| /* |
| * This source file is licensed under the Apache License 2.0 *and* the MIT |
| * License. Please agree to *both* of the licensing terms! |
| * |
| * |
| * `transformH` function is a derivative work of OpenSSL. The original work |
| * is covered by the following license: |
| * |
| * Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| * |
| * |
| * All other work, including modifications to the `transformH` function is |
| * covered by the following MIT license: |
| * |
| * Copyright (c) 2020-2022 Fastly, Kazuho Oku |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to |
| * deal in the Software without restriction, including without limitation the |
| * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| * sell copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| #include <stdint.h> |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <immintrin.h> |
| #include <tmmintrin.h> |
| #include <nmmintrin.h> |
| #include <wmmintrin.h> |
| #include "picotls.h" |
| #include "picotls/fusion.h" |
| |
| #if defined(__clang__) |
| #if __has_feature(address_sanitizer) |
| #define NO_SANITIZE_ADDRESS __attribute__((no_sanitize("address"))) |
| #endif |
| #elif __SANITIZE_ADDRESS__ /* gcc */ |
| #define NO_SANITIZE_ADDRESS __attribute__((no_sanitize_address)) |
| #endif |
| #ifndef NO_SANITIZE_ADDRESS |
| #define NO_SANITIZE_ADDRESS |
| #endif |
| |
| #ifdef _WINDOWS |
| #define aligned_alloc(a, s) _aligned_malloc((s), (a)) |
| #define aligned_free(p) _aligned_free(p) |
| #else |
| #define aligned_free(p) free(p) |
| #endif |
| |
| struct ptls_fusion_aesgcm_context { |
| ptls_fusion_aesecb_context_t ecb; |
| size_t capacity; |
| size_t ghash_cnt; |
| }; |
| |
| struct ptls_fusion_aesgcm_context128 { |
| struct ptls_fusion_aesgcm_context super; |
| struct ptls_fusion_aesgcm_ghash_precompute128 { |
| __m128i H; |
| __m128i r; |
| } ghash[0]; |
| }; |
| |
| struct ptls_fusion_aesgcm_context256 { |
| struct ptls_fusion_aesgcm_context super; |
| union ptls_fusion_aesgcm_ghash_precompute256 { |
| struct { |
| __m128i H[2]; |
| __m128i r[2]; |
| }; |
| struct { |
| __m256i Hx2; |
| __m256i rx2; |
| }; |
| } ghash[0]; |
| }; |
| |
| struct ctr_context { |
| ptls_cipher_context_t super; |
| ptls_fusion_aesecb_context_t fusion; |
| __m128i bits; |
| uint8_t is_ready; |
| }; |
| |
| struct aesgcm_context { |
| ptls_aead_context_t super; |
| ptls_fusion_aesgcm_context_t *aesgcm; |
| /** |
| * retains the static IV in the upper 96 bits (in little endian) |
| */ |
| __m128i static_iv; |
| }; |
| |
| static const uint64_t poly_[2] __attribute__((aligned(16))) = {1, 0xc200000000000000}; |
| #define poly (*(__m128i *)poly_) |
| static const uint8_t byteswap_[32] __attribute__((aligned(32))) = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, |
| 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; |
| #define byteswap128 (*(__m128i *)byteswap_) |
| #define byteswap256 (*(__m256i *)byteswap_) |
| static const uint8_t one_[16] __attribute__((aligned(16))) = {1}; |
| #define one8 (*(__m128i *)one_) |
| static const uint8_t incr128x2_[32] __attribute__((aligned(32))) = {2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}; |
| #define incr128x2 (*(__m256i *)incr128x2_) |
| |
| /* This function is covered by the Apache License and the MIT License. The origin is crypto/modes/asm/ghash-x86_64.pl of openssl |
| * at commit 33388b4. */ |
| static __m128i transformH(__m128i H) |
| { |
| // # <<1 twist |
| // pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword |
| __m128i t2 = _mm_shuffle_epi32(H, 0xff); |
| // movdqa $Hkey,$T1 |
| __m128i t1 = H; |
| // psllq \$1,$Hkey |
| H = _mm_slli_epi64(H, 1); |
| // pxor $T3,$T3 # |
| __m128i t3 = _mm_setzero_si128(); |
| // psrlq \$63,$T1 |
| t1 = _mm_srli_epi64(t1, 63); |
| // pcmpgtd $T2,$T3 # broadcast carry bit |
| t3 = _mm_cmplt_epi32(t2, t3); |
| // pslldq \$8,$T1 |
| t1 = _mm_slli_si128(t1, 8); |
| // por $T1,$Hkey # H<<=1 |
| H = _mm_or_si128(t1, H); |
| |
| // # magic reduction |
| // pand .L0x1c2_polynomial(%rip),$T3 |
| t3 = _mm_and_si128(t3, poly); |
| // pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial |
| H = _mm_xor_si128(t3, H); |
| |
| return H; |
| } |
| // end of Apache License code |
| |
| static __m128i gfmul(__m128i x, __m128i y) |
| { |
| __m128i lo = _mm_clmulepi64_si128(x, y, 0x00); |
| __m128i hi = _mm_clmulepi64_si128(x, y, 0x11); |
| |
| __m128i a = _mm_shuffle_epi32(x, 78); |
| __m128i b = _mm_shuffle_epi32(y, 78); |
| a = _mm_xor_si128(a, x); |
| b = _mm_xor_si128(b, y); |
| |
| a = _mm_clmulepi64_si128(a, b, 0x00); |
| a = _mm_xor_si128(a, lo); |
| a = _mm_xor_si128(a, hi); |
| |
| b = _mm_slli_si128(a, 8); |
| a = _mm_srli_si128(a, 8); |
| |
| lo = _mm_xor_si128(lo, b); |
| hi = _mm_xor_si128(hi, a); |
| |
| // from https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf |
| __m128i t = _mm_clmulepi64_si128(lo, poly, 0x10); |
| lo = _mm_shuffle_epi32(lo, 78); |
| lo = _mm_xor_si128(lo, t); |
| t = _mm_clmulepi64_si128(lo, poly, 0x10); |
| lo = _mm_shuffle_epi32(lo, 78); |
| lo = _mm_xor_si128(lo, t); |
| |
| return _mm_xor_si128(hi, lo); |
| } |
| |
| static inline __m128i gfmul_do_reduce(__m128i hi, __m128i lo, __m128i mid) |
| { |
| mid = _mm_xor_si128(mid, hi); |
| mid = _mm_xor_si128(mid, lo); |
| lo = _mm_xor_si128(lo, _mm_slli_si128(mid, 8)); |
| hi = _mm_xor_si128(hi, _mm_srli_si128(mid, 8)); |
| |
| /* fast reduction, using https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf */ |
| __m128i r = _mm_clmulepi64_si128(lo, poly, 0x10); |
| lo = _mm_shuffle_epi32(lo, 78); |
| lo = _mm_xor_si128(lo, r); |
| r = _mm_clmulepi64_si128(lo, poly, 0x10); |
| lo = _mm_shuffle_epi32(lo, 78); |
| lo = _mm_xor_si128(lo, r); |
| lo = _mm_xor_si128(hi, lo); |
| |
| return lo; |
| } |
| |
| struct ptls_fusion_gfmul_state128 { |
| __m128i hi, lo, mid; |
| }; |
| |
| #if defined(__GNUC__) && !defined(__clang__) |
| static inline __m128i xor128(__m128i x, __m128i y) |
| { |
| __m128i ret; |
| __asm__("vpxor %2, %1, %0" : "=x"(ret) : "x"(x), "xm"(y)); |
| return ret; |
| } |
| #else |
| #define xor128 _mm_xor_si128 |
| #endif |
| |
| static inline void gfmul_do_step128(struct ptls_fusion_gfmul_state128 *gstate, __m128i X, |
| struct ptls_fusion_aesgcm_ghash_precompute128 *precompute) |
| { |
| __m128i t1 = _mm_clmulepi64_si128(precompute->H, X, 0x00); |
| __m128i t2 = _mm_clmulepi64_si128(precompute->H, X, 0x11); |
| __m128i t3 = _mm_shuffle_epi32(X, 78); |
| t3 = _mm_xor_si128(t3, X); |
| t3 = _mm_clmulepi64_si128(precompute->r, t3, 0x00); |
| gstate->lo = xor128(gstate->lo, t1); |
| gstate->hi = xor128(gstate->hi, t2); |
| gstate->mid = xor128(gstate->mid, t3); |
| } |
| |
| #undef xor128 |
| |
| static inline void gfmul_firststep128(struct ptls_fusion_gfmul_state128 *gstate, __m128i X, |
| struct ptls_fusion_aesgcm_ghash_precompute128 *precompute) |
| { |
| X = _mm_shuffle_epi8(X, byteswap128); |
| X = _mm_xor_si128(gstate->lo, X); |
| gstate->lo = _mm_setzero_si128(); |
| gstate->hi = _mm_setzero_si128(); |
| gstate->mid = _mm_setzero_si128(); |
| gfmul_do_step128(gstate, X, precompute); |
| } |
| |
| static inline void gfmul_nextstep128(struct ptls_fusion_gfmul_state128 *gstate, __m128i X, |
| struct ptls_fusion_aesgcm_ghash_precompute128 *precompute) |
| { |
| X = _mm_shuffle_epi8(X, byteswap128); |
| gfmul_do_step128(gstate, X, precompute); |
| } |
| |
| static inline void gfmul_reduce128(struct ptls_fusion_gfmul_state128 *gstate) |
| { |
| gstate->lo = gfmul_do_reduce(gstate->hi, gstate->lo, gstate->mid); |
| } |
| |
| static inline __m128i gfmul_get_tag128(struct ptls_fusion_gfmul_state128 *gstate, __m128i ek0) |
| { |
| __m128i tag = _mm_shuffle_epi8(gstate->lo, byteswap128); |
| tag = _mm_xor_si128(tag, ek0); |
| return tag; |
| } |
| |
| struct ptls_fusion_gfmul_state256 { |
| __m256i hi, lo, mid; |
| }; |
| |
| static inline void gfmul_do_step256(struct ptls_fusion_gfmul_state256 *gstate, __m256i X, |
| union ptls_fusion_aesgcm_ghash_precompute256 *precompute) |
| { |
| __m256i t = _mm256_clmulepi64_epi128(precompute->Hx2, X, 0x00); |
| gstate->lo = _mm256_xor_si256(gstate->lo, t); |
| t = _mm256_clmulepi64_epi128(precompute->Hx2, X, 0x11); |
| gstate->hi = _mm256_xor_si256(gstate->hi, t); |
| t = _mm256_shuffle_epi32(X, 78); |
| t = _mm256_xor_si256(t, X); |
| t = _mm256_clmulepi64_epi128(precompute->rx2, t, 0x00); |
| gstate->mid = _mm256_xor_si256(gstate->mid, t); |
| } |
| |
| static inline void gfmul_firststep256(struct ptls_fusion_gfmul_state256 *gstate, __m256i X, int half, |
| union ptls_fusion_aesgcm_ghash_precompute256 *precompute) |
| { |
| X = _mm256_shuffle_epi8(X, byteswap256); |
| X = _mm256_xor_si256(gstate->lo, X); |
| if (half) |
| X = _mm256_permute2f128_si256(X, X, 0x08); |
| gstate->lo = _mm256_setzero_si256(); |
| gstate->hi = _mm256_setzero_si256(); |
| gstate->mid = _mm256_setzero_si256(); |
| gfmul_do_step256(gstate, X, precompute); |
| } |
| |
| static inline void gfmul_nextstep256(struct ptls_fusion_gfmul_state256 *gstate, __m256i X, |
| union ptls_fusion_aesgcm_ghash_precompute256 *precompute) |
| { |
| X = _mm256_shuffle_epi8(X, byteswap256); |
| gfmul_do_step256(gstate, X, precompute); |
| } |
| |
| static inline void gfmul_reduce256(struct ptls_fusion_gfmul_state256 *gstate) |
| { |
| #define XOR_256TO128(y) _mm_xor_si128(_mm256_castsi256_si128(y), _mm256_extractf128_si256((y), 1)) |
| __m128i hi = XOR_256TO128(gstate->hi); |
| __m128i lo = XOR_256TO128(gstate->lo); |
| __m128i mid = XOR_256TO128(gstate->mid); |
