
{ \
0x38, 0xb0, 0x60, 0xa7, 0x51, 0xac, 0x96, 0x38, 0x4c, 0xd9, 0x32, 0x7e, 0xb1, 0xb1, 0xe3, 0x6a, 0x21, 0xfd, 0xb7, 0x11, \
0x14, 0xbe, 0x07, 0x43, 0x4c, 0x0c, 0xc7, 0xbf, 0x63, 0xf6, 0xe1, 0xda, 0x27, 0x4e, 0xde, 0xbf, 0xe7, 0x6f, 0x65, \
0xfb, 0xd5, 0x1a, 0xd2, 0xf1, 0x48, 0x98, 0xb9, 0x5b \
}
#define PTLS_ZERO_DIGEST_SHA512 \
{ \
0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 0xd6, 0x20, 0xe4, 0x05, \
0x0b, 0x57, 0x15, 0xdc, 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, \
0xb0, 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 0xa5, 0x38, \
0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e \
}
#define PTLS_TO__STR(n) #n
#define PTLS_TO_STR(n) PTLS_TO__STR(n)
typedef struct st_ptls_t ptls_t;
typedef struct st_ptls_context_t ptls_context_t;
typedef struct st_ptls_key_schedule_t ptls_key_schedule_t;
/**
* represents a sequence of octets
*/
typedef struct st_ptls_iovec_t {
uint8_t *base;
size_t len;
} ptls_iovec_t;
/**
* used for storing output
*/
typedef struct st_ptls_buffer_t {
uint8_t *base;
size_t capacity;
size_t off;
uint8_t is_allocated; /* boolean */
uint8_t align_bits; /* if particular alignment is required, set to log2(alignment); otherwize zero */
} ptls_buffer_t;
/**
* key exchange context built by ptls_key_exchange_algorithm::create.
*/
typedef struct st_ptls_key_exchange_context_t {
/**
* the underlying algorithm
*/
const struct st_ptls_key_exchange_algorithm_t *algo;
/**
* public key of this context
*/
ptls_iovec_t pubkey;
/**
* This function can be used for deriving a shared secret or for destroying the context.
* When `secret` is non-NULL, this callback derives the shared secret using the public key of the context and the peer key being
* given, and sets the value in `secret`. The memory pointed to by `secret->base` must be freed by the caller by calling `free`.
* When `release` is set, the callee frees resources allocated to the context and set *keyex to NULL.
*/
int (*on_exchange)(struct st_ptls_key_exchange_context_t **keyex, int release, ptls_iovec_t *secret, ptls_iovec_t peerkey);
} ptls_key_exchange_context_t;
/**
* A key exchange algorithm.
*/
typedef const struct st_ptls_key_exchange_algorithm_t {
/**
* ID defined by the TLS specification
*/
uint16_t id;
/**
* Creates a context for asynchronous key exchange. The function is called when ClientHello is generated. The on_exchange
* callback of the created context is called when the client receives ServerHello.
*/
int (*create)(const struct st_ptls_key_exchange_algorithm_t *algo, ptls_key_exchange_context_t **ctx);
/**
* Implements synchronous key exchange. Called when receiving a ServerHello.
* Given a public key provided by the peer (`peerkey`), this callback returns a empheral public key (`pubkey`) and a secret
* (`secret) `derived from the two public keys.
*/
int (*exchange)(const struct st_ptls_key_exchange_algorithm_t *algo, ptls_iovec_t *pubkey, ptls_iovec_t *secret,
ptls_iovec_t peerkey);
/**
* crypto-specific data
*/
intptr_t data;
/**
* Description as defined in the IANA TLS registry
*/
const char *name;
} ptls_key_exchange_algorithm_t;
/**
* context of a symmetric cipher
*/
typedef struct st_ptls_cipher_context_t {
const struct st_ptls_cipher_algorithm_t *algo;
/* field above this line must not be altered by the crypto binding */
void (*do_dispose)(struct st_ptls_cipher_context_t *ctx);
void (*do_init)(struct st_ptls_cipher_context_t *ctx, const void *iv);
void (*do_transform)(struct st_ptls_cipher_context_t *ctx, void *output, const void *input, size_t len);
} ptls_cipher_context_t;
/**
* a symmetric cipher
*/
typedef const struct st_ptls_cipher_algorithm_t {
const char *name;
size_t key_size;
size_t block_size;
size_t iv_size;
size_t context_size;
int (*setup_crypto)(ptls_cipher_context_t *ctx, int is_enc, const void *key);
} ptls_cipher_algorithm_t;
/**
* This object specifies symmetric cipher to be calculated alongside the AEAD encryption.
* QUIC stacks can use this object to apply QUIC header protection and AEAD encryption in one shot.
*/
typedef struct st_ptls_aead_supplementary_encryption_t {
/**
* Cipher context to be used.
*/
ptls_cipher_context_t *ctx;
/**
* Input to the cipher.
* This field may point to the output of AEAD encryption, in which case the input will be read after AEAD encryption is
* complete.
*/
const void *input;
/**
* Output.
*/
uint8_t output[16];
} ptls_aead_supplementary_encryption_t;
/**
* AEAD context.
* AEAD implementations are allowed to stuff data at the end of the struct; see `ptls_aead_algorithm_t::setup_crypto`.
* Ciphers for TLS over TCP MUST implement `do_encrypt`, `do_encrypt_v`, `do_decrypt`.
* `do_encrypt_init`, `~update`, `~final` are obsolete, and therefore may not be available.
*/
typedef struct st_ptls_aead_context_t {
/**
* Points to the algorithm. This field is governed by picotls core; backends must not alter.
*/
const struct st_ptls_aead_algorithm_t *algo;
/**
* Mandatory callback that disposes of all the backend-specific data.
*/
void (*dispose_crypto)(struct st_ptls_aead_context_t *ctx);
/**
* Mandatory callback that returns the static IV. The size of IV is available as `ptls_aead_algorithm_t::iv_size`.
*/
void (*do_get_iv)(struct st_ptls_aead_context_t *ctx, void *iv);
/**
* Mandatory callback that sets the static IV. The size of IV is available as `ptls_aead_algorithm_t::iv_size`.
*/
void (*do_set_iv)(struct st_ptls_aead_context_t *ctx, const void *iv);
/**
* Deprecated.
*/
void (*do_encrypt_init)(struct st_ptls_aead_context_t *ctx, uint64_t seq, const void *aad, size_t aadlen);
/**
* Deprecated.
*/
size_t (*do_encrypt_update)(struct st_ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen);
/**
* Deprecated.
*/
size_t (*do_encrypt_final)(struct st_ptls_aead_context_t *ctx, void *output);
/**
* Mandatory callback that does "one-shot" encryption of an AEAD block.
* When `supp` is set to non-NULL, the callback must also encrypt the supplementary block.
* Backends may set this field to `ptls_aead__do_encrypt` that calls `do_encrypt_v` and `ptls_cipher_*` functions for handling
* the supplimentary block.
*/
void (*do_encrypt)(struct st_ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp);
/**
* Variant of `do_encrypt` that gathers input from multiple blocks. Support for this callback is also mandatory.
* Legacy backends may set this field to `ptls_aead__do_encrypt_v` that calls `do_encrypt_init`, `do_encrypt_update`,
* `do_encrypt_final`.
*/
void (*do_encrypt_v)(struct st_ptls_aead_context_t *ctx, void *output, ptls_iovec_t *input, size_t incnt, uint64_t seq,
const void *aad, size_t aadlen);
/**
* Mandatory callback for decrypting an AEAD block.
* If successful, returns the amount of cleartext bytes being written to output. Otherwise, returns SIZE_MAX.
*/
size_t (*do_decrypt)(struct st_ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen);
} ptls_aead_context_t;
/**
* An AEAD cipher.
*/
typedef const struct st_ptls_aead_algorithm_t {
/**
* name (following the convention of `openssl ciphers -v ALL`)
*/
const char *name;
/**
* confidentiality_limit (max records / packets sent before re-key)
*/
const uint64_t confidentiality_limit;
/**
* integrity_limit (max decryption failure records / packets before re-key)
*/
const uint64_t integrity_limit;
/**
* the underlying key stream
*/
ptls_cipher_algorithm_t *ctr_cipher;
/**
* the underlying ecb cipher (might not be available)
*/
ptls_cipher_algorithm_t *ecb_cipher;
/**
* key size
*/
size_t key_size;
/**
* size of the IV
*/
size_t iv_size;
/**
* size of the tag
*/
size_t tag_size;
/**
* TLS/1.2 Security Parameters (AEAD without support for TLS 1.2 must set both values to 0)
*/
struct {
size_t fixed_iv_size;
size_t record_iv_size;
} tls12;
/**
* if encrypted bytes are going to be written using non-temporal store instructions (i.e., skip cache)
*/
unsigned non_temporal : 1;
/**
* log2(alignment) being required
*/
uint8_t align_bits;
/**
* size of memory allocated for `ptls_aead_context_t`
*/
size_t context_size;
/**
* Backend callback called to setup `ptls_aead_context_t`.
