blob: a6abafe51fe30f3b2fd1c040a227e2eec424ee5d [file] [log] [blame]
/*
* Copyright (c) 2016 DeNA Co., Ltd., Kazuho Oku
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifdef _WINDOWS
#include "wincompat.h"
#else
#include <unistd.h>
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define OPENSSL_API_COMPAT 0x00908000L
#include <openssl/bn.h>
#include <openssl/crypto.h>
#ifdef OPENSSL_IS_BORINGSSL
#include <openssl/curve25519.h>
#include <openssl/chacha.h>
#include <openssl/poly1305.h>
#endif
#include <openssl/ec.h>
#include <openssl/ecdh.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/x509_vfy.h>
#include "picotls.h"
#include "picotls/openssl.h"
#ifdef OPENSSL_IS_BORINGSSL
#include "./chacha20poly1305.h"
#endif
#ifdef PTLS_HAVE_AEGIS
#include "./libaegis.h"
#endif
#ifdef _WINDOWS
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#pragma warning(disable : 4996)
#endif
#if !defined(LIBRESSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L
#define OPENSSL_1_1_API 1
#elif defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER >= 0x2070000fL
#define OPENSSL_1_1_API 1
#else
#define OPENSSL_1_1_API 0
#endif
#if !OPENSSL_1_1_API
#define EVP_PKEY_up_ref(p) CRYPTO_add(&(p)->references, 1, CRYPTO_LOCK_EVP_PKEY)
#define X509_STORE_up_ref(p) CRYPTO_add(&(p)->references, 1, CRYPTO_LOCK_X509_STORE)
#define X509_STORE_get0_param(p) ((p)->param)
static HMAC_CTX *HMAC_CTX_new(void)
{
HMAC_CTX *ctx;
if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL)
return NULL;
HMAC_CTX_init(ctx);
return ctx;
}
static void HMAC_CTX_free(HMAC_CTX *ctx)
{
HMAC_CTX_cleanup(ctx);
OPENSSL_free(ctx);
}
static int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx)
{
return EVP_CIPHER_CTX_cleanup(ctx);
}
#endif
static const ptls_openssl_signature_scheme_t rsa_signature_schemes[] = {{PTLS_SIGNATURE_RSA_PSS_RSAE_SHA256, EVP_sha256},
{PTLS_SIGNATURE_RSA_PSS_RSAE_SHA384, EVP_sha384},
{PTLS_SIGNATURE_RSA_PSS_RSAE_SHA512, EVP_sha512},
{UINT16_MAX, NULL}};
static const ptls_openssl_signature_scheme_t secp256r1_signature_schemes[] = {
{PTLS_SIGNATURE_ECDSA_SECP256R1_SHA256, EVP_sha256}, {UINT16_MAX, NULL}};
#if PTLS_OPENSSL_HAVE_SECP384R1
static const ptls_openssl_signature_scheme_t secp384r1_signature_schemes[] = {
{PTLS_SIGNATURE_ECDSA_SECP384R1_SHA384, EVP_sha384}, {UINT16_MAX, NULL}};
#endif
#if PTLS_OPENSSL_HAVE_SECP521R1
static const ptls_openssl_signature_scheme_t secp521r1_signature_schemes[] = {
{PTLS_SIGNATURE_ECDSA_SECP521R1_SHA512, EVP_sha512}, {UINT16_MAX, NULL}};
#endif
#if PTLS_OPENSSL_HAVE_ED25519
static const ptls_openssl_signature_scheme_t ed25519_signature_schemes[] = {{PTLS_SIGNATURE_ED25519, NULL},
{UINT16_MAX, NULL}};
#endif
/**
* The default list sent in ClientHello.signature_algorithms. ECDSA certificates are preferred.