| #undef XOR_256TO128 |
| |
| lo = gfmul_do_reduce(hi, lo, mid); |
| gstate->lo = _mm256_castsi128_si256(lo); |
| } |
| |
| static inline __m128i gfmul_get_tag256(struct ptls_fusion_gfmul_state256 *gstate, __m128i ek0) |
| { |
| __m128i tag = _mm_shuffle_epi8(_mm256_castsi256_si128(gstate->lo), byteswap128); |
| tag = _mm_xor_si128(tag, ek0); |
| return tag; |
| } |
| |
| static inline __m128i aesecb_encrypt(ptls_fusion_aesecb_context_t *ctx, __m128i v) |
| { |
| #define ROUNDKEY(i) (ctx->aesni256 ? _mm256_castsi256_si128(ctx->keys.m256[i]) : ctx->keys.m128[i]) |
| |
| v = _mm_xor_si128(v, ROUNDKEY(0)); |
| for (size_t i = 1; i < ctx->rounds; ++i) |
| v = _mm_aesenc_si128(v, ROUNDKEY(i)); |
| v = _mm_aesenclast_si128(v, ROUNDKEY(ctx->rounds)); |
| |
| return v; |
| |
| #undef ROUNDKEY |
| } |
| |
| // 32-bytes of 0xff followed by 31-bytes of 0x00 |
| static const uint8_t loadn_mask[63] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| static const uint8_t loadn_shuffle[31] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, // first 16 bytes map to byte offsets |
| 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, |
| 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80}; // latter 15 bytes map to zero |
| |
| NO_SANITIZE_ADDRESS |
| static inline __m128i loadn_end_of_page(const void *p, size_t l) |
| { |
| uintptr_t shift = (uintptr_t)p & 15; |
| __m128i pattern = _mm_loadu_si128((const __m128i *)(loadn_shuffle + shift)); |
| return _mm_shuffle_epi8(_mm_load_si128((const __m128i *)((uintptr_t)p - shift)), pattern); |
| } |
| |
| NO_SANITIZE_ADDRESS |
| static inline __m128i loadn128(const void *p, size_t l) |
| { |
| __m128i v, mask = _mm_loadu_si128((__m128i *)(loadn_mask + 32 - l)); |
| uintptr_t mod4k = (uintptr_t)p % 4096; |
| |
| if (PTLS_LIKELY(mod4k <= 4096 - 16) || mod4k + l > 4096) { |
| v = _mm_loadu_si128(p); |
| } else { |
| v = loadn_end_of_page(p, l); |
| } |
| v = _mm_and_si128(v, mask); |
| |
| return v; |
| } |
| |
| NO_SANITIZE_ADDRESS |
| static inline __m256i loadn256(const void *p, size_t l) |
| { |
| __m256i v, mask = _mm256_loadu_si256((__m256i *)(loadn_mask + 32 - l)); |
| uintptr_t mod4k = (uintptr_t)p % 4096; |
| |
| if (PTLS_LIKELY(mod4k < 4096 - 32) || mod4k + l > 4096) { |
| v = _mm256_loadu_si256(p); |
| } else if (l > 16) { |
| __m128i first16 = _mm_loadu_si128(p), second16 = loadn128((uint8_t *)p + 16, l - 16); |
| v = _mm256_permute2f128_si256(_mm256_castsi128_si256(first16), _mm256_castsi128_si256(second16), 0x20); |
| } else if (l == 16) { |
| v = _mm256_castsi128_si256(_mm_loadu_si128(p)); |
| } else { |
| v = _mm256_castsi128_si256(loadn_end_of_page(p, l)); |
| } |
| v = _mm256_and_si256(v, mask); |
| |
| return v; |
| } |
| |
| static inline void storen128(void *_p, size_t l, __m128i v) |
| { |
| uint8_t buf[16], *p = _p; |
| |
| *(__m128i *)buf = v; |
| |
| for (size_t i = 0; i != l; ++i) |
| p[i] = buf[i]; |
| } |
| |
| void ptls_fusion_aesgcm_encrypt(ptls_fusion_aesgcm_context_t *_ctx, void *output, const void *input, size_t inlen, __m128i ctr, |
| const void *_aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp) |
| { |
| /* init the bits (we can always run in full), but use the last slot for calculating ek0, if possible */ |
| #define AESECB6_INIT() \ |
| do { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits0 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits1 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits2 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits3 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits4 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| if (PTLS_LIKELY(srclen > 16 * 5)) { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits5 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| } else { \ |
| if ((state & STATE_EK0_BEEN_FED) == 0) { \ |
| bits5 = ek0; \ |
| state |= STATE_EK0_BEEN_FED; \ |
| } \ |
| if ((state & STATE_SUPP_USED) != 0 && srclen <= 16 * 4 && (const __m128i *)supp->input + 1 <= dst_ghash) { \ |
| bits4 = _mm_loadu_si128(supp->input); \ |
| bits4keys = ((struct ctr_context *)supp->ctx)->fusion.keys.m128; \ |
| state |= STATE_SUPP_IN_PROCESS; \ |
| } \ |
| } \ |
| __m128i k = ctx->super.ecb.keys.m128[0]; \ |
| bits0 = _mm_xor_si128(bits0, k); \ |
| bits1 = _mm_xor_si128(bits1, k); \ |
| bits2 = _mm_xor_si128(bits2, k); \ |
| bits3 = _mm_xor_si128(bits3, k); \ |
| bits4 = _mm_xor_si128(bits4, bits4keys[0]); \ |
| bits5 = _mm_xor_si128(bits5, k); \ |
| } while (0) |
| |
| /* aes block update */ |
| #define AESECB6_UPDATE(i) \ |
| do { \ |
| __m128i k = ctx->super.ecb.keys.m128[i]; \ |
| bits0 = _mm_aesenc_si128(bits0, k); \ |
| bits1 = _mm_aesenc_si128(bits1, k); \ |
| bits2 = _mm_aesenc_si128(bits2, k); \ |
| bits3 = _mm_aesenc_si128(bits3, k); \ |
| bits4 = _mm_aesenc_si128(bits4, bits4keys[i]); \ |
| bits5 = _mm_aesenc_si128(bits5, k); \ |
| } while (0) |
| |
| /* aesenclast */ |
| #define AESECB6_FINAL(i) \ |
| do { \ |
| __m128i k = ctx->super.ecb.keys.m128[i]; \ |
| bits0 = _mm_aesenclast_si128(bits0, k); \ |
| bits1 = _mm_aesenclast_si128(bits1, k); \ |
| bits2 = _mm_aesenclast_si128(bits2, k); \ |
| bits3 = _mm_aesenclast_si128(bits3, k); \ |
| bits4 = _mm_aesenclast_si128(bits4, bits4keys[i]); \ |
| bits5 = _mm_aesenclast_si128(bits5, k); \ |
| } while (0) |
| |
| struct ptls_fusion_aesgcm_context128 *ctx = (void *)_ctx; |
| __m128i ek0, bits0, bits1, bits2, bits3, bits4, bits5 = _mm_setzero_si128(); |
| const __m128i *bits4keys = ctx->super.ecb.keys.m128; /* is changed to supp->ctx.keys when calcurating suppout */ |
| struct ptls_fusion_gfmul_state128 gstate = {0}; |
| __m128i gdatabuf[6]; |
| __m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)inlen * 8), byteswap128); |
| |
| // src and dst are updated after the chunk is processed |
| const __m128i *src = input; |
| __m128i *dst = output; |
| size_t srclen = inlen; |
| // aad and src_ghash are updated before the chunk is processed (i.e., when the pointers are fed indo the processor) |
| const __m128i *aad = _aad, *dst_ghash = dst; |
| size_t dst_ghashlen = srclen; |
| |
| struct ptls_fusion_aesgcm_ghash_precompute128 *ghash_precompute = ctx->ghash + (aadlen + 15) / 16 + (srclen + 15) / 16 + 1; |
| |
| #define STATE_EK0_BEEN_FED 0x3 |
| #define STATE_EK0_INCOMPLETE 0x2 |
| #define STATE_EK0_READY() ((state & STATE_EK0_BEEN_FED) == 0x1) |
| #define STATE_SUPP_USED 0x4 |
| #define STATE_SUPP_IN_PROCESS 0x8 |
| int32_t state = supp != NULL ? STATE_SUPP_USED : 0; |
| |
| /* build counter */ |
| ctr = _mm_insert_epi32(ctr, 1, 0); |
| ek0 = _mm_shuffle_epi8(ctr, byteswap128); |
| |
| /* start preparing AES */ |
| AESECB6_INIT(); |
| AESECB6_UPDATE(1); |
| |
| /* build first ghash data (only AAD can be fed at this point, as this would be calculated alongside the first AES block) */ |
| const __m128i *gdata = gdatabuf; // points to the elements fed into GHASH |
| size_t gdata_cnt = 0; |
| if (PTLS_LIKELY(aadlen != 0)) { |
| while (gdata_cnt < 6) { |
| if (PTLS_LIKELY(aadlen < 16)) { |
| if (aadlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn128(aad, aadlen); |
| aadlen = 0; |
| } |
| goto MainLoop; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++); |
| aadlen -= 16; |
| } |
| } |
| |
| /* the main loop */ |
| MainLoop: |
| while (1) { |
| /* run AES and multiplication in parallel */ |
| size_t i; |
| for (i = 2; i < gdata_cnt + 2; ++i) { |
| AESECB6_UPDATE(i); |
| gfmul_nextstep128(&gstate, _mm_loadu_si128(gdata++), --ghash_precompute); |
| } |
| for (; i < ctx->super.ecb.rounds; ++i) |
| AESECB6_UPDATE(i); |
| AESECB6_FINAL(i); |
| |
| /* apply the bit stream to src and write to dest */ |
| if (PTLS_LIKELY(srclen >= 6 * 16)) { |
| #define APPLY(i) _mm_storeu_si128(dst + i, _mm_xor_si128(_mm_loadu_si128(src + i), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| dst += 6; |
| src += 6; |
| srclen -= 6 * 16; |
| } else { |
| if ((state & STATE_EK0_BEEN_FED) == STATE_EK0_BEEN_FED) { |
| ek0 = bits5; |
| state &= ~STATE_EK0_INCOMPLETE; |
| } |
| if ((state & STATE_SUPP_IN_PROCESS) != 0) { |
| _mm_storeu_si128((__m128i *)supp->output, bits4); |
| state &= ~(STATE_SUPP_USED | STATE_SUPP_IN_PROCESS); |
| } |
| if (srclen != 0) { |
| #define APPLY(i) \ |
| do { \ |
| if (PTLS_LIKELY(srclen >= 16)) { \ |
| _mm_storeu_si128(dst++, _mm_xor_si128(_mm_loadu_si128(src++), bits##i)); \ |
| srclen -= 16; \ |
| } else if (PTLS_LIKELY(srclen != 0)) { \ |
| bits0 = bits##i; \ |
| goto ApplyRemainder; \ |
| } else { \ |
| goto ApplyEnd; \ |
| } \ |
| } while (0) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| goto ApplyEnd; |
| ApplyRemainder: |
| storen128(dst, srclen, _mm_xor_si128(loadn128(src, srclen), bits0)); |
| dst = (__m128i *)((uint8_t *)dst + srclen); |
| srclen = 0; |
| ApplyEnd:; |
| } |
| } |
| |
| /* next block AES starts here */ |
| AESECB6_INIT(); |
| |
| AESECB6_UPDATE(1); |
| |
| /* setup gdata */ |
| if (PTLS_UNLIKELY(aadlen != 0)) { |
| gdata_cnt = 0; |
| while (gdata_cnt < 6) { |
| if (aadlen < 16) { |
| if (aadlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn128(aad, aadlen); |
| aadlen = 0; |
| } |
| goto GdataFillDST; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++); |
| aadlen -= 16; |
| } |
| gdata = gdatabuf; |
| } else if (PTLS_LIKELY(dst_ghashlen >= 6 * 16)) { |
| gdata = dst_ghash; |
| gdata_cnt = 6; |
| dst_ghash += 6; |
| dst_ghashlen -= 96; |
| } else { |
| gdata_cnt = 0; |
| GdataFillDST: |
| while (gdata_cnt < 6) { |
| if (dst_ghashlen < 16) { |