* Backends are allowed to stuff arbitrary data at the end of `ptls_aead_context_t`; actual size of the memory chunk being
* allocated is that specified by `ptls_aead_algorithm_t::context_size`. When the `setup_crypto` callback is called, all the
* fields outside of `ptls_aead_context_t` will be in undefined state; it is the responsibility of the callback to initialize
* them, as well as the callbacks of `ptls_aead_context_t` that the backend supports.
* A non-zero return value indicates failure, in which case the error will propagate as `ptls_aead_new` returning NULL.
*/
int (*setup_crypto)(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv);
} ptls_aead_algorithm_t;
/**
*
*/
typedef enum en_ptls_hash_final_mode_t {
/**
* obtains the digest and frees the context
*/
PTLS_HASH_FINAL_MODE_FREE = 0,
/**
* obtains the digest and reset the context to initial state
*/
PTLS_HASH_FINAL_MODE_RESET = 1,
/**
* obtains the digest while leaving the context as-is
*/
PTLS_HASH_FINAL_MODE_SNAPSHOT = 2
} ptls_hash_final_mode_t;
/**
* A hash context.
*/
typedef struct st_ptls_hash_context_t {
/**
* feeds additional data into the hash context
*/
void (*update)(struct st_ptls_hash_context_t *ctx, const void *src, size_t len);
/**
* returns the digest and performs necessary operation specified by mode
*/
void (*final)(struct st_ptls_hash_context_t *ctx, void *md, ptls_hash_final_mode_t mode);
/**
* creates a copy of the hash context
*/
struct st_ptls_hash_context_t *(*clone_)(struct st_ptls_hash_context_t *src);
} ptls_hash_context_t;
/**
* A hash algorithm and its properties.
*/
typedef const struct st_ptls_hash_algorithm_t {
/**
* name of the hash algorithm
*/
const char *name;
/**
* block size
*/
size_t block_size;
/**
* digest size
*/
size_t digest_size;
/**
* constructor that creates the hash context
*/
ptls_hash_context_t *(*create)(void);
/**
* digest of zero-length octets
*/
uint8_t empty_digest[PTLS_MAX_DIGEST_SIZE];
} ptls_hash_algorithm_t;
typedef const struct st_ptls_cipher_suite_t {
/**
* ID as defined by the TLS Cipher Suites registry
*/
uint16_t id;
/**
* underlying AEAD algorithm
*/
ptls_aead_algorithm_t *aead;
/**
* underlying hash algorithm
*/
ptls_hash_algorithm_t *hash;
/**
* value of the "Description" field of the TLS Cipher Suites registry
*/
const char *name;
} ptls_cipher_suite_t;
struct st_ptls_traffic_protection_t;
typedef struct st_ptls_message_emitter_t {
ptls_buffer_t *buf;
struct st_ptls_traffic_protection_t *enc;
size_t record_header_length;
int (*begin_message)(struct st_ptls_message_emitter_t *self);
int (*commit_message)(struct st_ptls_message_emitter_t *self);
} ptls_message_emitter_t;
/**
* HPKE KEM
*/
typedef const struct st_ptls_hpke_kem_t {
uint16_t id;
ptls_key_exchange_algorithm_t *keyex;
ptls_hash_algorithm_t *hash;
} ptls_hpke_kem_t;
typedef struct st_ptls_hpke_cipher_suite_id_t {
uint16_t kdf;
uint16_t aead;
} ptls_hpke_cipher_suite_id_t;
typedef const struct st_ptls_hpke_cipher_suite_t {
ptls_hpke_cipher_suite_id_t id;
const char *name; /* in form of "<kdf>/<aead>" using the sames specified in IANA HPKE registry */
ptls_hash_algorithm_t *hash;
ptls_aead_algorithm_t *aead;
} ptls_hpke_cipher_suite_t;
#define PTLS_CALLBACK_TYPE0(ret, name) \
typedef struct st_ptls_##name##_t { \
ret (*cb)(struct st_ptls_##name##_t * self); \
} ptls_##name##_t
#define PTLS_CALLBACK_TYPE(ret, name, ...) \
typedef struct st_ptls_##name##_t { \
ret (*cb)(struct st_ptls_##name##_t * self, __VA_ARGS__); \
} ptls_##name##_t
/**
* arguments passsed to the on_client_hello callback
*/
typedef struct st_ptls_on_client_hello_parameters_t {
/**
* SNI value received from the client. The value is {NULL, 0} if the extension was absent.
*/
ptls_iovec_t server_name;
/**
* Raw value of the client_hello message.
*/
ptls_iovec_t raw_message;
/**
* points to the cipher-suites section of the raw_message (see above)
*/
ptls_iovec_t cipher_suites;
/**
*
*/
struct {
ptls_iovec_t *list;
size_t count;
} negotiated_protocols;
struct {
const uint16_t *list;
size_t count;
} signature_algorithms;
struct {
const uint16_t *list;
size_t count;
} certificate_compression_algorithms;
struct {
const uint8_t *list;
size_t count;
} server_certificate_types;
/**
* set to 1 if ClientHello is too old (or too new) to be handled by picotls
*/
unsigned incompatible_version : 1;
} ptls_on_client_hello_parameters_t;
/**
* returns current time in milliseconds (ptls_get_time can be used to return the physical time)
*/
PTLS_CALLBACK_TYPE0(uint64_t, get_time);
/**
* after receiving ClientHello, the core calls the optional callback to give a chance to the swap the context depending on the input
* values. The callback is required to call `ptls_set_server_name` if an SNI extension needs to be sent to the client.
*/
PTLS_CALLBACK_TYPE(int, on_client_hello, ptls_t *tls, ptls_on_client_hello_parameters_t *params);
/**
* callback to generate the certificate message. `ptls_context::certificates` are set when the callback is set to NULL.
*/
PTLS_CALLBACK_TYPE(int, emit_certificate, ptls_t *tls, ptls_message_emitter_t *emitter, ptls_key_schedule_t *key_sched,
ptls_iovec_t context, int push_status_request, const uint16_t *compress_algos, size_t num_compress_algos);
/**
* An object that represents an asynchronous task (e.g., RSA signature generation).
* When `ptls_handshake` returns `PTLS_ERROR_ASYNC_OPERATION`, it has an associated task in flight. The user should obtain the
* reference to the associated task by calling `ptls_get_async_job`, then either wait for the file descriptor obtained from
* the `get_fd` callback to become readable, or set a completion callback via `set_completion_callback` and wait for its
* invocation. Once notified, the user should invoke `ptls_handshake` again.
* Async jobs typically provide support for only one of the two methods.
*/
typedef struct st_ptls_async_job_t {
void (*destroy_)(struct st_ptls_async_job_t *self);
/**
* optional callback returning a file descriptor that becomes readable when the job is complete
*/
int (*get_fd)(struct st_ptls_async_job_t *self);
/**
* optional callback for setting a completion callback
*/
void (*set_completion_callback)(struct st_ptls_async_job_t *self, void (*cb)(void *), void *cbdata);
} ptls_async_job_t;
/**
* When gerenating CertificateVerify, the core calls the callback to sign the handshake context using the certificate. This callback
* supports asynchronous mode; see `ptls_openssl_sign_certificate_t` for more information.
*/
PTLS_CALLBACK_TYPE(int, sign_certificate, ptls_t *tls, ptls_async_job_t **async, uint16_t *selected_algorithm,
ptls_buffer_t *output, ptls_iovec_t input, const uint16_t *algorithms, size_t num_algorithms);
/**
* after receiving Certificate, the core calls the callback to verify the certificate chain and to obtain a pointer to a
* callback that should be used for verifying CertificateVerify. If an error occurs between a successful return from this
* callback to the invocation of the verify_sign callback, verify_sign is called with both data and sign set to an empty buffer.
* The implementor of the callback should use that as the opportunity to free any temporary data allocated for the verify_sign
* callback.
* The name of the server to be verified, if any, is provided explicitly as `server_name`. When ECH is offered by the client but
* the was rejected by the server, this value can be different from that being sent via `ptls_get_server_name`.