*/
static const uint16_t default_signature_schemes[] = {
#if PTLS_OPENSSL_HAVE_ED25519
PTLS_SIGNATURE_ED25519,
#endif
PTLS_SIGNATURE_ECDSA_SECP256R1_SHA256,
#if PTLS_OPENSSL_HAVE_SECP384R1
PTLS_SIGNATURE_ECDSA_SECP384R1_SHA384,
#endif
#if PTLS_OPENSSL_HAVE_SECP521R1
PTLS_SIGNATURE_ECDSA_SECP521R1_SHA512,
#endif
PTLS_SIGNATURE_RSA_PSS_RSAE_SHA512,
PTLS_SIGNATURE_RSA_PSS_RSAE_SHA384,
PTLS_SIGNATURE_RSA_PSS_RSAE_SHA256,
UINT16_MAX};
const ptls_openssl_signature_scheme_t *ptls_openssl_lookup_signature_schemes(EVP_PKEY *key)
{
const ptls_openssl_signature_scheme_t *schemes = NULL;
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
schemes = rsa_signature_schemes;
break;
case EVP_PKEY_EC: {
EC_KEY *eckey = EVP_PKEY_get1_EC_KEY(key);
switch (EC_GROUP_get_curve_name(EC_KEY_get0_group(eckey))) {
case NID_X9_62_prime256v1:
schemes = secp256r1_signature_schemes;
break;
#if PTLS_OPENSSL_HAVE_SECP384R1
case NID_secp384r1:
schemes = secp384r1_signature_schemes;
break;
#endif
#if PTLS_OPENSSL_HAVE_SECP521R1
case NID_secp521r1:
schemes = secp521r1_signature_schemes;
break;
#endif
default:
break;
}
EC_KEY_free(eckey);
} break;
#if PTLS_OPENSSL_HAVE_ED25519
case EVP_PKEY_ED25519:
schemes = ed25519_signature_schemes;
break;
#endif
default:
break;
}
return schemes;
}
const ptls_openssl_signature_scheme_t *ptls_openssl_select_signature_scheme(const ptls_openssl_signature_scheme_t *available,
const uint16_t *algorithms, size_t num_algorithms)
{
const ptls_openssl_signature_scheme_t *scheme;
/* select the algorithm, driven by server-isde preference of `available` */
for (scheme = available; scheme->scheme_id != UINT16_MAX; ++scheme)
for (size_t i = 0; i != num_algorithms; ++i)
if (algorithms[i] == scheme->scheme_id)
return scheme;
return NULL;
}
void ptls_openssl_random_bytes(void *buf, size_t len)
{
int ret = RAND_bytes(buf, (int)len);
if (ret != 1) {
fprintf(stderr, "RAND_bytes() failed with code: %d\n", ret);
abort();
}
}
static EC_KEY *ecdh_gerenate_key(EC_GROUP *group)
{
EC_KEY *key;
if ((key = EC_KEY_new()) == NULL)
return NULL;
if (!EC_KEY_set_group(key, group) || !EC_KEY_generate_key(key)) {
EC_KEY_free(key);
return NULL;
}
return key;
}
static int ecdh_calc_secret(ptls_iovec_t *out, const EC_GROUP *group, EC_KEY *privkey, EC_POINT *peer_point)
{
ptls_iovec_t secret;
int ret;
secret.len = (EC_GROUP_get_degree(group) + 7) / 8;
if ((secret.base = malloc(secret.len)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if (ECDH_compute_key(secret.base, secret.len, peer_point, privkey, NULL) <= 0) {
ret = PTLS_ALERT_HANDSHAKE_FAILURE; /* ??? */
goto Exit;
}
ret = 0;
Exit:
if (ret == 0) {
*out = secret;
} else {
free(secret.base);
*out = (ptls_iovec_t){NULL};
}
return ret;
}
static EC_POINT *x9_62_decode_point(const EC_GROUP *group, ptls_iovec_t vec, BN_CTX *bn_ctx)
{
EC_POINT *point = NULL;
if ((point = EC_POINT_new(group)) == NULL)
return NULL;
if (!EC_POINT_oct2point(group, point, vec.base, vec.len, bn_ctx)) {
EC_POINT_free(point);
return NULL;
}
return point;
}
static ptls_iovec_t x9_62_encode_point(const EC_GROUP *group, const EC_POINT *point, BN_CTX *bn_ctx)
{
ptls_iovec_t vec;