| if (dst_ghashlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn128(dst_ghash, dst_ghashlen); |
| dst_ghashlen = 0; |
| } |
| if (gdata_cnt < 6) |
| goto Finish; |
| break; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(dst_ghash++); |
| dst_ghashlen -= 16; |
| } |
| gdata = gdatabuf; |
| } |
| } |
| |
| Finish: |
| gdatabuf[gdata_cnt++] = ac; |
| |
| /* We have complete set of data to be fed into GHASH. Let's finish the remaining calculation. |
| * Note that by now, all AES operations for payload encryption and ek0 are complete. This is is because it is necessary for GCM |
| * to process at least the same amount of data (i.e. payload-blocks + AC), and because AES is at least one 96-byte block ahead. |
| */ |
| assert(STATE_EK0_READY()); |
| for (size_t i = 0; i < gdata_cnt; ++i) |
| gfmul_nextstep128(&gstate, gdatabuf[i], --ghash_precompute); |
| |
| gfmul_reduce128(&gstate); |
| _mm_storeu_si128(dst, gfmul_get_tag128(&gstate, ek0)); |
| |
| /* Finish the calculation of supplemental vector. Done at the very last, because the sample might cover the GCM tag. */ |
| if ((state & STATE_SUPP_USED) != 0) { |
| size_t i; |
| if ((state & STATE_SUPP_IN_PROCESS) == 0) { |
| bits4keys = ((struct ctr_context *)supp->ctx)->fusion.keys.m128; |
| bits4 = _mm_xor_si128(_mm_loadu_si128(supp->input), bits4keys[0]); |
| i = 1; |
| } else { |
| i = 2; |
| } |
| do { |
| bits4 = _mm_aesenc_si128(bits4, bits4keys[i++]); |
| } while (i != ctx->super.ecb.rounds); |
| bits4 = _mm_aesenclast_si128(bits4, bits4keys[i]); |
| _mm_storeu_si128((__m128i *)supp->output, bits4); |
| } |
| |
| #undef AESECB6_INIT |
| #undef AESECB6_UPDATE |
| #undef AESECB6_FINAL |
| #undef STATE_EK0_BEEN_FOUND |
| #undef STATE_EK0_READY |
| #undef STATE_SUPP_IN_PROCESS |
| } |
| |
| int ptls_fusion_aesgcm_decrypt(ptls_fusion_aesgcm_context_t *_ctx, void *output, const void *input, size_t inlen, __m128i ctr, |
| const void *_aad, size_t aadlen, const void *tag) |
| { |
| struct ptls_fusion_aesgcm_context128 *ctx = (void *)_ctx; |
| __m128i ek0 = _mm_setzero_si128(), bits0, bits1 = _mm_setzero_si128(), bits2 = _mm_setzero_si128(), bits3 = _mm_setzero_si128(), |
| bits4 = _mm_setzero_si128(), bits5 = _mm_setzero_si128(); |
| struct ptls_fusion_gfmul_state128 gstate = {0}; |
| __m128i gdatabuf[6]; |
| __m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)inlen * 8), byteswap128); |
| struct ptls_fusion_aesgcm_ghash_precompute128 *ghash_precompute = ctx->ghash + (aadlen + 15) / 16 + (inlen + 15) / 16 + 1; |
| |
| const __m128i *gdata; // points to the elements fed into GHASH |
| size_t gdata_cnt; |
| |
| const __m128i *src_ghash = input, *src_aes = input, *aad = _aad; |
| __m128i *dst = output; |
| size_t nondata_aes_cnt = 0, src_ghashlen = inlen, src_aeslen = inlen; |
| |
| /* schedule ek0 and suppkey */ |
| ctr = _mm_add_epi64(ctr, one8); |
| bits0 = _mm_xor_si128(_mm_shuffle_epi8(ctr, byteswap128), ctx->super.ecb.keys.m128[0]); |
| ++nondata_aes_cnt; |
| |
| #define STATE_IS_FIRST_RUN 0x1 |
| #define STATE_GHASH_HAS_MORE 0x2 |
| int state = STATE_IS_FIRST_RUN | STATE_GHASH_HAS_MORE; |
| |
| /* the main loop */ |
| while (1) { |
| |
| /* setup gdata */ |
| if (PTLS_UNLIKELY(aadlen != 0)) { |
| gdata = gdatabuf; |
| gdata_cnt = 0; |
| while (gdata_cnt < 6) { |
| if (aadlen < 16) { |
| if (aadlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn128(aad, aadlen); |
| aadlen = 0; |
| ++nondata_aes_cnt; |
| } |
| goto GdataFillSrc; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++); |
| aadlen -= 16; |
| ++nondata_aes_cnt; |
| } |
| } else if (PTLS_LIKELY(src_ghashlen >= 6 * 16)) { |
| gdata = src_ghash; |
| gdata_cnt = 6; |
| src_ghash += 6; |
| src_ghashlen -= 6 * 16; |
| } else { |
| gdata = gdatabuf; |
| gdata_cnt = 0; |
| GdataFillSrc: |
| while (gdata_cnt < 6) { |
| if (src_ghashlen < 16) { |
| if (src_ghashlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn128(src_ghash, src_ghashlen); |
| src_ghash = (__m128i *)((uint8_t *)src_ghash + src_ghashlen); |
| src_ghashlen = 0; |
| } |
| if (gdata_cnt < 6 && (state & STATE_GHASH_HAS_MORE) != 0) { |
| gdatabuf[gdata_cnt++] = ac; |
| state &= ~STATE_GHASH_HAS_MORE; |
| } |
| break; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(src_ghash++); |
| src_ghashlen -= 16; |
| } |
| } |
| |
| /* setup aes bits */ |
| if (PTLS_LIKELY(nondata_aes_cnt == 0)) |
| goto InitAllBits; |
| switch (nondata_aes_cnt) { |
| #define INIT_BITS(n, keys) \ |
| case n: \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits##n = _mm_xor_si128(_mm_shuffle_epi8(ctr, byteswap128), keys.m128[0]); |
| InitAllBits: |
| INIT_BITS(0, ctx->super.ecb.keys); |
| INIT_BITS(1, ctx->super.ecb.keys); |
| INIT_BITS(2, ctx->super.ecb.keys); |
| INIT_BITS(3, ctx->super.ecb.keys); |
| INIT_BITS(4, ctx->super.ecb.keys); |
| INIT_BITS(5, ctx->super.ecb.keys); |
| #undef INIT_BITS |
| } |
| |
| { /* run aes and ghash */ |
| #define AESECB6_UPDATE(i) \ |
| do { \ |
| __m128i k = ctx->super.ecb.keys.m128[i]; \ |
| bits0 = _mm_aesenc_si128(bits0, k); \ |
| bits1 = _mm_aesenc_si128(bits1, k); \ |
| bits2 = _mm_aesenc_si128(bits2, k); \ |
| bits3 = _mm_aesenc_si128(bits3, k); \ |
| bits4 = _mm_aesenc_si128(bits4, k); \ |
| bits5 = _mm_aesenc_si128(bits5, k); \ |
| } while (0) |
| |
| size_t aesi; |
| for (aesi = 1; aesi <= gdata_cnt; ++aesi) { |
| AESECB6_UPDATE(aesi); |
| gfmul_nextstep128(&gstate, _mm_loadu_si128(gdata++), --ghash_precompute); |
| } |
| for (; aesi < ctx->super.ecb.rounds; ++aesi) |
| AESECB6_UPDATE(aesi); |
| __m128i k = ctx->super.ecb.keys.m128[aesi]; |
| bits0 = _mm_aesenclast_si128(bits0, k); |
| bits1 = _mm_aesenclast_si128(bits1, k); |
| bits2 = _mm_aesenclast_si128(bits2, k); |
| bits3 = _mm_aesenclast_si128(bits3, k); |
| bits4 = _mm_aesenclast_si128(bits4, k); |
| bits5 = _mm_aesenclast_si128(bits5, k); |
| |
| #undef AESECB6_UPDATE |
| } |
| |
| /* apply aes bits */ |
| if (PTLS_LIKELY(nondata_aes_cnt == 0 && src_aeslen >= 6 * 16)) { |
| #define APPLY(i) _mm_storeu_si128(dst + i, _mm_xor_si128(_mm_loadu_si128(src_aes + i), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| dst += 6; |
| src_aes += 6; |
| src_aeslen -= 6 * 16; |
| } else { |
| if ((state & STATE_IS_FIRST_RUN) != 0) { |
| ek0 = bits0; |
| state &= ~STATE_IS_FIRST_RUN; |
| } |
| switch (nondata_aes_cnt) { |
| #define APPLY(i) \ |
| case i: \ |
| if (PTLS_LIKELY(src_aeslen > 16)) { \ |
| _mm_storeu_si128(dst++, _mm_xor_si128(_mm_loadu_si128(src_aes++), bits##i)); \ |
| src_aeslen -= 16; \ |
| } else { \ |
| bits0 = bits##i; \ |
| goto Finish; \ |
| } |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| } |
| nondata_aes_cnt = 0; |
| } |
| } |
| |
| Finish: |
| if (src_aeslen == 16) { |
| _mm_storeu_si128(dst, _mm_xor_si128(_mm_loadu_si128(src_aes), bits0)); |
| } else if (src_aeslen != 0) { |
| storen128(dst, src_aeslen, _mm_xor_si128(loadn128(src_aes, src_aeslen), bits0)); |
| } |
| |
| assert((state & STATE_IS_FIRST_RUN) == 0); |
| |
| /* the only case where AES operation is complete and GHASH is not is when the application of AC is remaining */ |
| if ((state & STATE_GHASH_HAS_MORE) != 0) { |
| assert(ghash_precompute - 1 == ctx->ghash); |
| gfmul_nextstep128(&gstate, ac, --ghash_precompute); |
| } |
| |
| gfmul_reduce128(&gstate); |
| __m128i calctag = gfmul_get_tag128(&gstate, ek0); |
| |
| return _mm_movemask_epi8(_mm_cmpeq_epi8(calctag, _mm_loadu_si128(tag))) == 0xffff; |
| |
| #undef STATE_IS_FIRST_RUN |
| #undef STATE_GHASH_HAS_MORE |
| } |
| |
| static __m128i expand_key(__m128i key, __m128i temp) |
| { |
| key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
| key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
| key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
| |
| key = _mm_xor_si128(key, temp); |
| |
| return key; |
| } |
| |
| void ptls_fusion_aesecb_init(ptls_fusion_aesecb_context_t *ctx, int is_enc, const void *key, size_t key_size, int aesni256) |
| { |
| assert(is_enc && "decryption is not supported (yet)"); |
| |
| size_t i = 0; |
| |
| switch (key_size) { |
| case 16: /* AES128 */ |
| ctx->rounds = 10; |
| break; |
| case 32: /* AES256 */ |
| ctx->rounds = 14; |
| break; |
| default: |
| assert(!"invalid key size; AES128 / AES256 are supported"); |
| break; |
| } |
| ctx->aesni256 = aesni256; |
| |
| /* load and expand keys using keys.m128 */ |
| ctx->keys.m128[i++] = _mm_loadu_si128((__m128i *)key); |
| if (key_size == 32) |
| ctx->keys.m128[i++] = _mm_loadu_si128((__m128i *)key + 1); |
| while (1) { |
| #define EXPAND(R) \ |
| { \ |
| ctx->keys.m128[i] = \ |
| expand_key(ctx->keys.m128[i - key_size / 16], \ |
| _mm_shuffle_epi32(_mm_aeskeygenassist_si128(ctx->keys.m128[i - 1], R), _MM_SHUFFLE(3, 3, 3, 3))); \ |
| if (i == ctx->rounds) \ |
| break; \ |
| ++i; \ |
| if (key_size > 24) { \ |
| ctx->keys.m128[i] = \ |
| expand_key(ctx->keys.m128[i - key_size / 16], \ |
| _mm_shuffle_epi32(_mm_aeskeygenassist_si128(ctx->keys.m128[i - 1], R), _MM_SHUFFLE(2, 2, 2, 2))); \ |
| ++i; \ |
| } \ |
| } |
| EXPAND(0x1); |
| EXPAND(0x2); |
| EXPAND(0x4); |
| EXPAND(0x8); |
| EXPAND(0x10); |
| EXPAND(0x20); |
| EXPAND(0x40); |
| EXPAND(0x80); |
| EXPAND(0x1b); |
| EXPAND(0x36); |
| #undef EXPAND |
| } |
| |
| /* convert to keys.m256 if aesni256 is used */ |
| if (ctx->aesni256) { |
| size_t i = ctx->rounds; |
| do { |
| ctx->keys.m256[i] = _mm256_broadcastsi128_si256(ctx->keys.m128[i]); |
| } while (i-- != 0); |
| } |
| } |
| |
| void ptls_fusion_aesecb_dispose(ptls_fusion_aesecb_context_t *ctx) |
| { |
| ptls_clear_memory(ctx, sizeof(*ctx)); |
| } |
| |