*/
typedef struct st_ptls_verify_certificate_t {
int (*cb)(struct st_ptls_verify_certificate_t *self, ptls_t *tls, const char *server_name,
int (**verify_sign)(void *verify_ctx, uint16_t algo, ptls_iovec_t data, ptls_iovec_t sign), void **verify_data,
ptls_iovec_t *certs, size_t num_certs);
/**
* list of signature algorithms being supported, terminated by UINT16_MAX
*/
const uint16_t *algos;
} ptls_verify_certificate_t;
/**
* Encrypt-and-signs (or verify-and-decrypts) a ticket (server-only).
* When used for encryption (i.e., is_encrypt being set), the function should return 0 if successful, or else a non-zero value.
* When used for decryption, the function should return 0 (successful), PTLS_ERROR_REJECT_EARLY_DATA (successful, but 0-RTT is
* forbidden), or any other value to indicate failure.
*/
PTLS_CALLBACK_TYPE(int, encrypt_ticket, ptls_t *tls, int is_encrypt, ptls_buffer_t *dst, ptls_iovec_t src);
/**
* saves a ticket (client-only)
*/
PTLS_CALLBACK_TYPE(int, save_ticket, ptls_t *tls, ptls_iovec_t input);
/**
* event logging (incl. secret logging)
*/
typedef struct st_ptls_log_event_t {
void (*cb)(struct st_ptls_log_event_t *self, ptls_t *tls, const char *type, const char *fmt, ...)
__attribute__((format(printf, 4, 5)));
} ptls_log_event_t;
/**
* reference counting
*/
PTLS_CALLBACK_TYPE(void, update_open_count, ssize_t delta);
/**
* applications that have their own record layer can set this function to derive their own traffic keys from the traffic secret.
* The cipher-suite that is being associated to the connection can be obtained by calling the ptls_get_cipher function.
*/
PTLS_CALLBACK_TYPE(int, update_traffic_key, ptls_t *tls, int is_enc, size_t epoch, const void *secret);
/**
* callback for every extension detected during decoding
*/
PTLS_CALLBACK_TYPE(int, on_extension, ptls_t *tls, uint8_t hstype, uint16_t exttype, ptls_iovec_t extdata);
/**
*
*/
typedef struct st_ptls_decompress_certificate_t {
/**
* list of supported algorithms terminated by UINT16_MAX
*/
const uint16_t *supported_algorithms;
/**
* callback that decompresses the message
*/
int (*cb)(struct st_ptls_decompress_certificate_t *self, ptls_t *tls, uint16_t algorithm, ptls_iovec_t output,
ptls_iovec_t input);
} ptls_decompress_certificate_t;
/**
* ECH: creates the AEAD context to be used for "Open"-ing inner CH. Given `config_id`, the callback looks up the ECH config and the
* corresponding private key, invokes `ptls_hpke_setup_base_r` with provided `cipher`, `enc`, and `info_prefix` (which will be
* "tls ech" || 00).
*/
PTLS_CALLBACK_TYPE(ptls_aead_context_t *, ech_create_opener, ptls_hpke_kem_t **kem, ptls_hpke_cipher_suite_t **cipher, ptls_t *tls,
uint8_t config_id, ptls_hpke_cipher_suite_id_t cipher_id, ptls_iovec_t enc, ptls_iovec_t info_prefix);
/**
* the configuration
*/
struct st_ptls_context_t {
/**
* PRNG to be used
*/
void (*random_bytes)(void *buf, size_t len);
/**
*
*/
ptls_get_time_t *get_time;
/**
* list of supported key-exchange algorithms terminated by NULL
*/
ptls_key_exchange_algorithm_t **key_exchanges;
/**
* list of supported cipher-suites terminated by NULL
*/
ptls_cipher_suite_t **cipher_suites;
/**
* list of certificates
*/
struct {
ptls_iovec_t *list;
size_t count;
} certificates;
/**
* ECH
*/
struct {
struct {
/**
* list of HPKE symmetric cipher-suites (set to NULL to disable ECH altogether)
*/
ptls_hpke_cipher_suite_t **ciphers;
/**
* KEMs being supported
*/
ptls_hpke_kem_t **kems;
} client;
struct {
/**
* callback that does ECDH key exchange and returns the AEAD context
*/
ptls_ech_create_opener_t *create_opener;
/**
* ECHConfigList to be sent to the client when there is mismatch (or when the client sends a grease)
*/
ptls_iovec_t retry_configs;
} server;
} ech;
/**
*
*/
ptls_on_client_hello_t *on_client_hello;
/**
*
*/
ptls_emit_certificate_t *emit_certificate;
/**
*
*/
ptls_sign_certificate_t *sign_certificate;
/**
*
*/
ptls_verify_certificate_t *verify_certificate;
/**
* lifetime of a session ticket (server-only)
*/
uint32_t ticket_lifetime;
/**
* maximum permitted size of early data (server-only)
*/
uint32_t max_early_data_size;
/**
* maximum size of the message buffer (default: 0 = unlimited = 3 + 2^24 bytes)
*/
size_t max_buffer_size;
/**
* this field is obsolete and ignored
*/
const char *hkdf_label_prefix__obsolete;
/**
* if set, psk handshakes use (ec)dhe
*/
unsigned require_dhe_on_psk : 1;
/**
* if exporter master secrets should be recorded
*/
unsigned use_exporter : 1;
/**
* if ChangeCipherSpec record should be sent during handshake. If the client sends CCS, the server sends one in response
* regardless of the value of this flag. See RFC 8446 Appendix D.3.
*/
unsigned send_change_cipher_spec : 1;
/**
* if set, the server requests client certificates to authenticate the client
*/
unsigned require_client_authentication : 1;
/**
* if set, EOED will not be emitted or accepted
*/
unsigned omit_end_of_early_data : 1;
/**
* This option turns on support for Raw Public Keys (RFC 7250).
*
* When running as a client, this option instructs the client to request the server to send raw public keys in place of X.509
* certificate chain. The client should set its `certificate_verify` callback to one that is capable of validating the raw
* public key that will be sent by the server.
*
* When running as a server, this option instructs the server to only handle clients requesting the use of raw public keys. If
* the client does not, the handshake is rejected. Note however that the rejection happens only after the `on_client_hello`
* callback is being called. Therefore, applications can support both X.509 and raw public keys by swapping `ptls_context_t` to
* the correct one when that callback is being called (like handling swapping the contexts based on the value of SNI).
*/
unsigned use_raw_public_keys : 1;
/**
* boolean indicating if the cipher-suite should be chosen based on server's preference
*/
unsigned server_cipher_preference : 1;
/**
* boolean indicating if ChaCha20-Poly1305 should be reprioritized to the top of the server cipher list if a ChaCha20-Poly1305
* cipher is at the top of the client cipher list
*/
unsigned server_cipher_chacha_priority : 1;
/**
*
*/
ptls_encrypt_ticket_t *encrypt_ticket;
/**
*
*/
ptls_save_ticket_t *save_ticket;
/**
*
*/
ptls_log_event_t *log_event;
/**
*
*/
ptls_update_open_count_t *update_open_count;
/**
*
*/
ptls_update_traffic_key_t *update_traffic_key;
/**
*
*/
ptls_decompress_certificate_t *decompress_certificate;
/**
*
*/
ptls_on_extension_t *on_extension;
/**
* (optional) list of supported tls12 cipher-suites terminated by NULL
*/
ptls_cipher_suite_t **tls12_cipher_suites;
/**
* (optional) session ID Context to segment resumption
*/
struct {
uint8_t bytes[PTLS_SHA256_DIGEST_SIZE];
unsigned is_set : 1;
} ticket_context;
/**
* (optional) list of CAs advertised to clients as supported in the CertificateRequest message; each item must be DNs in DER
* format. The values are sent to the client only when `ptls_context_t::require_client_authentication` is set to true.
*/
struct {
const ptls_iovec_t *list;
size_t count;
} client_ca_names;
};
typedef struct st_ptls_raw_extension_t {
uint16_t type;
ptls_iovec_t data;
} ptls_raw_extension_t;
typedef enum en_ptls_early_data_acceptance_t {
PTLS_EARLY_DATA_ACCEPTANCE_UNKNOWN = 0,
PTLS_EARLY_DATA_REJECTED,
PTLS_EARLY_DATA_ACCEPTED
} ptls_early_data_acceptance_t;
/**
* optional arguments to client-driven handshake
*/
#ifdef _WINDOWS
/* suppress warning C4201: nonstandard extension used: nameless struct/union */
#pragma warning(push)
#pragma warning(disable : 4201)
#endif
typedef struct st_ptls_handshake_properties_t {
union {
struct {
/**
* list of protocols offered through ALPN
*/
struct {
const ptls_iovec_t *list;
size_t count;
} negotiated_protocols;
/**
* session ticket sent to the application via save_ticket callback
*/
ptls_iovec_t session_ticket;
/**
* pointer to store the maximum size of early-data that can be sent immediately. If set to non-NULL, the first call to
* ptls_handshake (or ptls_handle_message) will set `*max_early_data` to the value obtained from the session ticket, or
* to zero if early-data cannot be sent. If NULL, early data will not be used.