if ((vec.len = EC_POINT_point2oct(group, point, POINT_CONVERSION_UNCOMPRESSED, NULL, 0, bn_ctx)) == 0)
return (ptls_iovec_t){NULL};
if ((vec.base = malloc(vec.len)) == NULL)
return (ptls_iovec_t){NULL};
if (EC_POINT_point2oct(group, point, POINT_CONVERSION_UNCOMPRESSED, vec.base, vec.len, bn_ctx) != vec.len) {
free(vec.base);
return (ptls_iovec_t){NULL};
}
return vec;
}
struct st_x9_62_keyex_context_t {
ptls_key_exchange_context_t super;
BN_CTX *bn_ctx;
EC_KEY *privkey;
};
static void x9_62_free_context(struct st_x9_62_keyex_context_t *ctx)
{
free(ctx->super.pubkey.base);
if (ctx->privkey != NULL)
EC_KEY_free(ctx->privkey);
if (ctx->bn_ctx != NULL)
BN_CTX_free(ctx->bn_ctx);
free(ctx);
}
static int x9_62_on_exchange(ptls_key_exchange_context_t **_ctx, int release, ptls_iovec_t *secret, ptls_iovec_t peerkey)
{
struct st_x9_62_keyex_context_t *ctx = (struct st_x9_62_keyex_context_t *)*_ctx;
const EC_GROUP *group = EC_KEY_get0_group(ctx->privkey);
EC_POINT *peer_point = NULL;
int ret;
if (secret == NULL) {
ret = 0;
goto Exit;
}
if ((peer_point = x9_62_decode_point(group, peerkey, ctx->bn_ctx)) == NULL) {
ret = PTLS_ALERT_DECODE_ERROR;
goto Exit;
}
if ((ret = ecdh_calc_secret(secret, group, ctx->privkey, peer_point)) != 0)
goto Exit;
Exit:
if (peer_point != NULL)
EC_POINT_free(peer_point);
if (release) {
x9_62_free_context(ctx);
*_ctx = NULL;
}
return ret;
}
static int x9_62_create_context(ptls_key_exchange_algorithm_t *algo, struct st_x9_62_keyex_context_t **ctx)
{
int ret;
if ((*ctx = (struct st_x9_62_keyex_context_t *)malloc(sizeof(**ctx))) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
**ctx = (struct st_x9_62_keyex_context_t){{algo, {NULL}, x9_62_on_exchange}};
if (((*ctx)->bn_ctx = BN_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
ret = 0;
Exit:
if (ret != 0 && *ctx != NULL) {
x9_62_free_context(*ctx);
*ctx = NULL;
}
return ret;
}
static int x9_62_setup_pubkey(struct st_x9_62_keyex_context_t *ctx)
{
const EC_GROUP *group = EC_KEY_get0_group(ctx->privkey);
const EC_POINT *pubkey = EC_KEY_get0_public_key(ctx->privkey);
if ((ctx->super.pubkey = x9_62_encode_point(group, pubkey, ctx->bn_ctx)).base == NULL)
return PTLS_ERROR_NO_MEMORY;
return 0;
}
static int x9_62_create_key_exchange(ptls_key_exchange_algorithm_t *algo, ptls_key_exchange_context_t **_ctx)
{
EC_GROUP *group = NULL;
struct st_x9_62_keyex_context_t *ctx = NULL;
int ret;
/* FIXME use a global? */
if ((group = EC_GROUP_new_by_curve_name((int)algo->data)) == NULL) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if ((ret = x9_62_create_context(algo, &ctx)) != 0)
goto Exit;
if ((ctx->privkey = ecdh_gerenate_key(group)) == NULL) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if ((ret = x9_62_setup_pubkey(ctx)) != 0)
goto Exit;
ret = 0;
Exit:
if (group != NULL)
EC_GROUP_free(group);
if (ret == 0) {
*_ctx = &ctx->super;
} else {
if (ctx != NULL)
x9_62_free_context(ctx);
*_ctx = NULL;
}
return ret;
}
static int x9_62_init_key(ptls_key_exchange_algorithm_t *algo, ptls_key_exchange_context_t **_ctx, EC_KEY *eckey)
{
struct st_x9_62_keyex_context_t *ctx = NULL;
int ret;
if ((ret = x9_62_create_context(algo, &ctx)) != 0)
goto Exit;
ctx->privkey = eckey;