| void ptls_fusion_aesecb_encrypt(ptls_fusion_aesecb_context_t *ctx, void *dst, const void *src) |
| { |
| __m128i v = _mm_loadu_si128(src); |
| v = aesecb_encrypt(ctx, v); |
| _mm_storeu_si128(dst, v); |
| } |
| |
| /** |
| * returns the number of ghash entries that is required to handle an AEAD block of given size |
| */ |
| static size_t aesgcm_calc_ghash_cnt(size_t capacity) |
| { |
| // round-up by block size, add to handle worst split of the size between AAD and payload, plus context to hash AC |
| return (capacity + 15) / 16 + 2; |
| } |
| |
| static void setup_one_ghash_entry(ptls_fusion_aesgcm_context_t *ctx) |
| { |
| __m128i *H, *r, *Hprev, H0; |
| |
| if (ctx->ecb.aesni256) { |
| struct ptls_fusion_aesgcm_context256 *ctx256 = (void *)ctx; |
| #define GET_SLOT(i, mem) (&ctx256->ghash[(i) / 2].mem[(i) % 2 == 0]) |
| H = GET_SLOT(ctx->ghash_cnt, H); |
| r = GET_SLOT(ctx->ghash_cnt, r); |
| Hprev = ctx->ghash_cnt == 0 ? NULL : GET_SLOT(ctx->ghash_cnt - 1, H); |
| #undef GET_SLOT |
| H0 = ctx256->ghash[0].H[1]; |
| } else { |
| struct ptls_fusion_aesgcm_context128 *ctx128 = (void *)ctx; |
| H = &ctx128->ghash[ctx->ghash_cnt].H; |
| r = &ctx128->ghash[ctx->ghash_cnt].r; |
| Hprev = ctx->ghash_cnt == 0 ? NULL : &ctx128->ghash[ctx->ghash_cnt - 1].H; |
| H0 = ctx128->ghash[0].H; |
| } |
| |
| if (Hprev != NULL) |
| *H = gfmul(*Hprev, H0); |
| |
| *r = _mm_shuffle_epi32(*H, 78); |
| *r = _mm_xor_si128(*r, *H); |
| |
| ++ctx->ghash_cnt; |
| } |
| |
| static size_t calc_aesgcm_context_size(size_t *ghash_cnt, int aesni256) |
| { |
| size_t sz; |
| |
| if (aesni256) { |
| if (*ghash_cnt % 2 != 0) |
| ++*ghash_cnt; |
| sz = offsetof(struct ptls_fusion_aesgcm_context256, ghash) + |
| sizeof(union ptls_fusion_aesgcm_ghash_precompute256) * *ghash_cnt / 2; |
| } else { |
| sz = offsetof(struct ptls_fusion_aesgcm_context128, ghash) + |
| sizeof(struct ptls_fusion_aesgcm_ghash_precompute128) * *ghash_cnt; |
| } |
| return sz; |
| } |
| |
| static ptls_fusion_aesgcm_context_t *new_aesgcm(const void *key, size_t key_size, size_t capacity, int aesni256) |
| { |
| ptls_fusion_aesgcm_context_t *ctx; |
| size_t ghash_cnt = aesgcm_calc_ghash_cnt(capacity), ctx_size = calc_aesgcm_context_size(&ghash_cnt, aesni256); |
| |
| if ((ctx = aligned_alloc(32, ctx_size)) == NULL) |
| return NULL; |
| |
| ptls_fusion_aesecb_init(&ctx->ecb, 1, key, key_size, aesni256); |
| |
| ctx->capacity = capacity; |
| |
| __m128i H0 = aesecb_encrypt(&ctx->ecb, _mm_setzero_si128()); |
| H0 = _mm_shuffle_epi8(H0, byteswap128); |
| H0 = transformH(H0); |
| if (ctx->ecb.aesni256) { |
| ((struct ptls_fusion_aesgcm_context256 *)ctx)->ghash[0].H[1] = H0; |
| } else { |
| ((struct ptls_fusion_aesgcm_context128 *)ctx)->ghash[0].H = H0; |
| } |
| |
| ctx->ghash_cnt = 0; |
| while (ctx->ghash_cnt < ghash_cnt) |
| setup_one_ghash_entry(ctx); |
| |
| return ctx; |
| } |
| |
| ptls_fusion_aesgcm_context_t *ptls_fusion_aesgcm_new(const void *key, size_t key_size, size_t capacity) |
| { |
| return new_aesgcm(key, key_size, capacity, 0); |
| } |
| |
| ptls_fusion_aesgcm_context_t *ptls_fusion_aesgcm_set_capacity(ptls_fusion_aesgcm_context_t *ctx, size_t capacity) |
| { |
| size_t new_ghash_cnt = aesgcm_calc_ghash_cnt(capacity); |
| |
| if (new_ghash_cnt <= ctx->ghash_cnt) |
| return ctx; |
| |
| size_t new_ctx_size = calc_aesgcm_context_size(&new_ghash_cnt, ctx->ecb.aesni256), |
| old_ctx_size = calc_aesgcm_context_size(&ctx->ghash_cnt, ctx->ecb.aesni256); |
| |
| ptls_fusion_aesgcm_context_t *newp; |
| if ((newp = aligned_alloc(32, new_ctx_size)) == NULL) |
| return NULL; |
| memcpy(newp, ctx, old_ctx_size); |
| ptls_clear_memory(ctx, old_ctx_size); |
| aligned_free(ctx); |
| ctx = newp; |
| |
| ctx->capacity = capacity; |
| while (ctx->ghash_cnt < new_ghash_cnt) |
| setup_one_ghash_entry(ctx); |
| |
| return ctx; |
| } |
| |
| void ptls_fusion_aesgcm_free(ptls_fusion_aesgcm_context_t *ctx) |
| { |
| ptls_clear_memory(ctx, calc_aesgcm_context_size(&ctx->ghash_cnt, ctx->ecb.aesni256)); |
| /* skip ptls_fusion_aesecb_dispose, based on the knowledge that it does not allocate memory elsewhere */ |
| |
| aligned_free(ctx); |
| } |
| |
| static void ctr_dispose(ptls_cipher_context_t *_ctx) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| ptls_fusion_aesecb_dispose(&ctx->fusion); |
| _mm_storeu_si128(&ctx->bits, _mm_setzero_si128()); |
| } |
| |
| static void ctr_init(ptls_cipher_context_t *_ctx, const void *iv) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| _mm_storeu_si128(&ctx->bits, aesecb_encrypt(&ctx->fusion, _mm_loadu_si128(iv))); |
| ctx->is_ready = 1; |
| } |
| |
| static void ctr_transform(ptls_cipher_context_t *_ctx, void *output, const void *input, size_t len) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| |
| assert((ctx->is_ready && len <= 16) || |
| !"CTR transfomation is supported only once per call to `init` and the maximum size is limited to 16 bytes"); |
| ctx->is_ready = 0; |
| |
| if (len < 16) { |
| storen128(output, len, _mm_xor_si128(_mm_loadu_si128(&ctx->bits), loadn128(input, len))); |
| } else { |
| _mm_storeu_si128(output, _mm_xor_si128(_mm_loadu_si128(&ctx->bits), _mm_loadu_si128(input))); |
| } |
| } |
| |
| static int aesctr_setup(ptls_cipher_context_t *_ctx, int is_enc, const void *key, size_t key_size) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| |
| ctx->super.do_dispose = ctr_dispose; |
| ctx->super.do_init = ctr_init; |
| ctx->super.do_transform = ctr_transform; |
| ptls_fusion_aesecb_init(&ctx->fusion, 1, key, key_size, 0 /* probably we do not need aesni256 for CTR? */); |
| ctx->is_ready = 0; |
| |
| return 0; |
| } |
| |
| static int aes128ctr_setup(ptls_cipher_context_t *ctx, int is_enc, const void *key) |
| { |
| return aesctr_setup(ctx, is_enc, key, PTLS_AES128_KEY_SIZE); |
| } |
| |
| static int aes256ctr_setup(ptls_cipher_context_t *ctx, int is_enc, const void *key) |
| { |
| return aesctr_setup(ctx, is_enc, key, PTLS_AES256_KEY_SIZE); |
| } |
| |
| static void aesgcm_dispose_crypto(ptls_aead_context_t *_ctx) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| |
| ptls_fusion_aesgcm_free(ctx->aesgcm); |
| } |
| |
| static void aead_do_encrypt_init(ptls_aead_context_t *_ctx, uint64_t seq, const void *aad, size_t aadlen) |
| { |
| assert(!"FIXME"); |
| } |
| |
| static size_t aead_do_encrypt_update(ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen) |
| { |
| assert(!"FIXME"); |
| return SIZE_MAX; |
| } |
| |
| static size_t aead_do_encrypt_final(ptls_aead_context_t *_ctx, void *_output) |
| { |
| assert(!"FIXME"); |
| return SIZE_MAX; |
| } |
| |
| static inline __m128i calc_counter(struct aesgcm_context *ctx, uint64_t seq) |
| { |
| __m128i ctr = _mm_setzero_si128(); |
| ctr = _mm_insert_epi64(ctr, seq, 0); |
| ctr = _mm_slli_si128(ctr, 4); |
| ctr = _mm_xor_si128(ctx->static_iv, ctr); |
| return ctr; |
| } |
| |
| void aead_do_encrypt(struct st_ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen, uint64_t seq, |
| const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp) |
| { |
| struct aesgcm_context *ctx = (void *)_ctx; |
| |
| if (inlen + aadlen > ctx->aesgcm->capacity) |
| ctx->aesgcm = ptls_fusion_aesgcm_set_capacity(ctx->aesgcm, inlen + aadlen); |
| ptls_fusion_aesgcm_encrypt(ctx->aesgcm, output, input, inlen, calc_counter(ctx, seq), aad, aadlen, supp); |
| } |
| |
| static void aead_do_encrypt_v(struct st_ptls_aead_context_t *ctx, void *output, ptls_iovec_t *input, size_t incnt, uint64_t seq, |
| const void *aad, size_t aadlen) |
| { |
| assert(!"FIXME"); |
| } |
| |
| static size_t aead_do_decrypt(ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen, uint64_t seq, |
| const void *aad, size_t aadlen) |
| { |
| struct aesgcm_context *ctx = (void *)_ctx; |
| |
| if (inlen < 16) |
| return SIZE_MAX; |
| |
| size_t enclen = inlen - 16; |
| if (enclen + aadlen > ctx->aesgcm->capacity) |
| ctx->aesgcm = ptls_fusion_aesgcm_set_capacity(ctx->aesgcm, enclen + aadlen); |
| if (!ptls_fusion_aesgcm_decrypt(ctx->aesgcm, output, input, enclen, calc_counter(ctx, seq), aad, aadlen, |
| (const uint8_t *)input + enclen)) |
| return SIZE_MAX; |
| return enclen; |
| } |
| |
| static inline void aesgcm_get_iv(ptls_aead_context_t *_ctx, void *iv) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| |
| __m128i m128 = _mm_shuffle_epi8(ctx->static_iv, byteswap128); |
| storen128(iv, PTLS_AESGCM_IV_SIZE, m128); |
| } |
| |
| static inline void aesgcm_set_iv(ptls_aead_context_t *_ctx, const void *iv) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| |
| ctx->static_iv = loadn128(iv, PTLS_AESGCM_IV_SIZE); |
| ctx->static_iv = _mm_shuffle_epi8(ctx->static_iv, byteswap128); |
| } |
| |
| static int aesgcm_setup(ptls_aead_context_t *_ctx, int is_enc, const void *key, const void *iv, size_t key_size) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| |
| ctx->static_iv = loadn128(iv, PTLS_AESGCM_IV_SIZE); |
| ctx->static_iv = _mm_shuffle_epi8(ctx->static_iv, byteswap128); |
| if (key == NULL) |
| return 0; |
| |
| ctx->super.dispose_crypto = aesgcm_dispose_crypto; |
| ctx->super.do_get_iv = aesgcm_get_iv; |
| ctx->super.do_set_iv = aesgcm_set_iv; |
| ctx->super.do_encrypt_init = aead_do_encrypt_init; |
| ctx->super.do_encrypt_update = aead_do_encrypt_update; |
| ctx->super.do_encrypt_final = aead_do_encrypt_final; |
| ctx->super.do_encrypt = aead_do_encrypt; |
| ctx->super.do_encrypt_v = aead_do_encrypt_v; |
| ctx->super.do_decrypt = aead_do_decrypt; |
| |
| ctx->aesgcm = new_aesgcm(key, key_size, 1500 /* assume ordinary packet size */, 0 /* no support for aesni256 yet */); |