*/
size_t *max_early_data_size;
/**
* If early-data has been accepted by peer, or if the state is still unknown. The state changes anytime after handshake
* keys become available. Applications can peek the tri-state variable every time it calls `ptls_hanshake` or
* `ptls_handle_message` to determine the result at the earliest moment. This is an output parameter.
*/
ptls_early_data_acceptance_t early_data_acceptance;
/**
* negotiate the key exchange method before sending key_share
*/
unsigned negotiate_before_key_exchange : 1;
/**
* ECH
*/
struct {
/**
* Config offered by server e.g., by HTTPS RR. If config.base is non-NULL but config.len is zero, a grease ECH will
* be sent, assuming that X25519-SHA256 KEM and SHA256-AES-128-GCM HPKE cipher is available.
*/
ptls_iovec_t configs;
/**
* slot to save the config obtained from server on mismatch; user must free the returned blob by calling `free`
*/
ptls_iovec_t *retry_configs;
} ech;
} client;
struct {
/**
* psk binder being selected (len is set to zero if none)
*/
struct {
uint8_t base[PTLS_MAX_DIGEST_SIZE];
size_t len;
} selected_psk_binder;
/**
* parameters related to use of the Cookie extension
*/
struct {
/**
* HMAC key to protect the integrity of the cookie. The key should be as long as the digest size of the first
* ciphersuite specified in ptls_context_t (i.e. the hash algorithm of the best ciphersuite that can be chosen).
*/
const void *key;
/**
* additional data to be used for verifying the cookie
*/
ptls_iovec_t additional_data;
} cookie;
/**
* if HRR should always be sent
*/
unsigned enforce_retry : 1;
/**
* if retry should be stateless (cookie.key MUST be set when this option is used)
*/
unsigned retry_uses_cookie : 1;
} server;
};
/**
* an optional list of additional extensions to send either in CH or EE, terminated by type == UINT16_MAX
*/
ptls_raw_extension_t *additional_extensions;
/**
* an optional callback that returns a boolean value indicating if a particular extension should be collected
*/
int (*collect_extension)(ptls_t *tls, struct st_ptls_handshake_properties_t *properties, uint16_t type);
/**
* an optional callback that reports the extensions being collected
*/
int (*collected_extensions)(ptls_t *tls, struct st_ptls_handshake_properties_t *properties, ptls_raw_extension_t *extensions);
} ptls_handshake_properties_t;
#ifdef _WINDOWS
#pragma warning(pop)
#endif
#ifdef _WINDOWS
/* suppress warning C4293: >> shift count negative or too big */
#pragma warning(disable : 4293)
#endif
/**
* builds a new ptls_iovec_t instance using the supplied parameters
*/
static ptls_iovec_t ptls_iovec_init(const void *p, size_t len);
/**
* initializes a buffer, setting the default destination to the small buffer provided as the argument.
*/
static void ptls_buffer_init(ptls_buffer_t *buf, void *smallbuf, size_t smallbuf_size);
/**
* disposes a buffer, freeing resources allocated by the buffer itself (if any)
*/
static void ptls_buffer_dispose(ptls_buffer_t *buf);
/**
* internal
*/
void ptls_buffer__release_memory(ptls_buffer_t *buf);
/**
* reserves space for additional amount of memory
*/
int ptls_buffer_reserve(ptls_buffer_t *buf, size_t delta);
/**
* reserves space for additional amount of memory, requiring `buf->base` to follow specified alignment
*/
int ptls_buffer_reserve_aligned(ptls_buffer_t *buf, size_t delta, uint8_t align_bits);
/**
* internal
*/
int ptls_buffer__do_pushv(ptls_buffer_t *buf, const void *src, size_t len);
/**
* internal
*/
int ptls_buffer__adjust_quic_blocksize(ptls_buffer_t *buf, size_t body_size);
/**
* internal
*/
int ptls_buffer__adjust_asn1_blocksize(ptls_buffer_t *buf, size_t body_size);
/**
* pushes an unsigned bigint
*/
int ptls_buffer_push_asn1_ubigint(ptls_buffer_t *buf, const void *bignum, size_t size);
/**
* encodes a quic varint (maximum length is PTLS_ENCODE_QUICINT_CAPACITY)
*/
static uint8_t *ptls_encode_quicint(uint8_t *p, uint64_t v);
#define PTLS_ENCODE_QUICINT_CAPACITY 8
#define PTLS_QUICINT_MAX 4611686018427387903 // (1 << 62) - 1
#define PTLS_QUICINT_LONGEST_STR "4611686018427387903"
#define ptls_buffer_pushv(buf, src, len) \
do { \
if ((ret = ptls_buffer__do_pushv((buf), (src), (len))) != 0) \
goto Exit; \
} while (0)
#define ptls_buffer_push(buf, ...) \
do { \
if ((ret = ptls_buffer__do_pushv((buf), (uint8_t[]){__VA_ARGS__}, sizeof((uint8_t[]){__VA_ARGS__}))) != 0) \
goto Exit; \
} while (0)
#define ptls_buffer_push16(buf, v) \
do { \
uint16_t _v = (v); \
ptls_buffer_push(buf, (uint8_t)(_v >> 8), (uint8_t)_v); \
} while (0)
#define ptls_buffer_push24(buf, v) \
do { \
uint32_t _v = (v); \
ptls_buffer_push(buf, (uint8_t)(_v >> 16), (uint8_t)(_v >> 8), (uint8_t)_v); \
} while (0)
#define ptls_buffer_push32(buf, v) \
do { \
uint32_t _v = (v); \
ptls_buffer_push(buf, (uint8_t)(_v >> 24), (uint8_t)(_v >> 16), (uint8_t)(_v >> 8), (uint8_t)_v); \
} while (0)
#define ptls_buffer_push64(buf, v) \
do { \
uint64_t _v = (v); \
ptls_buffer_push(buf, (uint8_t)(_v >> 56), (uint8_t)(_v >> 48), (uint8_t)(_v >> 40), (uint8_t)(_v >> 32), \
(uint8_t)(_v >> 24), (uint8_t)(_v >> 16), (uint8_t)(_v >> 8), (uint8_t)_v); \
} while (0)
#define ptls_buffer_push_quicint(buf, v) \
do { \
if ((ret = ptls_buffer_reserve((buf), PTLS_ENCODE_QUICINT_CAPACITY)) != 0) \
goto Exit; \
uint8_t *d = ptls_encode_quicint((buf)->base + (buf)->off, (v)); \
(buf)->off = d - (buf)->base; \
} while (0)
#define ptls_buffer_push_block(buf, _capacity, block) \
do { \
size_t capacity = (_capacity); \
ptls_buffer_pushv((buf), (uint8_t *)"\0\0\0\0\0\0\0", capacity != -1 ? capacity : 1); \
size_t body_start = (buf)->off; \
do { \
block \
} while (0); \
size_t body_size = (buf)->off - body_start; \
if (capacity != -1) { \
if (capacity < sizeof(size_t) && body_size >= (size_t)1 << (capacity * 8)) { \
ret = PTLS_ERROR_BLOCK_OVERFLOW; \
goto Exit; \
} \
for (; capacity != 0; --capacity) \
(buf)->base[body_start - capacity] = (uint8_t)(body_size >> (8 * (capacity - 1))); \
} else { \
if ((ret = ptls_buffer__adjust_quic_blocksize((buf), body_size)) != 0) \
goto Exit; \
} \
} while (0)
#define ptls_buffer_push_asn1_block(buf, block) \
do { \
ptls_buffer_push((buf), 0xff); /* dummy */ \
size_t body_start = (buf)->off; \
do { \
block \
} while (0); \
size_t body_size = (buf)->off - body_start; \
if (body_size < 128) { \
(buf)->base[body_start - 1] = (uint8_t)body_size; \
} else { \
if ((ret = ptls_buffer__adjust_asn1_blocksize((buf), body_size)) != 0) \
goto Exit; \
} \
} while (0)
#define ptls_buffer_push_asn1_sequence(buf, block) \
do { \
ptls_buffer_push((buf), 0x30); \
ptls_buffer_push_asn1_block((buf), block); \
} while (0)
#define ptls_buffer_push_message_body(buf, key_sched, type, block) \
do { \
ptls_buffer_t *_buf = (buf); \
ptls_key_schedule_t *_key_sched = (key_sched); \
size_t mess_start = _buf->off; \
ptls_buffer_push(_buf, (type)); \
ptls_buffer_push_block(_buf, 3, block); \
if (_key_sched != NULL) \
ptls__key_schedule_update_hash(_key_sched, _buf->base + mess_start, _buf->off - mess_start, 0); \
} while (0)
#define ptls_push_message(emitter, key_sched, type, block) \
do { \
ptls_message_emitter_t *_emitter = (emitter); \
if ((ret = _emitter->begin_message(_emitter)) != 0) \
goto Exit; \
ptls_buffer_push_message_body(_emitter->buf, (key_sched), (type), block); \
if ((ret = _emitter->commit_message(_emitter)) != 0) \
goto Exit; \
} while (0)
int ptls_decode8(uint8_t *value, const uint8_t **src, const uint8_t *end);
int ptls_decode16(uint16_t *value, const uint8_t **src, const uint8_t *end);
int ptls_decode24(uint32_t *value, const uint8_t **src, const uint8_t *end);
int ptls_decode32(uint32_t *value, const uint8_t **src, const uint8_t *end);
int ptls_decode64(uint64_t *value, const uint8_t **src, const uint8_t *end);
uint64_t ptls_decode_quicint(const uint8_t **src, const uint8_t *end);
#define ptls_decode_open_block(src, end, capacity, block) \
do { \
size_t _capacity = (capacity); \
size_t _block_size; \
if (_capacity == -1) { \
uint64_t _block_size64; \
const uint8_t *_src = (src); \
if ((_block_size64 = ptls_decode_quicint(&_src, end)) == UINT64_MAX || \
(sizeof(size_t) < 8 && (_block_size64 >> (8 * sizeof(size_t))) != 0)) { \
ret = PTLS_ALERT_DECODE_ERROR; \
goto Exit; \
} \
(src) = _src; \
_block_size = (size_t)_block_size64; \
} else { \
if (_capacity > (size_t)(end - (src))) { \
ret = PTLS_ALERT_DECODE_ERROR; \
goto Exit; \
} \
_block_size = 0; \
do { \
_block_size = _block_size << 8 | *(src)++; \
} while (--_capacity != 0); \
} \
if (_block_size > (size_t)(end - (src))) { \
ret = PTLS_ALERT_DECODE_ERROR; \
goto Exit; \
} \
do { \
const uint8_t *const end = (src) + _block_size; \
do { \
block \
} while (0); \
if ((src) != end) { \
ret = PTLS_ALERT_DECODE_ERROR; \
goto Exit; \
} \
} while (0); \
} while (0)
#define ptls_decode_assert_block_close(src, end) \
do { \
if ((src) != end) { \
ret = PTLS_ALERT_DECODE_ERROR; \
goto Exit; \
} \
} while (0);
#define ptls_decode_block(src, end, capacity, block) \
do { \
ptls_decode_open_block((src), end, capacity, block); \
ptls_decode_assert_block_close((src), end); \
} while (0)
#define PTLS_LOG__DO_LOG(module, type, block) \
do { \
int ptlslog_skip = 0; \
char smallbuf[128]; \
ptls_buffer_t ptlslogbuf; \
ptls_buffer_init(&ptlslogbuf, smallbuf, sizeof(smallbuf)); \
PTLS_LOG__DO_PUSH_SAFESTR("{\"module\":\"" PTLS_TO_STR(module) "\",\"type\":\"" PTLS_TO_STR(type) "\""); \
do { \
block \
} while (0); \
PTLS_LOG__DO_PUSH_SAFESTR("}\n"); \
if (!ptlslog_skip) \
ptls_log__do_write(&ptlslogbuf); \
ptls_buffer_dispose(&ptlslogbuf); \
} while (0)
#define PTLS_LOG(module, type, block) \
do { \
if (!ptls_log.is_active) \
break; \
PTLS_LOG__DO_LOG((module), (type), (block)); \
} while (0)
#define PTLS_LOG_CONN(type, tls, block) \
do { \
ptls_t *_tls = (tls); \
if (!ptls_log.is_active || ptls_skip_tracing(_tls)) \
break; \
PTLS_LOG__DO_LOG(picotls, type, { \
PTLS_LOG_ELEMENT_PTR(tls, _tls); \
do { \
block \
} while (0); \
}); \
} while (0)
#define PTLS_LOG_ELEMENT_SAFESTR(name, value) \
do { \
PTLS_LOG__DO_PUSH_SAFESTR(",\"" PTLS_TO_STR(name) "\":\""); \
PTLS_LOG__DO_PUSH_SAFESTR(value); \
PTLS_LOG__DO_PUSH_SAFESTR("\""); \
} while (0)
#define PTLS_LOG_ELEMENT_UNSAFESTR(name, value, value_len) \
do { \
PTLS_LOG__DO_PUSH_SAFESTR(",\"" PTLS_TO_STR(name) "\":\""); \
PTLS_LOG__DO_PUSH_UNSAFESTR(value, value_len); \
PTLS_LOG__DO_PUSH_SAFESTR("\""); \
} while (0)
#define PTLS_LOG_ELEMENT_HEXDUMP(name, value, value_len) \
do { \
PTLS_LOG__DO_PUSH_SAFESTR(",\"" PTLS_TO_STR(name) "\":\""); \
PTLS_LOG__DO_PUSH_HEXDUMP(value, value_len); \
PTLS_LOG__DO_PUSH_SAFESTR("\""); \
} while (0)
#define PTLS_LOG_ELEMENT_PTR(name, value) PTLS_LOG_ELEMENT_UNSIGNED(name, (uint64_t)(value))
#define PTLS_LOG_ELEMENT_SIGNED(name, value) \
do { \
PTLS_LOG__DO_PUSH_SAFESTR(",\"" PTLS_TO_STR(name) "\":"); \
PTLS_LOG__DO_PUSH_SIGNED(value); \
} while (0)
#define PTLS_LOG_ELEMENT__DO_UNSIGNED(name, suffix, value) \
do { \
PTLS_LOG__DO_PUSH_SAFESTR(",\"" PTLS_TO_STR(name) suffix "\":"); \
PTLS_LOG__DO_PUSH_UNSIGNED(value); \
} while (0)
#define PTLS_LOG_ELEMENT_UNSIGNED(name, value) PTLS_LOG_ELEMENT__DO_UNSIGNED(name, "", value)
#define PTLS_LOG_ELEMENT_BOOL(name, value) \
do { \
PTLS_LOG__DO_PUSH_SAFESTR(",\"" PTLS_TO_STR(name) "\":"); \
PTLS_LOG__DO_PUSH_SAFESTR(value ? "true" : "false"); \
} while (0)
#define PTLS_LOG_APPDATA_ELEMENT_UNSAFESTR(name, value, value_len) \
do { \
size_t _len = (value_len); \
if (ptls_log.include_appdata) \
PTLS_LOG_ELEMENT_UNSAFESTR(name, value, _len); \
PTLS_LOG_ELEMENT__DO_UNSIGNED(name, "_len", _len); \
} while (0)
#define PTLS_LOG_APPDATA_ELEMENT_HEXDUMP(name, value, value_len) \
do { \
size_t _len = (value_len); \
if (ptls_log.include_appdata) \
PTLS_LOG_ELEMENT_HEXDUMP(name, value, _len); \
PTLS_LOG_ELEMENT__DO_UNSIGNED(name, "_len", _len); \
} while (0)
#define PTLS_LOG__DO_PUSH_SAFESTR(v) \
do { \
if (PTLS_UNLIKELY(!ptlslog_skip && !ptls_log__do_push_safestr(&ptlslogbuf, (v)))) \
ptlslog_skip = 1; \
} while (0)
#define PTLS_LOG__DO_PUSH_UNSAFESTR(v, l) \
do { \
if (PTLS_UNLIKELY(!ptlslog_skip && !ptls_log__do_push_unsafestr(&ptlslogbuf, (v), (l)))) \
ptlslog_skip = 1; \
} while (0)
#define PTLS_LOG__DO_PUSH_HEXDUMP(v, l) \
do { \
if (PTLS_UNLIKELY(!ptlslog_skip && !ptls_log__do_push_hexdump(&ptlslogbuf, (v), (l)))) \
ptlslog_skip = 1; \
} while (0)
#define PTLS_LOG__DO_PUSH_SIGNED(v) \
do { \
if (PTLS_UNLIKELY(!ptlslog_skip)) { \
if (sizeof(v) <= sizeof(int32_t)) { \
if (PTLS_UNLIKELY(!ptls_log__do_push_signed32(&ptlslogbuf, (v)))) \
ptlslog_skip = 1; \
} else { \
if (PTLS_UNLIKELY(!ptls_log__do_push_signed64(&ptlslogbuf, (v)))) \
ptlslog_skip = 1; \
} \
} \
} while (0)
#define PTLS_LOG__DO_PUSH_UNSIGNED(v) \
do { \
if (PTLS_UNLIKELY(!ptlslog_skip)) { \
if (sizeof(v) <= sizeof(uint32_t)) { \
if (PTLS_UNLIKELY(!ptls_log__do_push_unsigned32(&ptlslogbuf, (uint32_t)(v)))) \
ptlslog_skip = 1; \
} else { \
if (PTLS_UNLIKELY(!ptls_log__do_push_unsigned64(&ptlslogbuf, (v)))) \
ptlslog_skip = 1; \
} \
} \
} while (0)
/**
* User API is exposed only when logging is supported by the platform.