| |
| return 0; |
| } |
| |
| static int aes128gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv) |
| { |
| return aesgcm_setup(ctx, is_enc, key, iv, PTLS_AES128_KEY_SIZE); |
| } |
| |
| static int aes256gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv) |
| { |
| return aesgcm_setup(ctx, is_enc, key, iv, PTLS_AES256_KEY_SIZE); |
| } |
| |
| int ptls_fusion_can_aesni256 = 0; |
| ptls_cipher_algorithm_t ptls_fusion_aes128ctr = {"AES128-CTR", |
| PTLS_AES128_KEY_SIZE, |
| 1, // block size |
| PTLS_AES_IV_SIZE, |
| sizeof(struct ctr_context), |
| aes128ctr_setup}; |
| ptls_cipher_algorithm_t ptls_fusion_aes256ctr = {"AES256-CTR", |
| PTLS_AES256_KEY_SIZE, |
| 1, // block size |
| PTLS_AES_IV_SIZE, |
| sizeof(struct ctr_context), |
| aes256ctr_setup}; |
| ptls_aead_algorithm_t ptls_fusion_aes128gcm = {"AES128-GCM", |
| PTLS_AESGCM_CONFIDENTIALITY_LIMIT, |
| PTLS_AESGCM_INTEGRITY_LIMIT, |
| &ptls_fusion_aes128ctr, |
| NULL, // &ptls_fusion_aes128ecb, |
| PTLS_AES128_KEY_SIZE, |
| PTLS_AESGCM_IV_SIZE, |
| PTLS_AESGCM_TAG_SIZE, |
| {0}, // while it may work, no reason to support TLS/1.2 |
| 0, |
| 0, |
| sizeof(struct aesgcm_context), |
| aes128gcm_setup}; |
| ptls_aead_algorithm_t ptls_fusion_aes256gcm = {"AES256-GCM", |
| PTLS_AESGCM_CONFIDENTIALITY_LIMIT, |
| PTLS_AESGCM_INTEGRITY_LIMIT, |
| &ptls_fusion_aes256ctr, |
| NULL, // &ptls_fusion_aes256ecb, |
| PTLS_AES256_KEY_SIZE, |
| PTLS_AESGCM_IV_SIZE, |
| PTLS_AESGCM_TAG_SIZE, |
| {0}, // while it may work, no reason to support TLS/1.2 |
| 0, |
| 0, |
| sizeof(struct aesgcm_context), |
| aes256gcm_setup}; |
| |
| static inline size_t calc_total_length(ptls_iovec_t *input, size_t incnt) |
| { |
| size_t totlen = 0; |
| for (size_t i = 0; i < incnt; ++i) |
| totlen += input[i].len; |
| return totlen; |
| } |
| |
| static inline void reduce_aad128(struct ptls_fusion_gfmul_state128 *gstate, struct ptls_fusion_aesgcm_ghash_precompute128 *ghash, |
| const void *_aad, size_t aadlen) |
| { |
| struct ptls_fusion_aesgcm_ghash_precompute128 *ghash_precompute; |
| const uint8_t *aad = _aad; |
| |
| while (PTLS_UNLIKELY(aadlen >= 6 * 16)) { |
| ghash_precompute = ghash + 6; |
| gfmul_firststep128(gstate, _mm_loadu_si128((void *)aad), --ghash_precompute); |
| aad += 16; |
| aadlen -= 16; |
| for (int i = 1; i < 6; ++i) { |
| gfmul_nextstep128(gstate, _mm_loadu_si128((void *)aad), --ghash_precompute); |
| aad += 16; |
| aadlen -= 16; |
| } |
| gfmul_reduce128(gstate); |
| } |
| |
| if (PTLS_LIKELY(aadlen != 0)) { |
| ghash_precompute = ghash + (aadlen + 15) / 16; |
| if (PTLS_UNLIKELY(aadlen >= 16)) { |
| gfmul_firststep128(gstate, _mm_loadu_si128((void *)aad), --ghash_precompute); |
| aad += 16; |
| aadlen -= 16; |
| while (aadlen >= 16) { |
| gfmul_nextstep128(gstate, _mm_loadu_si128((void *)aad), --ghash_precompute); |
| aad += 16; |
| aadlen -= 16; |
| } |
| if (PTLS_LIKELY(aadlen != 0)) |
| gfmul_nextstep128(gstate, loadn128(aad, aadlen), --ghash_precompute); |
| } else { |
| gfmul_firststep128(gstate, loadn128(aad, aadlen), --ghash_precompute); |
| } |
| assert(ghash == ghash_precompute); |
| gfmul_reduce128(gstate); |
| } |
| } |
| |
| NO_SANITIZE_ADDRESS |
| static inline uint8_t *load_preceding_unaligned(uint8_t *encbuf, uint8_t **output) |
| { |
| uint8_t *encp; |
| |
| if ((encp = encbuf + ((uintptr_t)*output & 63)) != encbuf) { |
| _mm256_store_si256((void *)encbuf, _mm256_load_si256((void *)(*output - (encp - encbuf)))); |
| _mm256_store_si256((void *)(encbuf + 32), _mm256_load_si256((void *)(*output - (encp - encbuf) + 32))); |
| *output -= encp - encbuf; |
| } |
| |
| return encp; |
| } |
| |
| NO_SANITIZE_ADDRESS |
| static inline void write_remaining_bytes(uint8_t *dst, const uint8_t *src, const uint8_t *end) |
| { |
| /* Write in 64-byte chunks, using NT store instructions. Last partial block, if any, is written to cache, as that cache line |
| * would likely be read when the next TLS record is being built. */ |
| |
| for (; end - src >= 64; dst += 64, src += 64) { |
| _mm256_stream_si256((void *)dst, _mm256_load_si256((void *)src)); |
| _mm256_stream_si256((void *)(dst + 32), _mm256_load_si256((void *)(src + 32))); |
| } |
| _mm_sfence(); /* weakly ordered writes have to be synced before being passed to NIC */ |
| if (src != end) { |
| for (; end - src >= 16; dst += 16, src += 16) |
| _mm_store_si128((void *)dst, _mm_load_si128((void *)src)); |
| if (src != end) |
| storen128((void *)dst, end - src, loadn128((void *)src, end - src)); |
| } |
| } |
| |
| NO_SANITIZE_ADDRESS |
| static void non_temporal_encrypt_v128(struct st_ptls_aead_context_t *_ctx, void *_output, ptls_iovec_t *input, size_t incnt, |
| uint64_t seq, const void *aad, size_t aadlen) |
| { |
| /* init the bits (we can always run in full), but use the last slot for calculating ek0, if possible */ |
| #define AESECB6_INIT() \ |
| do { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits0 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits1 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits2 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits3 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits4 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| if (PTLS_LIKELY(srclen > 16 * 5) || src_vecleft != 0) { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits5 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| } else { \ |
| bits5 = ek0; \ |
| state |= STATE_EK0_READY; \ |
| } \ |
| __m128i k = ctx->super.ecb.keys.m128[0]; \ |
| bits0 = _mm_xor_si128(bits0, k); \ |
| bits1 = _mm_xor_si128(bits1, k); \ |
| bits2 = _mm_xor_si128(bits2, k); \ |
| bits3 = _mm_xor_si128(bits3, k); \ |
| bits4 = _mm_xor_si128(bits4, k); \ |
| bits5 = _mm_xor_si128(bits5, k); \ |
| } while (0) |
| |
| /* aes block update */ |
| #define AESECB6_UPDATE(i) \ |
| do { \ |
| __m128i k = ctx->super.ecb.keys.m128[i]; \ |
| bits0 = _mm_aesenc_si128(bits0, k); \ |
| bits1 = _mm_aesenc_si128(bits1, k); \ |
| bits2 = _mm_aesenc_si128(bits2, k); \ |
| bits3 = _mm_aesenc_si128(bits3, k); \ |
| bits4 = _mm_aesenc_si128(bits4, k); \ |
| bits5 = _mm_aesenc_si128(bits5, k); \ |
| } while (0) |
| |
| /* aesenclast */ |
| #define AESECB6_FINAL(i) \ |
| do { \ |
| __m128i k = ctx->super.ecb.keys.m128[i]; \ |
| bits0 = _mm_aesenclast_si128(bits0, k); \ |
| bits1 = _mm_aesenclast_si128(bits1, k); \ |
| bits2 = _mm_aesenclast_si128(bits2, k); \ |
| bits3 = _mm_aesenclast_si128(bits3, k); \ |
| bits4 = _mm_aesenclast_si128(bits4, k); \ |
| bits5 = _mm_aesenclast_si128(bits5, k); \ |
| } while (0) |
| |
| struct aesgcm_context *agctx = (void *)_ctx; |
| uint8_t *output = _output; |
| |
| #define STATE_EK0_READY 0x1 |
| #define STATE_COPY_128B 0x2 |
| int32_t state = 0; |
| |
| /* Bytes are written here first then written using NT store instructions, 64 bytes at a time. */ |
| uint8_t encbuf[32 * 6] __attribute__((aligned(32))), *encp; |
| |
| /* `encbuf` should be large enough to store up to 63-bytes of unaligned bytes, 6 16-byte AES blocks, plus AEAD tag that is |
| * append to the ciphertext before writing the bytes to main memory using NT store instructions. */ |
| PTLS_BUILD_ASSERT(sizeof(encbuf) >= 64 + 6 * 16 + 16); |
| |
| /* load unaligned data within same cache line preceding `output`, adjusting pointers accordingly */ |
| encp = load_preceding_unaligned(encbuf, &output); |
| |
| /* First write would be 128 bytes (32+6*16), if encbuf contains no less than 32 bytes already. */ |
| if (encp - encbuf >= 32) |
| state |= STATE_COPY_128B; |
| |
| /* setup ctr, retain Ek(0), len(A) | len(C) to be fed into GCM */ |
| __m128i ctr = calc_counter(agctx, seq); |
| ctr = _mm_insert_epi32(ctr, 1, 0); |
| __m128i ek0 = _mm_shuffle_epi8(ctr, byteswap128); |
| __m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)calc_total_length(input, incnt) * 8), byteswap128); |
| |
| struct ptls_fusion_aesgcm_context128 *ctx = (void *)agctx->aesgcm; |
| __m128i bits0, bits1, bits2, bits3, bits4, bits5 = _mm_setzero_si128(); |
| struct ptls_fusion_gfmul_state128 gstate = {0}; |
| |
| /* find the first non-empty vec */ |
| const uint8_t *src = NULL; |
| size_t srclen = 0, src_vecleft = incnt; |
| while (srclen == 0 && src_vecleft != 0) { |
| src = (void *)input[0].base; |
| srclen = input[0].len; |
| ++input; |
| --src_vecleft; |
| } |
| |
| /* Prepare first 6 blocks of bit stream, at the same time calculating ghash of AAD. */ |
| AESECB6_INIT(); |
| AESECB6_UPDATE(1); |
| AESECB6_UPDATE(2); |
| reduce_aad128(&gstate, ctx->ghash, aad, aadlen); |
| for (size_t i = 3; i < ctx->super.ecb.rounds; ++i) |
| AESECB6_UPDATE(i); |
| AESECB6_FINAL(ctx->super.ecb.rounds); |
| |
| /* Main loop. This loop: |
| * 1. using current keystream (bits0..bits5), xors a up to 6 * 16 bytes and writes to encbuf, |
| * 2. then if there is no more data to be encrypted, exit the loop, otherwise, |
| * 3. calculate ghash of the blocks being written to encbuf, |
| * 4. calculate next 6 * 16 bytes of keystream, |
| * 5. writes encbuf in 64-byte blocks |
| * When exitting the loop, `remaining_ghash_from` represents the offset within `encbuf` from where ghash remains to be |
| * calculated. */ |
| size_t remaining_ghash_from = encp - encbuf; |
| if (srclen != 0) { |
| while (1) { |
| /* apply the bit stream to input, writing to encbuf */ |
| if (PTLS_LIKELY(srclen >= 6 * 16)) { |
| #define APPLY(i) _mm_storeu_si128((void *)(encp + i * 16), _mm_xor_si128(_mm_loadu_si128((void *)(src + i * 16)), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| encp += 6 * 16; |