*/
typedef struct st_ptls_log_t {
unsigned is_active : 1;
unsigned include_appdata : 1;
} ptls_log_t;
#if PTLS_HAVE_LOG
extern volatile ptls_log_t ptls_log;
/**
* Returns the number of log events that were unable to be emitted.
*/
size_t ptls_log_num_lost(void);
/**
* Registers an fd to the logger. A registered fd is automatically closed and removed if it is invalidated.
*/
int ptls_log_add_fd(int fd);
#else
static const ptls_log_t ptls_log = {0};
#endif
static int ptls_log__do_push_safestr(ptls_buffer_t *buf, const char *s);
int ptls_log__do_push_unsafestr(ptls_buffer_t *buf, const char *s, size_t l);
int ptls_log__do_push_hexdump(ptls_buffer_t *buf, const void *s, size_t l);
int ptls_log__do_pushv(ptls_buffer_t *buf, const void *p, size_t l);
int ptls_log__do_push_signed32(ptls_buffer_t *buf, int32_t v);
int ptls_log__do_push_signed64(ptls_buffer_t *buf, int64_t v);
int ptls_log__do_push_unsigned32(ptls_buffer_t *buf, uint32_t v);
int ptls_log__do_push_unsigned64(ptls_buffer_t *buf, uint64_t v);
void ptls_log__do_write(const ptls_buffer_t *buf);
/**
* create a client object to handle new TLS connection
*/
ptls_t *ptls_client_new(ptls_context_t *ctx);
/**
* create a server object to handle new TLS connection
*/
ptls_t *ptls_server_new(ptls_context_t *ctx);
/**
* creates an object handle new TLS connection
*/
static ptls_t *ptls_new(ptls_context_t *ctx, int is_server);
/**
* creates TLS 1.2 record layer for post-handshake communication
*/
int ptls_build_tls12_export_params(ptls_context_t *ctx, ptls_buffer_t *output, int is_server, int session_reused,
ptls_cipher_suite_t *cipher, const void *master_secret, const void *hello_randoms,
uint64_t next_send_record_iv, const char *server_name, ptls_iovec_t negotiated_protocol);
/**
* store the parameters of a post-handshake TLS connection so that it can be reconstructed later
*/
int ptls_export(ptls_t *tls, ptls_buffer_t *output);
/**
* create a post-handshake TLS connection object using given parameters
*/
int ptls_import(ptls_context_t *ctx, ptls_t **tls, ptls_iovec_t params);
/**
* releases all resources associated to the object
*/
void ptls_free(ptls_t *tls);
/**
* returns address of the crypto callbacks that the connection is using
*/
ptls_context_t *ptls_get_context(ptls_t *tls);
/**
* updates the context of a connection. Can be called from `on_client_hello` callback.
*/
void ptls_set_context(ptls_t *tls, ptls_context_t *ctx);
/**
* get the signature context
*/
ptls_async_job_t *ptls_get_async_job(ptls_t *tls);
/**
* returns the client-random
*/
ptls_iovec_t ptls_get_client_random(ptls_t *tls);
/**
* returns the cipher-suite being used
*/
ptls_cipher_suite_t *ptls_get_cipher(ptls_t *tls);
/**
* returns a supported cipher-suite given an id
*/
ptls_cipher_suite_t *ptls_find_cipher_suite(ptls_cipher_suite_t **cipher_suites, uint16_t id);
/**
* Returns protocol version (e.g., 0x0303 for TLS 1.2, 0x0304 for TLS 1.3). The result may be unstable prior to handshake
* completion.
*/
uint16_t ptls_get_protocol_version(ptls_t *tls);
/**
* Returns current state of traffic keys. The cipher-suite being used, as well as the length of the traffic keys, can be obtained
* via `ptls_get_cipher`.
* TODO: Even in case of offloading just the TX side, there should be API for handling key updates, sending Close aleart.
*/
int ptls_get_traffic_keys(ptls_t *tls, int is_enc, uint8_t *key, uint8_t *iv, uint64_t *seq);
/**
* returns the server-name (NULL if SNI is not used or failed to negotiate)
*/
const char *ptls_get_server_name(ptls_t *tls);
/**
* sets the server-name associated to the TLS connection. If server_name_len is zero, then strlen(server_name) is called to
* determine the length of the name.
* On the client-side, the value is used for certificate validation. The value will be also sent as an SNI extension, if it looks
* like a DNS name.
* On the server-side, it can be called from on_client_hello to indicate the acceptance of the SNI extension to the client.
*/
int ptls_set_server_name(ptls_t *tls, const char *server_name, size_t server_name_len);
/**
* returns the negotiated protocol (or NULL)
*/
const char *ptls_get_negotiated_protocol(ptls_t *tls);
/**
* sets the negotiated protocol. If protocol_len is zero, strlen(protocol) is called to determine the length of the protocol name.
*/
int ptls_set_negotiated_protocol(ptls_t *tls, const char *protocol, size_t protocol_len);
/**
* returns if the handshake has been completed
*/
int ptls_handshake_is_complete(ptls_t *tls);
/**
* returns if a PSK (or PSK-DHE) handshake was performed
*/
int ptls_is_psk_handshake(ptls_t *tls);
/**
* return if a ECH handshake was performed, as well as optionally the kem and cipher-suite being used
*/
int ptls_is_ech_handshake(ptls_t *tls, uint8_t *config_id, ptls_hpke_kem_t **kem, ptls_hpke_cipher_suite_t **cipher);
/**
* returns a pointer to user data pointer (client is reponsible for freeing the associated data prior to calling ptls_free)
*/
void **ptls_get_data_ptr(ptls_t *tls);
/**
*
*/
int ptls_skip_tracing(ptls_t *tls);
/**
*
*/
void ptls_set_skip_tracing(ptls_t *tls, int skip_tracing);
/**
* proceeds with the handshake, optionally taking some input from peer. The function returns zero in case the handshake completed
* successfully. PTLS_ERROR_IN_PROGRESS is returned in case the handshake is incomplete. Otherwise, an error value is returned. The
* contents of sendbuf should be sent to the client, regardless of whether if an error is returned. inlen is an argument used for
* both input and output. As an input, the arguments takes the size of the data available as input. Upon return the value is updated
* to the number of bytes consumed by the handshake. In case the returned value is PTLS_ERROR_IN_PROGRESS there is a guarantee that
* all the input are consumed (i.e. the value of inlen does not change).
*/
int ptls_handshake(ptls_t *tls, ptls_buffer_t *sendbuf, const void *input, size_t *inlen, ptls_handshake_properties_t *args);
/**
* decrypts the first record within given buffer
*/
int ptls_receive(ptls_t *tls, ptls_buffer_t *plaintextbuf, const void *input, size_t *len);
/**
* encrypts given buffer into multiple TLS records
*/
int ptls_send(ptls_t *tls, ptls_buffer_t *sendbuf, const void *input, size_t inlen);
/**
* updates the send traffic key (as well as asks the peer to update)
*/
int ptls_update_key(ptls_t *tls, int request_update);
/**
* Returns if the context is a server context.
*/
int ptls_is_server(ptls_t *tls);
/**
* returns per-record overhead
*/
size_t ptls_get_record_overhead(ptls_t *tls);
/**
* sends an alert
*/
int ptls_send_alert(ptls_t *tls, ptls_buffer_t *sendbuf, uint8_t level, uint8_t description);
/**
*
*/
int ptls_export_secret(ptls_t *tls, void *output, size_t outlen, const char *label, ptls_iovec_t context_value, int is_early);
/**
* build the body of a Certificate message. Can be called with tls set to NULL in order to create a precompressed message.
*/
int ptls_build_certificate_message(ptls_buffer_t *buf, ptls_iovec_t request_context, ptls_iovec_t *certificates,
size_t num_certificates, ptls_iovec_t ocsp_status);
/**
*
*/
int ptls_calc_hash(ptls_hash_algorithm_t *algo, void *output, const void *src, size_t len);
/**
*
*/
ptls_hash_context_t *ptls_hmac_create(ptls_hash_algorithm_t *algo, const void *key, size_t key_size);
/**
*
*/
int ptls_hkdf_extract(ptls_hash_algorithm_t *hash, void *output, ptls_iovec_t salt, ptls_iovec_t ikm);
/**
*
*/
int ptls_hkdf_expand(ptls_hash_algorithm_t *hash, void *output, size_t outlen, ptls_iovec_t prk, ptls_iovec_t info);
/**
*
*/
int ptls_hkdf_expand_label(ptls_hash_algorithm_t *algo, void *output, size_t outlen, ptls_iovec_t secret, const char *label,
ptls_iovec_t hash_value, const char *label_prefix);
/**
* The expansion function of TLS 1.2 defined in RFC 5426 section 5. When `label` is NULL, acts as P_<hash>, or if non-NULL, as PRF.
*/
int ptls_tls12_phash(ptls_hash_algorithm_t *algo, void *output, size_t outlen, ptls_iovec_t secret, const char *label,
ptls_iovec_t seed);
/**
* instantiates a symmetric cipher
*/
ptls_cipher_context_t *ptls_cipher_new(ptls_cipher_algorithm_t *algo, int is_enc, const void *key);
/**
* destroys a symmetric cipher
*/
void ptls_cipher_free(ptls_cipher_context_t *ctx);
/**
* initializes the IV; this function must be called prior to calling ptls_cipher_encrypt
*/
static void ptls_cipher_init(ptls_cipher_context_t *ctx, const void *iv);
/**
* Encrypts given text. The function must be used in a way that the output length would be equal to the input length. For example,
* when using a block cipher in ECB mode, `len` must be a multiple of the block size when using a block cipher. The length can be
* of any value when using a stream cipher or a block cipher in CTR mode.
*/
static void ptls_cipher_encrypt(ptls_cipher_context_t *ctx, void *output, const void *input, size_t len);
/**
* instantiates an AEAD cipher given a secret, which is expanded using hkdf to a set of key and iv
* @param aead
* @param hash
* @param is_enc 1 if creating a context for encryption, 0 if creating a context for decryption
* @param secret the secret. The size must be the digest length of the hash algorithm
* @return pointer to an AEAD context if successful, otherwise NULL
*/
ptls_aead_context_t *ptls_aead_new(ptls_aead_algorithm_t *aead, ptls_hash_algorithm_t *hash, int is_enc, const void *secret,
const char *label_prefix);
/**
* instantiates an AEAD cipher given key and iv
* @param aead
* @param is_enc 1 if creating a context for encryption, 0 if creating a context for decryption
* @return pointer to an AEAD context if successful, otherwise NULL
*/
ptls_aead_context_t *ptls_aead_new_direct(ptls_aead_algorithm_t *aead, int is_enc, const void *key, const void *iv);
/**
* destroys an AEAD cipher context
*/
void ptls_aead_free(ptls_aead_context_t *ctx);
/**
* Permutes the static IV by applying given bytes using bit-wise XOR. This API can be used for supplying nonces longer than 64-
* bits.
*/
void ptls_aead_xor_iv(ptls_aead_context_t *ctx, const void *bytes, size_t len);
static void ptls_aead_get_iv(ptls_aead_context_t *ctx, void *iv);
static void ptls_aead_set_iv(ptls_aead_context_t *ctx, const void *iv);
/**
* Encrypts one AEAD block, given input and output vectors.
*/
static size_t ptls_aead_encrypt(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen);
/**
* Encrypts one AEAD block, as well as one block of ECB (for QUIC / DTLS packet number encryption). Depending on the AEAD engine
* being used, the two operations might run simultaneously.
*/
static void ptls_aead_encrypt_s(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp);
/**
* Encrypts one AEAD block, given a vector of vectors.
*/
static void ptls_aead_encrypt_v(ptls_aead_context_t *ctx, void *output, ptls_iovec_t *input, size_t incnt, uint64_t seq,
const void *aad, size_t aadlen);
/**
* Obsolete; new applications should use one of: `ptls_aead_encrypt`, `ptls_aead_encrypt_s`, `ptls_aead_encrypt_v`.
*/
static void ptls_aead_encrypt_init(ptls_aead_context_t *ctx, uint64_t seq, const void *aad, size_t aadlen);
/**
* Obsolete; see `ptls_aead_encrypt_init`.
*/
static size_t ptls_aead_encrypt_update(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen);
/**
* Obsolete; see `ptls_aead_encrypt_init`.
*/
static size_t ptls_aead_encrypt_final(ptls_aead_context_t *ctx, void *output);
/**
* decrypts an AEAD record
* @return number of bytes emitted to output if successful, or SIZE_MAX if the input is invalid (e.g. broken MAC)
*/
static size_t ptls_aead_decrypt(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen);
/**
* Return the current read epoch (i.e., that of the message being received or to be)
*/
size_t ptls_get_read_epoch(ptls_t *tls);
/**
* Runs the handshake by dealing directly with handshake messages. Callers MUST delay supplying input to this function until the
* epoch of the input becomes equal to the value returned by `ptls_get_read_epoch()`.
* @param tls the TLS context
* @param sendbuf buffer to which the output will be written
* @param epoch_offsets start and end offset of the messages in each epoch. For example, when the server emits ServerHello between
* offset 0 and 38, the following handshake messages between offset 39 and 348, and a post-handshake message
* between 349 and 451, epoch_offsets will be {0,39,39,349,452} and the length of the sendbuf will be 452.
* This argument is an I/O argument. Applications can either reset sendbuf to empty and epoch_offsets and to
* all zero every time they invoke the function, or retain the values until the handshake completes so that
* data will be appended to sendbuf and epoch_offsets will be adjusted.
* @param in_epoch epoch of the input
* @param input input bytes (must be NULL when starting the handshake on the client side)
* @param inlen length of the input
* @param properties properties specific to the running handshake
* @return same as `ptls_handshake`
*/
int ptls_handle_message(ptls_t *tls, ptls_buffer_t *sendbuf, size_t epoch_offsets[5], size_t in_epoch, const void *input,
size_t inlen, ptls_handshake_properties_t *properties);
int ptls_client_handle_message(ptls_t *tls, ptls_buffer_t *sendbuf, size_t epoch_offsets[5], size_t in_epoch, const void *input,
size_t inlen, ptls_handshake_properties_t *properties);
int ptls_server_handle_message(ptls_t *tls, ptls_buffer_t *sendbuf, size_t epoch_offsets[5], size_t in_epoch, const void *input,
size_t inlen, ptls_handshake_properties_t *properties);
/**
* internal
*/
void ptls_aead__build_iv(ptls_aead_algorithm_t *algo, uint8_t *iv, const uint8_t *static_iv, uint64_t seq);
/**
*
*/
static void ptls_aead__do_encrypt(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp);
/**
*
*/
static void ptls_aead__do_encrypt_v(ptls_aead_context_t *ctx, void *_output, ptls_iovec_t *input, size_t incnt, uint64_t seq,
const void *aad, size_t aadlen);
/**
* internal
*/
void ptls__key_schedule_update_hash(ptls_key_schedule_t *sched, const uint8_t *msg, size_t msglen, int use_outer);
/**
* clears memory
*/
extern void (*volatile ptls_clear_memory)(void *p, size_t len);
/**
* constant-time memcmp
*/
extern int (*volatile ptls_mem_equal)(const void *x, const void *y, size_t len);
/**
* checks if a server name is an IP address.
*/
int ptls_server_name_is_ipaddr(const char *name);
/**
* encodes one ECH Config
*/
int ptls_ech_encode_config(ptls_buffer_t *buf, uint8_t config_id, ptls_hpke_kem_t *kem, ptls_iovec_t public_key,
ptls_hpke_cipher_suite_t **ciphers, uint8_t max_name_length, const char *public_name);
/**
* loads a certificate chain to ptls_context_t::certificates. `certificate.list` and each element of the list is allocated by
* malloc. It is the responsibility of the user to free them when discarding the TLS context.
*/
int ptls_load_certificates(ptls_context_t *ctx, char const *cert_pem_file);
/**
* SetupBaseS function of RFC 9180. Given `kem`, `algo`, `info`, and receiver's public key, returns an ephemeral public key and an
* AEAD context used for encrypting data.
*/
int ptls_hpke_setup_base_s(ptls_hpke_kem_t *kem, ptls_hpke_cipher_suite_t *cipher, ptls_iovec_t *pk_s, ptls_aead_context_t **ctx,
ptls_iovec_t pk_r, ptls_iovec_t info);
/**
* SetupBaseR function of RFC 9180. Given `kem`, `algo`, `info`, receiver's private key (`keyex`), and the esnder's public key,
* returns the AEAD context to be used for decrypting data.