| src += 6 * 16; |
| srclen -= 6 * 16; |
| if (PTLS_UNLIKELY(srclen == 0)) { |
| if (src_vecleft == 0) { |
| remaining_ghash_from = (encp - encbuf) - 96; |
| break; |
| } |
| src = (void *)input[0].base; |
| srclen = input[0].len; |
| ++input; |
| --src_vecleft; |
| } |
| } else { |
| /* slow path, load at most 6 * 16 bytes to encbuf then encrypt in-place */ |
| size_t bytes_copied = 0; |
| do { |
| if (srclen >= 16 && bytes_copied < 5 * 16) { |
| _mm_storeu_si128((void *)(encp + bytes_copied), _mm_loadu_si128((void *)src)); |
| bytes_copied += 16; |
| src += 16; |
| srclen -= 16; |
| } else { |
| encp[bytes_copied++] = *src++; |
| --srclen; |
| } |
| if (PTLS_UNLIKELY(srclen == 0)) { |
| do { |
| if (src_vecleft == 0) |
| break; |
| src = (void *)input[0].base; |
| srclen = input[0].len; |
| ++input; |
| --src_vecleft; |
| } while (srclen == 0); |
| if (srclen == 0) |
| break; |
| } |
| } while (bytes_copied < 6 * 16); |
| #define APPLY(i) _mm_storeu_si128((void *)(encp + i * 16), _mm_xor_si128(_mm_loadu_si128((void *)(encp + i * 16)), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| encp += bytes_copied; |
| if (PTLS_UNLIKELY(srclen == 0)) { |
| /* Calculate amonut of data left to be ghashed, as well as zero-clearing the remainedr of partial block, as it |
| * will be fed into ghash. */ |
| remaining_ghash_from = (encp - encbuf) - bytes_copied; |
| if ((bytes_copied & 15) != 0) |
| _mm_storeu_si128((void *)encp, _mm_setzero_si128()); |
| break; |
| } |
| } |
| |
| /* Next 96-byte block starts here. Run AES and ghash in while writing output using non-temporal stores in 64-byte |
| * blocks. */ |
| AESECB6_INIT(); |
| struct ptls_fusion_aesgcm_ghash_precompute128 *ghash_precompute = ctx->ghash + 6; |
| gfmul_firststep128(&gstate, _mm_loadu_si128((void *)(encp - 6 * 16)), --ghash_precompute); |
| AESECB6_UPDATE(1); |
| gfmul_nextstep128(&gstate, _mm_loadu_si128((void *)(encp - 5 * 16)), --ghash_precompute); |
| AESECB6_UPDATE(2); |
| gfmul_nextstep128(&gstate, _mm_loadu_si128((void *)(encp - 4 * 16)), --ghash_precompute); |
| AESECB6_UPDATE(3); |
| _mm256_stream_si256((void *)output, _mm256_load_si256((void *)encbuf)); |
| _mm256_stream_si256((void *)(output + 32), _mm256_load_si256((void *)(encbuf + 32))); |
| AESECB6_UPDATE(4); |
| gfmul_nextstep128(&gstate, _mm_loadu_si128((void *)(encp - 3 * 16)), --ghash_precompute); |
| AESECB6_UPDATE(5); |
| gfmul_nextstep128(&gstate, _mm_loadu_si128((void *)(encp - 2 * 16)), --ghash_precompute); |
| AESECB6_UPDATE(6); |
| gfmul_nextstep128(&gstate, _mm_loadu_si128((void *)(encp - 1 * 16)), --ghash_precompute); |
| AESECB6_UPDATE(7); |
| if ((state & STATE_COPY_128B) != 0) { |
| _mm256_stream_si256((void *)(output + 64), _mm256_load_si256((void *)(encbuf + 64))); |
| _mm256_stream_si256((void *)(output + 96), _mm256_load_si256((void *)(encbuf + 96))); |
| output += 128; |
| encp -= 128; |
| AESECB6_UPDATE(8); |
| _mm256_store_si256((void *)encbuf, _mm256_load_si256((void *)(encbuf + 128))); |
| _mm256_store_si256((void *)(encbuf + 32), _mm256_load_si256((void *)(encbuf + 160))); |
| } else { |
| output += 64; |
| encp -= 64; |
| _mm256_store_si256((void *)encbuf, _mm256_load_si256((void *)(encbuf + 64))); |
| _mm256_store_si256((void *)(encbuf + 32), _mm256_load_si256((void *)(encbuf + 96))); |
| AESECB6_UPDATE(8); |
| } |
| state ^= STATE_COPY_128B; |
| AESECB6_UPDATE(9); |
| if (PTLS_UNLIKELY(ctx->super.ecb.rounds != 10)) { |
| for (size_t i = 10; PTLS_LIKELY(i < ctx->super.ecb.rounds); ++i) |
| AESECB6_UPDATE(i); |
| } |
| assert(ctx->ghash == ghash_precompute); |
| gfmul_reduce128(&gstate); |
| AESECB6_FINAL(ctx->super.ecb.rounds); |
| } |
| } |
| |
| /* Now, All the encrypted bits are built in encbuf. Calculate AEAD tag and append to encbuf. */ |
| |
| { /* Run ghash against the remaining bytes, after appending `ac` (i.e., len(A) | len(C)). At this point, we might be ghashing 7 |
| * blocks at once. */ |
| size_t ac_off = remaining_ghash_from + ((encp - encbuf) - remaining_ghash_from + 15) / 16 * 16; |
| _mm_storeu_si128((void *)(encbuf + ac_off), ac); |
| size_t blocks = ((encp - encbuf) - remaining_ghash_from + 15) / 16 + 1; /* round up, +1 for AC */ |
| assert(blocks <= 7); |
| struct ptls_fusion_aesgcm_ghash_precompute128 *ghash_precompute = ctx->ghash + blocks; |
| gfmul_firststep128(&gstate, _mm_loadu_si128((void *)(encbuf + remaining_ghash_from)), --ghash_precompute); |
| remaining_ghash_from += 16; |
| while (ghash_precompute != ctx->ghash) { |
| gfmul_nextstep128(&gstate, _mm_loadu_si128((void *)(encbuf + remaining_ghash_from)), --ghash_precompute); |
| remaining_ghash_from += 16; |
| } |
| gfmul_reduce128(&gstate); |
| } |
| |
| /* Calculate EK0, if in the unlikely case on not been done yet. When encoding in full size (16K), EK0 will be ready. */ |
| if (PTLS_UNLIKELY((state & STATE_EK0_READY) == 0)) { |
| bits5 = _mm_xor_si128(ek0, ctx->super.ecb.keys.m128[0]); |
| for (size_t i = 1; i < ctx->super.ecb.rounds; ++i) |
| bits5 = _mm_aesenc_si128(bits5, ctx->super.ecb.keys.m128[i]); |
| bits5 = _mm_aesenclast_si128(bits5, ctx->super.ecb.keys.m128[ctx->super.ecb.rounds]); |
| } |
| |
| /* append tag to encbuf */ |
| _mm_storeu_si128((void *)encp, gfmul_get_tag128(&gstate, bits5)); |
| encp += 16; |
| |
| /* write remaining bytes */ |
| write_remaining_bytes(output, encbuf, encp); |
| |
| #undef AESECB6_INIT |
| #undef AESECB6_UPDATE |
| #undef AESECB6_FINAL |
| #undef STATE_EK0_READY |
| #undef STATE_COPY_128B |
| } |
| |
| static size_t non_temporal_decrypt128(ptls_aead_context_t *_ctx, void *_output, const void *_input, size_t inlen, uint64_t seq, |
| const void *aad, size_t aadlen) |
| { |
| /* Bail out if the input is too short, or remove tag from range. */ |
| if (inlen < 16) |
| return SIZE_MAX; |
| inlen -= 16; |
| size_t textlen = inlen; |
| |
| /* init the bits (we can always run in full), but use the last slot for calculating ek0, if possible */ |
| #define AESECB6_INIT() \ |
| do { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits0 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits1 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits2 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits3 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits4 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| if (PTLS_LIKELY(inlen > 16 * 5)) { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits5 = _mm_shuffle_epi8(ctr, byteswap128); \ |
| } else { \ |
| bits5 = ek0; \ |
| state |= STATE_EK0_READY; \ |
| } \ |
| __m128i k = ctx->super.ecb.keys.m128[0]; \ |
| bits0 = _mm_xor_si128(bits0, k); \ |
| bits1 = _mm_xor_si128(bits1, k); \ |
| bits2 = _mm_xor_si128(bits2, k); \ |
| bits3 = _mm_xor_si128(bits3, k); \ |
| bits4 = _mm_xor_si128(bits4, k); \ |
| bits5 = _mm_xor_si128(bits5, k); \ |
| } while (0) |
| |
| /* aes block update */ |
| #define AESECB6_UPDATE(i) \ |
| do { \ |
| __m128i k = ctx->super.ecb.keys.m128[i]; \ |
| bits0 = _mm_aesenc_si128(bits0, k); \ |
| bits1 = _mm_aesenc_si128(bits1, k); \ |
| bits2 = _mm_aesenc_si128(bits2, k); \ |
| bits3 = _mm_aesenc_si128(bits3, k); \ |
| bits4 = _mm_aesenc_si128(bits4, k); \ |
| bits5 = _mm_aesenc_si128(bits5, k); \ |
| } while (0) |
| |
| /* aesenclast */ |
| #define AESECB6_FINAL(i) \ |
| do { \ |
| __m128i k = ctx->super.ecb.keys.m128[i]; \ |
| bits0 = _mm_aesenclast_si128(bits0, k); \ |
| bits1 = _mm_aesenclast_si128(bits1, k); \ |
| bits2 = _mm_aesenclast_si128(bits2, k); \ |
| bits3 = _mm_aesenclast_si128(bits3, k); \ |
| bits4 = _mm_aesenclast_si128(bits4, k); \ |
| bits5 = _mm_aesenclast_si128(bits5, k); \ |
| } while (0) |
| |
| struct aesgcm_context *agctx = (void *)_ctx; |
| uint8_t *output = _output; |
| const uint8_t *input = _input; |
| |
| #define STATE_EK0_READY 0x1 |
| int32_t state = 0; |
| |
| /* setup ctr, retain Ek(0), len(A) | len(C) to be fed into GCM */ |
| __m128i ctr = calc_counter(agctx, seq); |
| ctr = _mm_insert_epi32(ctr, 1, 0); |
| __m128i ek0 = _mm_shuffle_epi8(ctr, byteswap128); |
| __m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)inlen * 8), byteswap128); |
| |
| struct ptls_fusion_aesgcm_context128 *ctx = (void *)agctx->aesgcm; |
| __m128i bits0, bits1, bits2, bits3, bits4, bits5 = _mm_setzero_si128(); |
| struct ptls_fusion_gfmul_state128 gstate = {0}; |
| |
| /* Prepare first 6 blocks of bit stream, at the same time calculating ghash of AAD. */ |
| AESECB6_INIT(); |
| AESECB6_UPDATE(1); |
| AESECB6_UPDATE(2); |
| reduce_aad128(&gstate, ctx->ghash, aad, aadlen); |
| for (size_t i = 3; i < ctx->super.ecb.rounds; ++i) |
| AESECB6_UPDATE(i); |
| AESECB6_FINAL(ctx->super.ecb.rounds); |
| |
| /* Main loop. Operate in full blocks (6 * 16 bytes). */ |
| while (PTLS_LIKELY(inlen >= 6 * 16)) { |
| #define DECRYPT(i) _mm_storeu_si128((void *)(output + i * 16), _mm_xor_si128(bits##i, _mm_loadu_si128((void *)(input + i * 16)))) |
| DECRYPT(0); |
| DECRYPT(1); |
| DECRYPT(2); |
| DECRYPT(3); |
| DECRYPT(4); |
| DECRYPT(5); |
| #undef DECRYPT |
| #define GFMUL_NEXT(i) gfmul_nextstep128(&gstate, _mm_loadu_si128((void *)(input + i * 16)), ctx->ghash + 5 - i) |
| AESECB6_INIT(); |
| AESECB6_UPDATE(1); |
| AESECB6_UPDATE(2); |
| AESECB6_UPDATE(3); |
| gfmul_firststep128(&gstate, _mm_loadu_si128((void *)input), ctx->ghash + 5); |
| AESECB6_UPDATE(4); |
| GFMUL_NEXT(1); |
| AESECB6_UPDATE(5); |
| GFMUL_NEXT(2); |
| AESECB6_UPDATE(6); |
| GFMUL_NEXT(3); |
| AESECB6_UPDATE(7); |
| GFMUL_NEXT(4); |
| AESECB6_UPDATE(8); |