*/
int ptls_hpke_setup_base_r(ptls_hpke_kem_t *kem, ptls_hpke_cipher_suite_t *cipher, ptls_key_exchange_context_t *keyex,
ptls_aead_context_t **ctx, ptls_iovec_t pk_s, ptls_iovec_t info);
/**
*
*/
char *ptls_hexdump(char *dst, const void *src, size_t len);
/**
* Builds a JSON-safe string without double quotes. Supplied buffer MUST be at least 6x + 1 bytes larger than the input.
*/
char *ptls_jsonescape(char *buf, const char *s, size_t len);
/**
* the default get_time callback
*/
extern ptls_get_time_t ptls_get_time;
/**
* default hash clone function that calls memcpy
*/
static void ptls_hash_clone_memcpy(void *dst, const void *src, size_t size);
#if defined(PICOTLS_USE_DTRACE) && PICOTLS_USE_DTRACE
/**
*
*/
extern PTLS_THREADLOCAL unsigned ptls_default_skip_tracing;
#else
#define ptls_default_skip_tracing 0
#endif
/* inline functions */
inline int ptls_log__do_push_safestr(ptls_buffer_t *buf, const char *s)
{
return ptls_log__do_pushv(buf, s, strlen(s));
}
inline ptls_t *ptls_new(ptls_context_t *ctx, int is_server)
{
return is_server ? ptls_server_new(ctx) : ptls_client_new(ctx);
}
inline ptls_iovec_t ptls_iovec_init(const void *p, size_t len)
{
/* avoid the "return (ptls_iovec_t){(uint8_t *)p, len};" construct because it requires C99
* and triggers a warning "C4204: nonstandard extension used: non-constant aggregate initializer"
* in Visual Studio */
ptls_iovec_t r;
r.base = (uint8_t *)p;
r.len = len;
return r;
}
inline void ptls_buffer_init(ptls_buffer_t *buf, void *smallbuf, size_t smallbuf_size)
{
assert(smallbuf != NULL);
buf->base = (uint8_t *)smallbuf;
buf->off = 0;
buf->capacity = smallbuf_size;
buf->is_allocated = 0;
buf->align_bits = 0;
}
inline void ptls_buffer_dispose(ptls_buffer_t *buf)
{
ptls_buffer__release_memory(buf);
*buf = (ptls_buffer_t){NULL, 0, 0, 0, 0};
}
inline uint8_t *ptls_encode_quicint(uint8_t *p, uint64_t v)
{
if (PTLS_UNLIKELY(v > 63)) {
if (PTLS_UNLIKELY(v > 16383)) {
unsigned sb;
if (PTLS_UNLIKELY(v > 1073741823)) {
assert(v <= 4611686018427387903);
*p++ = 0xc0 | (uint8_t)(v >> 56);
sb = 6 * 8;
} else {
*p++ = 0x80 | (uint8_t)(v >> 24);
sb = 2 * 8;
}
do {
*p++ = (uint8_t)(v >> sb);
} while ((sb -= 8) != 0);
} else {
*p++ = 0x40 | (uint8_t)((uint16_t)v >> 8);
}
}
*p++ = (uint8_t)v;
return p;
}
inline void ptls_cipher_init(ptls_cipher_context_t *ctx, const void *iv)
{
ctx->do_init(ctx, iv);
}
inline void ptls_cipher_encrypt(ptls_cipher_context_t *ctx, void *output, const void *input, size_t len)
{
ctx->do_transform(ctx, output, input, len);
}
inline void ptls_aead_get_iv(ptls_aead_context_t *ctx, void *iv)
{
ctx->do_get_iv(ctx, iv);
}
inline void ptls_aead_set_iv(ptls_aead_context_t *ctx, const void *iv)
{
ctx->do_set_iv(ctx, iv);
}
inline size_t ptls_aead_encrypt(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen)
{
ctx->do_encrypt(ctx, output, input, inlen, seq, aad, aadlen, NULL);
return inlen + ctx->algo->tag_size;
}
inline void ptls_aead_encrypt_s(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp)
{
ctx->do_encrypt(ctx, output, input, inlen, seq, aad, aadlen, supp);
}
inline void ptls_aead_encrypt_v(ptls_aead_context_t *ctx, void *output, ptls_iovec_t *input, size_t incnt, uint64_t seq,
const void *aad, size_t aadlen)
{
ctx->do_encrypt_v(ctx, output, input, incnt, seq, aad, aadlen);
}
inline void ptls_aead_encrypt_init(ptls_aead_context_t *ctx, uint64_t seq, const void *aad, size_t aadlen)
{
ctx->do_encrypt_init(ctx, seq, aad, aadlen);
}
inline size_t ptls_aead_encrypt_update(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen)
{
return ctx->do_encrypt_update(ctx, output, input, inlen);
}
inline size_t ptls_aead_encrypt_final(ptls_aead_context_t *ctx, void *output)
{
return ctx->do_encrypt_final(ctx, output);
}
inline void ptls_aead__do_encrypt(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp)
{
ptls_iovec_t invec = ptls_iovec_init(input, inlen);
ctx->do_encrypt_v(ctx, output, &invec, 1, seq, aad, aadlen);
if (supp != NULL) {
ptls_cipher_init(supp->ctx, supp->input);
memset(supp->output, 0, sizeof(supp->output));
ptls_cipher_encrypt(supp->ctx, supp->output, supp->output, sizeof(supp->output));
}
}
inline void ptls_aead__do_encrypt_v(ptls_aead_context_t *ctx, void *_output, ptls_iovec_t *input, size_t incnt, uint64_t seq,
const void *aad, size_t aadlen)
{
uint8_t *output = (uint8_t *)_output;
ctx->do_encrypt_init(ctx, seq, aad, aadlen);
for (size_t i = 0; i < incnt; ++i)
output += ctx->do_encrypt_update(ctx, output, input[i].base, input[i].len);
ctx->do_encrypt_final(ctx, output);
}
inline size_t ptls_aead_decrypt(ptls_aead_context_t *ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen)
{
return ctx->do_decrypt(ctx, output, input, inlen, seq, aad, aadlen);
}
inline void ptls_hash_clone_memcpy(void *dst, const void *src, size_t size)
{
memcpy(dst, src, size);
}
#define ptls_define_hash(name, ctx_type, init_func, update_func, final_func) \
ptls_define_hash6(name, ctx_type, init_func, update_func, final_func, ptls_hash_clone_memcpy)
#define ptls_define_hash6(name, ctx_type, init_func, update_func, final_func, clone_func) \
\
struct name##_context_t { \
ptls_hash_context_t super; \
ctx_type ctx; \
}; \
\
static void name##_update(ptls_hash_context_t *_ctx, const void *src, size_t len) \
{ \
struct name##_context_t *ctx = (struct name##_context_t *)_ctx; \
update_func(&ctx->ctx, src, len); \
} \
\
static void name##_final(ptls_hash_context_t *_ctx, void *md, ptls_hash_final_mode_t mode) \
{ \
struct name##_context_t *ctx = (struct name##_context_t *)_ctx; \
if (mode == PTLS_HASH_FINAL_MODE_SNAPSHOT) { \
ctx_type copy = ctx->ctx; \
final_func(&copy, md); \
ptls_clear_memory(&copy, sizeof(copy)); \
return; \
} \
if (md != NULL) \
final_func(&ctx->ctx, md); \
switch (mode) { \
case PTLS_HASH_FINAL_MODE_FREE: \
ptls_clear_memory(&ctx->ctx, sizeof(ctx->ctx)); \
free(ctx); \
break; \
case PTLS_HASH_FINAL_MODE_RESET: \
init_func(&ctx->ctx); \
break; \
default: \
assert(!"FIXME"); \
break; \
} \
} \
\
static ptls_hash_context_t *name##_clone(ptls_hash_context_t *_src) \
{ \
struct name##_context_t *dst, *src = (struct name##_context_t *)_src; \
if ((dst = malloc(sizeof(*dst))) == NULL) \
return NULL; \
dst->super = src->super; \
clone_func(&dst->ctx, &src->ctx, sizeof(dst->ctx)); \
return &dst->super; \
} \
\
static ptls_hash_context_t *name##_create(void) \
{ \
struct name##_context_t *ctx; \
if ((ctx = malloc(sizeof(*ctx))) == NULL) \
return NULL; \
ctx->super = (ptls_hash_context_t){name##_update, name##_final, name##_clone}; \
init_func(&ctx->ctx); \
return &ctx->super; \
}
#ifdef __cplusplus
}
#endif
#endif