| GFMUL_NEXT(5); |
| AESECB6_UPDATE(9); |
| gfmul_reduce128(&gstate); |
| if (PTLS_UNLIKELY(ctx->super.ecb.rounds != 10)) { |
| size_t i = 10; |
| do { |
| AESECB6_UPDATE(i); |
| } while (++i < ctx->super.ecb.rounds); |
| } |
| AESECB6_FINAL(ctx->super.ecb.rounds); |
| output += 6 * 16; |
| input += 6 * 16; |
| inlen -= 6 * 16; |
| #undef GFMUL_NEXT |
| } |
| |
| /* Decrypt the remainder as well as finishing GHASH calculation. */ |
| if (inlen != 0) { |
| struct ptls_fusion_aesgcm_ghash_precompute128 *ghash_precompute = ctx->ghash + (inlen + 15) / 16 + 1; |
| #define ONEBLOCK(i) \ |
| do { \ |
| if (inlen != 0) { \ |
| __m128i b = inlen >= 16 ? _mm_loadu_si128((void *)input) : loadn128(input, inlen); \ |
| if (i == 0) { \ |
| gfmul_firststep128(&gstate, b, --ghash_precompute); \ |
| } else { \ |
| gfmul_nextstep128(&gstate, b, --ghash_precompute); \ |
| } \ |
| b = _mm_xor_si128(b, bits##i); \ |
| if (inlen >= 16) { \ |
| _mm_storeu_si128((void *)output, b); \ |
| output += 16; \ |
| input += 16; \ |
| inlen -= 16; \ |
| } else { \ |
| storen128(output, inlen, b); \ |
| output += inlen; \ |
| input += inlen; \ |
| inlen = 0; \ |
| } \ |
| } \ |
| } while (0) |
| ONEBLOCK(0); |
| ONEBLOCK(1); |
| ONEBLOCK(2); |
| ONEBLOCK(3); |
| ONEBLOCK(4); |
| ONEBLOCK(5); |
| #undef ONEBLOCK |
| gfmul_nextstep128(&gstate, ac, --ghash_precompute); |
| assert(ghash_precompute == ctx->ghash); |
| } else { |
| gfmul_firststep128(&gstate, ac, ctx->ghash); |
| } |
| gfmul_reduce128(&gstate); |
| |
| /* Calculate EK0 if not yet available in bits5. */ |
| if ((state & STATE_EK0_READY) == 0) { |
| bits5 = _mm_xor_si128(ek0, ctx->super.ecb.keys.m128[0]); |
| for (size_t i = 1; i < ctx->super.ecb.rounds; ++i) |
| bits5 = _mm_aesenc_si128(bits5, ctx->super.ecb.keys.m128[i]); |
| bits5 = _mm_aesenclast_si128(bits5, ctx->super.ecb.keys.m128[ctx->super.ecb.rounds]); |
| } |
| |
| /* Calculate GCM tag and compare. */ |
| __m128i calctag = gfmul_get_tag128(&gstate, bits5); |
| __m128i recvtag = _mm_loadu_si128((void *)input); |
| if (_mm_movemask_epi8(_mm_cmpeq_epi8(calctag, recvtag)) != 0xffff) |
| return SIZE_MAX; |
| |
| return textlen; |
| |
| #undef AESECB6_INIT |
| #undef AESECB6_UPDATE |
| #undef AESECB6_FINAL |
| #undef STATE_EK0_READY |
| } |
| |
| NO_SANITIZE_ADDRESS |
| static void non_temporal_encrypt_v256(struct st_ptls_aead_context_t *_ctx, void *_output, ptls_iovec_t *input, size_t incnt, |
| uint64_t seq, const void *_aad, size_t aadlen) |
| { |
| /* init the bits (we can always run in full), but use the last slot for calculating ek0, if possible */ |
| #define AESECB6_INIT() \ |
| do { \ |
| ctr = _mm256_add_epi64(ctr, incr128x2); \ |
| bits0 = _mm256_shuffle_epi8(ctr, byteswap256); \ |
| ctr = _mm256_add_epi64(ctr, incr128x2); \ |
| bits1 = _mm256_shuffle_epi8(ctr, byteswap256); \ |
| ctr = _mm256_add_epi64(ctr, incr128x2); \ |
| bits2 = _mm256_shuffle_epi8(ctr, byteswap256); \ |
| ctr = _mm256_add_epi64(ctr, incr128x2); \ |
| bits3 = _mm256_shuffle_epi8(ctr, byteswap256); \ |
| ctr = _mm256_add_epi64(ctr, incr128x2); \ |
| bits4 = _mm256_shuffle_epi8(ctr, byteswap256); \ |
| ctr = _mm256_add_epi64(ctr, incr128x2); \ |
| bits5 = _mm256_shuffle_epi8(ctr, byteswap256); \ |
| if (PTLS_UNLIKELY(srclen <= 32 * 6 - 16) && src_vecleft == 0) { \ |
| bits5 = _mm256_permute2f128_si256(bits5, ac_ek0, 0x30); \ |
| state |= STATE_EK0_READY; \ |
| } \ |
| __m256i k = ctx->super.ecb.keys.m256[0]; \ |
| bits0 = _mm256_xor_si256(bits0, k); \ |
| bits1 = _mm256_xor_si256(bits1, k); \ |
| bits2 = _mm256_xor_si256(bits2, k); \ |
| bits3 = _mm256_xor_si256(bits3, k); \ |
| bits4 = _mm256_xor_si256(bits4, k); \ |
| bits5 = _mm256_xor_si256(bits5, k); \ |
| } while (0) |
| |
| /* aes block update */ |
| #define AESECB6_UPDATE(i) \ |
| do { \ |
| __m256i k = ctx->super.ecb.keys.m256[i]; \ |
| bits0 = _mm256_aesenc_epi128(bits0, k); \ |
| bits1 = _mm256_aesenc_epi128(bits1, k); \ |
| bits2 = _mm256_aesenc_epi128(bits2, k); \ |
| bits3 = _mm256_aesenc_epi128(bits3, k); \ |
| bits4 = _mm256_aesenc_epi128(bits4, k); \ |
| bits5 = _mm256_aesenc_epi128(bits5, k); \ |
| } while (0) |
| |
| /* aesenclast */ |
| #define AESECB6_FINAL(i) \ |
| do { \ |
| __m256i k = ctx->super.ecb.keys.m256[i]; \ |
| bits0 = _mm256_aesenclast_epi128(bits0, k); \ |
| bits1 = _mm256_aesenclast_epi128(bits1, k); \ |
| bits2 = _mm256_aesenclast_epi128(bits2, k); \ |
| bits3 = _mm256_aesenclast_epi128(bits3, k); \ |
| bits4 = _mm256_aesenclast_epi128(bits4, k); \ |
| bits5 = _mm256_aesenclast_epi128(bits5, k); \ |
| } while (0) |
| |
| struct aesgcm_context *agctx = (void *)_ctx; |
| uint8_t *output = _output; |
| const uint8_t *aad = _aad; |
| |
| #define STATE_EK0_READY 0x1 |
| int32_t state = 0; |
| |
| /* Bytes are written here first then written using NT store instructions, 64 bytes at a time. */ |
| uint8_t encbuf[32 * 9] __attribute__((aligned(32))), *encp; |
| |
| /* `encbuf` should be large enough to store up to 63-bytes of unaligned bytes, 6 16-byte AES blocks, plus AEAD tag that is |
| * append to the ciphertext before writing the bytes to main memory using NT store instructions. */ |
| PTLS_BUILD_ASSERT(sizeof(encbuf) >= 64 + 6 * 32 + 16); |
| |
| /* load unaligned data within same cache line preceding `output`, adjusting pointers accordingly */ |
| encp = load_preceding_unaligned(encbuf, &output); |
| |
| /* setup ctr, retaining Ek(0), len(A) | len(C) to be fed into GCM */ |
| __m256i ctr = _mm256_broadcastsi128_si256(calc_counter(agctx, seq)); |
| ctr = _mm256_insert_epi32(ctr, 1, 4); |
| __m256i ac_ek0 = _mm256_permute2f128_si256( |
| /* first half: ac */ |
| _mm256_castsi128_si256( |
| _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)calc_total_length(input, incnt) * 8), byteswap128)), |
| /* second half: ek0 */ |
| _mm256_shuffle_epi8(ctr, byteswap256), 0x30); |
| |
| struct ptls_fusion_aesgcm_context256 *ctx = (void *)agctx->aesgcm; |
| __m256i bits0, bits1, bits2, bits3, bits4, bits5 = _mm256_setzero_si256(); |
| struct ptls_fusion_gfmul_state256 gstate = {0}; |
| |
| /* find the first non-empty vec */ |
| const uint8_t *src = NULL; |
| size_t srclen = 0, src_vecleft = incnt; |
| while (srclen == 0 && src_vecleft != 0) { |
| src = (void *)input[0].base; |
| srclen = input[0].len; |
| ++input; |
| --src_vecleft; |
| } |
| |
| /* Prepare first 6 blocks of bit stream, at the same time calculating ghash of AAD. */ |
| AESECB6_INIT(); |
| AESECB6_UPDATE(1); |
| AESECB6_UPDATE(2); |
| if (PTLS_LIKELY(aadlen != 0)) { |
| union ptls_fusion_aesgcm_ghash_precompute256 *ghash_precompute; |
| while (PTLS_UNLIKELY(aadlen >= 6 * 32)) { |
| ghash_precompute = ctx->ghash + 6; |
| gfmul_firststep256(&gstate, _mm256_loadu_si256((void *)aad), 0, --ghash_precompute); |
| aad += 32; |
| aadlen -= 32; |
| for (int i = 1; i < 6; ++i) { |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)aad), --ghash_precompute); |
| aad += 32; |
| aadlen -= 32; |
| } |
| gfmul_reduce256(&gstate); |
| } |
| if (PTLS_LIKELY(aadlen != 0)) { |
| ghash_precompute = ctx->ghash + (aadlen + 31) / 32; |
| if (PTLS_UNLIKELY(aadlen >= 32)) { |
| if (aadlen % 32 == 0 || aadlen % 32 > 16) { |
| gfmul_firststep256(&gstate, _mm256_loadu_si256((void *)aad), 0, --ghash_precompute); |
| aad += 32; |
| aadlen -= 32; |
| } else { |
| gfmul_firststep256(&gstate, _mm256_loadu_si256((void *)aad), 1, --ghash_precompute); |
| aad += 16; |
| aadlen -= 16; |
| } |
| while (aadlen >= 32) { |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)aad), --ghash_precompute); |
| aad += 32; |
| aadlen -= 32; |
| } |
| if (PTLS_LIKELY(aadlen != 0)) { |
| assert(aadlen > 16); |
| gfmul_nextstep256(&gstate, loadn256(aad, aadlen), --ghash_precompute); |
| } |
| } else { |
| gfmul_firststep256(&gstate, loadn256(aad, aadlen), aadlen <= 16, --ghash_precompute); |
| } |
| assert(ctx->ghash == ghash_precompute); |
| gfmul_reduce256(&gstate); |
| } |
| } |
| for (size_t i = 3; i < ctx->super.ecb.rounds; ++i) |
| AESECB6_UPDATE(i); |
| AESECB6_FINAL(ctx->super.ecb.rounds); |
| |
| /* Main loop. This loop: |
| * 1. using current keystream (bits0..bits5), xors a up to 6 * 16 bytes and writes to encbuf, |
| * 2. then if there is no more data to be encrypted, exit the loop, otherwise, |
| * 3. calculate ghash of the blocks being written to encbuf, |
| * 4. calculate next 6 * 16 bytes of keystream, |
| * 5. writes encbuf in 64-byte blocks |
| * When exitting the loop, `remaining_ghash_from` represents the offset within `encbuf` from where ghash remains to be |
| * calculated. */ |
| size_t remaining_ghash_from = encp - encbuf; |
| if (srclen != 0) { |
| while (1) { |
| /* apply the bit stream to input, writing to encbuf */ |
| if (PTLS_LIKELY(srclen >= 6 * 32)) { |
| #define APPLY(i) _mm256_storeu_si256((void *)(encp + i * 32), _mm256_xor_si256(_mm256_loadu_si256((void *)(src + i * 32)), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| encp += 6 * 32; |
| src += 6 * 32; |
| srclen -= 6 * 32; |
| if (PTLS_UNLIKELY(srclen == 0)) { |
| if (src_vecleft == 0) { |
| remaining_ghash_from = (encp - encbuf) - 6 * 32; |
| break; |
| } |
| src = (void *)input[0].base; |
| srclen = input[0].len; |
| ++input; |
| --src_vecleft; |
| } |
| } else { |
| /* slow path, load at most 6 * 32 bytes to encbuf then encrypt in-place */ |
| size_t bytes_copied = 0; |
| do { |
| if (srclen >= 32 && bytes_copied < 5 * 32) { |
| _mm256_storeu_si256((void *)(encp + bytes_copied), _mm256_loadu_si256((void *)src)); |
| bytes_copied += 32; |
| src += 32; |
| srclen -= 32; |
| } else { |
| encp[bytes_copied++] = *src++; |
| --srclen; |
| } |
| if (PTLS_UNLIKELY(srclen == 0)) { |
| do { |
| if (src_vecleft == 0) |
| break; |
| src = (void *)input[0].base; |
| srclen = input[0].len; |
| ++input; |
| --src_vecleft; |
| } while (srclen == 0); |
| if (srclen == 0) |
| break; |
| } |
| } while (bytes_copied < 6 * 32); |
| #define APPLY(i) \ |
| _mm256_storeu_si256((void *)(encp + i * 32), _mm256_xor_si256(_mm256_loadu_si256((void *)(encp + i * 32)), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| encp += bytes_copied; |
| if (PTLS_UNLIKELY(srclen == 0)) { |
| /* Calculate amonut of data left to be ghashed, as well as zero-clearing the remainedr of partial block, as it |
| * will be fed into ghash. */ |
| remaining_ghash_from = (encp - encbuf) - bytes_copied; |
| if ((bytes_copied & 15) != 0) |
| _mm_storeu_si128((void *)encp, _mm_setzero_si128()); |
| break; |
| } |
| } |
| |
| /* Next 96-byte block starts here. Run AES and ghash in parallel while writing output using non-temporal store |
| * instructions. */ |
| AESECB6_INIT(); |
| union ptls_fusion_aesgcm_ghash_precompute256 *ghash_precompute = ctx->ghash + 6; |
| gfmul_firststep256(&gstate, _mm256_loadu_si256((void *)(encp - 6 * 32)), 0, --ghash_precompute); |
| AESECB6_UPDATE(1); |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)(encp - 5 * 32)), --ghash_precompute); |
| AESECB6_UPDATE(2); |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)(encp - 4 * 32)), --ghash_precompute); |
| AESECB6_UPDATE(3); |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)(encp - 3 * 32)), --ghash_precompute); |
| AESECB6_UPDATE(4); |
| _mm256_stream_si256((void *)output, _mm256_load_si256((void *)encbuf)); |
| _mm256_stream_si256((void *)(output + 32), _mm256_load_si256((void *)(encbuf + 32))); |
| _mm256_stream_si256((void *)(output + 64), _mm256_load_si256((void *)(encbuf + 64))); |
| _mm256_stream_si256((void *)(output + 96), _mm256_load_si256((void *)(encbuf + 96))); |
| _mm256_stream_si256((void *)(output + 128), _mm256_load_si256((void *)(encbuf + 128))); |
| _mm256_stream_si256((void *)(output + 160), _mm256_load_si256((void *)(encbuf + 160))); |
| AESECB6_UPDATE(5); |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)(encp - 2 * 32)), --ghash_precompute); |
| AESECB6_UPDATE(6); |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)(encp - 1 * 32)), --ghash_precompute); |
| output += 192; |
| encp -= 192; |
| AESECB6_UPDATE(7); |
| _mm256_store_si256((void *)encbuf, _mm256_load_si256((void *)(encbuf + 192))); |
| AESECB6_UPDATE(8); |
| _mm256_store_si256((void *)(encbuf + 32), _mm256_load_si256((void *)(encbuf + 224))); |
| AESECB6_UPDATE(9); |
| if (PTLS_UNLIKELY(ctx->super.ecb.rounds != 10)) { |
| for (size_t i = 10; PTLS_LIKELY(i < ctx->super.ecb.rounds); ++i) |
| AESECB6_UPDATE(i); |
| } |
| assert(ctx->ghash == ghash_precompute); |
| gfmul_reduce256(&gstate); |
| AESECB6_FINAL(ctx->super.ecb.rounds); |
| } |
| } |
| |
| /* Now, All the encrypted bits are built in encbuf. Calculate AEAD tag and append to encbuf. */ |
| |
| { /* Run ghash against the remaining bytes, after appending `ac` (i.e., len(A) | len(C)). At this point, we might be ghashing 7 |
| * blocks at once. */ |
| size_t ac_off = remaining_ghash_from + ((encp - encbuf) - remaining_ghash_from + 15) / 16 * 16; |
| _mm_storeu_si128((void *)(encbuf + ac_off), _mm256_castsi256_si128(ac_ek0)); |
| size_t blocks = ((encp - encbuf) - remaining_ghash_from + 15) / 16 + 1; /* round up, +1 for AC */ |
| assert(blocks <= 13); |
| union ptls_fusion_aesgcm_ghash_precompute256 *ghash_precompute = ctx->ghash + blocks / 2; |
| if (blocks % 2 != 0) { |
| gfmul_firststep256(&gstate, _mm256_loadu_si256((void *)(encbuf + remaining_ghash_from)), 1, ghash_precompute); |
| remaining_ghash_from += 16; |
| } else { |
| gfmul_firststep256(&gstate, _mm256_loadu_si256((void *)(encbuf + remaining_ghash_from)), 0, --ghash_precompute); |
| remaining_ghash_from += 32; |
| } |
| while (ghash_precompute != ctx->ghash) { |
| gfmul_nextstep256(&gstate, _mm256_loadu_si256((void *)(encbuf + remaining_ghash_from)), --ghash_precompute); |
| remaining_ghash_from += 32; |
| } |
| gfmul_reduce256(&gstate); |
| } |
| |
| /* Calculate EK0, if in the unlikely case on not been done yet. When encoding in full size (16K), EK0 will be ready. */ |
| if (PTLS_UNLIKELY((state & STATE_EK0_READY) == 0)) { |
| bits5 = ac_ek0; |
| bits5 = _mm256_xor_si256(bits5, ctx->super.ecb.keys.m256[0]); |
| for (size_t i = 1; i < ctx->super.ecb.rounds; ++i) |
| bits5 = _mm256_aesenc_epi128(bits5, ctx->super.ecb.keys.m256[i]); |
| bits5 = _mm256_aesenclast_epi128(bits5, ctx->super.ecb.keys.m256[ctx->super.ecb.rounds]); |
| } |
| |
| /* append tag to encbuf */ |
| _mm_storeu_si128((void *)encp, |
| gfmul_get_tag256(&gstate, _mm256_castsi256_si128(_mm256_permute2f128_si256(bits5, bits5, 0x11)))); |
| encp += 16; |
| |
| /* write remaining bytes */ |
| write_remaining_bytes(output, encbuf, encp); |
| } |
| |
| static int non_temporal_setup(ptls_aead_context_t *_ctx, int is_enc, const void *key, const void *iv, size_t key_size) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| int aesni256 = is_enc && ptls_fusion_can_aesni256; |
| |
| ctx->static_iv = loadn128(iv, PTLS_AESGCM_IV_SIZE); |
| ctx->static_iv = _mm_shuffle_epi8(ctx->static_iv, byteswap128); |
| if (key == NULL) |
| return 0; |
| |
| ctx->super.dispose_crypto = aesgcm_dispose_crypto; |
| ctx->super.do_get_iv = aesgcm_get_iv; |
| ctx->super.do_set_iv = aesgcm_set_iv; |
| ctx->super.do_encrypt_init = NULL; |
| ctx->super.do_encrypt_update = NULL; |
| ctx->super.do_encrypt_final = NULL; |
| if (is_enc) { |
| ctx->super.do_encrypt = ptls_aead__do_encrypt; |
| ctx->super.do_encrypt_v = aesni256 ? non_temporal_encrypt_v256 : non_temporal_encrypt_v128; |
| ctx->super.do_decrypt = NULL; |
| } else { |
| assert(!aesni256); |
| ctx->super.do_encrypt = NULL; |
| ctx->super.do_encrypt_v = NULL; |
| ctx->super.do_decrypt = non_temporal_decrypt128; |
| } |
| |
| ctx->aesgcm = |
| new_aesgcm(key, key_size, |
| 7 * (ptls_fusion_can_aesni256 ? 32 : 16), // 6 blocks at once, plus len(A) | len(C) that we might append |
| aesni256); |
| |
| return 0; |
| } |
| |
| static int non_temporal_aes128gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv) |
| { |
| return non_temporal_setup(ctx, is_enc, key, iv, PTLS_AES128_KEY_SIZE); |
| } |
| |
| static int non_temporal_aes256gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv) |
| { |
| return non_temporal_setup(ctx, is_enc, key, iv, PTLS_AES256_KEY_SIZE); |
| } |
| |
| ptls_aead_algorithm_t ptls_non_temporal_aes128gcm = {"AES128-GCM", |
| PTLS_AESGCM_CONFIDENTIALITY_LIMIT, |
| PTLS_AESGCM_INTEGRITY_LIMIT, |
| &ptls_fusion_aes128ctr, |
| NULL, // &ptls_fusion_aes128ecb, |
| PTLS_AES128_KEY_SIZE, |
| PTLS_AESGCM_IV_SIZE, |
| PTLS_AESGCM_TAG_SIZE, |
| {PTLS_TLS12_AESGCM_FIXED_IV_SIZE, PTLS_TLS12_AESGCM_RECORD_IV_SIZE}, |
| 1, |
| PTLS_X86_CACHE_LINE_ALIGN_BITS, |
| sizeof(struct aesgcm_context), |
| non_temporal_aes128gcm_setup}; |
| ptls_aead_algorithm_t ptls_non_temporal_aes256gcm = {"AES256-GCM", |
| PTLS_AESGCM_CONFIDENTIALITY_LIMIT, |
| PTLS_AESGCM_INTEGRITY_LIMIT, |
| &ptls_fusion_aes256ctr, |
| NULL, // &ptls_fusion_aes128ecb, |
| PTLS_AES256_KEY_SIZE, |
| PTLS_AESGCM_IV_SIZE, |
| PTLS_AESGCM_TAG_SIZE, |
| {PTLS_TLS12_AESGCM_FIXED_IV_SIZE, PTLS_TLS12_AESGCM_RECORD_IV_SIZE}, |
| 1, |
| PTLS_X86_CACHE_LINE_ALIGN_BITS, |
| sizeof(struct aesgcm_context), |
| non_temporal_aes256gcm_setup}; |
| |
| #ifdef _WINDOWS |
| /** |
| * ptls_fusion_is_supported_by_cpu: |
| * Check that the CPU has extended instructions for PCMUL, AES and AVX2. |
| * This test assumes that the CPU is following the x86/x64 architecture. |
| * A slightly more refined test could check that the cpu_info spells out |
| * "genuineIntel" or "authenticAMD", but would fail in presence of |
| * little known CPU brands or some VM */ |
| int ptls_fusion_is_supported_by_cpu(void) |
| { |
| uint32_t cpu_info[4]; |
| uint32_t nb_ids; |
| int is_supported = 0; |
| |
| __cpuid(cpu_info, 0); |
| nb_ids = cpu_info[0]; |
| |
| if (nb_ids >= 7) { |
| uint32_t leaf1_ecx; |
| __cpuid(cpu_info, 1); |
| leaf1_ecx = cpu_info[2]; |
| |
| if (/* PCLMUL */ (leaf1_ecx & (1 << 5)) != 0 && /* AES */ (leaf1_ecx & (1 << 25)) != 0) { |
| uint32_t leaf7_ebx, leaf7_ecx; |
| __cpuid(cpu_info, 7); |
| leaf7_ebx = cpu_info[1]; |
| leaf7_ecx = cpu_info[2]; |
| |
| is_supported = /* AVX2 */ (leaf7_ebx & (1 << 5)) != 0; |
| |
| /* enable 256-bit mode if possible */ |
| if (is_supported && (leaf7_ecx & 0x600) != 0 && !ptls_fusion_can_aesni256) |
| ptls_fusion_can_aesni256 = 1; |
| } |
| } |
| |
| return is_supported; |
| } |
| #else |
| int ptls_fusion_is_supported_by_cpu(void) |
| { |
| unsigned leaf1_ecx, leaf7_ebx, leaf7_ecx; |
| |
| { /* GCC-specific code to obtain CPU features */ |
| unsigned leaf_cnt; |
| __asm__("cpuid" : "=a"(leaf_cnt) : "a"(0) : "ebx", "ecx", "edx"); |
| if (leaf_cnt < 7) |
| return 0; |
| __asm__("cpuid" : "=c"(leaf1_ecx) : "a"(1) : "ebx", "edx"); |
| __asm__("cpuid" : "=b"(leaf7_ebx), "=c"(leaf7_ecx) : "a"(7), "c"(0) : "edx"); |
| } |
| |
| /* AVX2 */ |
| if ((leaf7_ebx & (1 << 5)) == 0) |
| return 0; |
| /* AES */ |
| if ((leaf1_ecx & (1 << 25)) == 0) |
| return 0; |
| /* PCLMUL */ |
| if ((leaf1_ecx & (1 << 1)) == 0) |
| return 0; |
| |
| /* enable 256-bit mode if possible */ |
| if ((leaf7_ecx & 0x600) != 0 && !ptls_fusion_can_aesni256) |
| ptls_fusion_can_aesni256 = 1; |
| |
| return 1; |
| } |
| #endif |