if ((ret = x9_62_setup_pubkey(ctx)) != 0)
goto Exit;
ret = 0;
Exit:
if (ret == 0) {
*_ctx = &ctx->super;
} else {
if (ctx != NULL)
x9_62_free_context(ctx);
*_ctx = NULL;
}
return ret;
}
static int x9_62_key_exchange(EC_GROUP *group, ptls_iovec_t *pubkey, ptls_iovec_t *secret, ptls_iovec_t peerkey, BN_CTX *bn_ctx)
{
EC_POINT *peer_point = NULL;
EC_KEY *privkey = NULL;
int ret;
*pubkey = (ptls_iovec_t){NULL};
*secret = (ptls_iovec_t){NULL};
/* decode peer key */
if ((peer_point = x9_62_decode_point(group, peerkey, bn_ctx)) == NULL) {
ret = PTLS_ALERT_DECODE_ERROR;
goto Exit;
}
/* create private key */
if ((privkey = ecdh_gerenate_key(group)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
/* encode public key */
if ((*pubkey = x9_62_encode_point(group, EC_KEY_get0_public_key(privkey), bn_ctx)).base == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
/* calc secret */
secret->len = (EC_GROUP_get_degree(group) + 7) / 8;
if ((secret->base = malloc(secret->len)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
/* ecdh! */
if (ECDH_compute_key(secret->base, secret->len, peer_point, privkey, NULL) <= 0) {
ret = PTLS_ALERT_HANDSHAKE_FAILURE; /* ??? */
goto Exit;
}
ret = 0;
Exit:
if (peer_point != NULL)
EC_POINT_free(peer_point);
if (privkey != NULL)
EC_KEY_free(privkey);
if (ret != 0) {
free(pubkey->base);
*pubkey = (ptls_iovec_t){NULL};
free(secret->base);
*secret = (ptls_iovec_t){NULL};
}
return ret;
}
static int secp_key_exchange(ptls_key_exchange_algorithm_t *algo, ptls_iovec_t *pubkey, ptls_iovec_t *secret, ptls_iovec_t peerkey)
{
EC_GROUP *group = NULL;
BN_CTX *bn_ctx = NULL;
int ret;
if ((group = EC_GROUP_new_by_curve_name((int)algo->data)) == NULL) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if ((bn_ctx = BN_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
ret = x9_62_key_exchange(group, pubkey, secret, peerkey, bn_ctx);
Exit:
if (bn_ctx != NULL)
BN_CTX_free(bn_ctx);
if (group != NULL)
EC_GROUP_free(group);
return ret;
}
#if PTLS_OPENSSL_HAVE_X25519
struct st_evp_keyex_context_t {
ptls_key_exchange_context_t super;
EVP_PKEY *privkey;
};
static void evp_keyex_free(struct st_evp_keyex_context_t *ctx)
{
if (ctx->privkey != NULL)
EVP_PKEY_free(ctx->privkey);
if (ctx->super.pubkey.base != NULL)
OPENSSL_free(ctx->super.pubkey.base);
free(ctx);
}
static int evp_keyex_on_exchange(ptls_key_exchange_context_t **_ctx, int release, ptls_iovec_t *secret, ptls_iovec_t peerkey)
{
struct st_evp_keyex_context_t *ctx = (void *)*_ctx;
EVP_PKEY *evppeer = NULL;
EVP_PKEY_CTX *evpctx = NULL;
int ret;
if (secret == NULL) {
ret = 0;
goto Exit;
}
secret->base = NULL;
if (peerkey.len != ctx->super.pubkey.len) {
ret = PTLS_ALERT_DECRYPT_ERROR;
goto Exit;
}
#ifdef OPENSSL_IS_BORINGSSL
#define X25519_KEY_SIZE 32
if (ctx->super.algo->id == PTLS_GROUP_X25519) {
/* allocate memory to return secret */
if ((secret->base = malloc(X25519_KEY_SIZE)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
secret->len = X25519_KEY_SIZE;
/* fetch raw key and derive the secret */
uint8_t sk_raw[X25519_KEY_SIZE];
size_t sk_raw_len = sizeof(sk_raw);
if (EVP_PKEY_get_raw_private_key(ctx->privkey, sk_raw, &sk_raw_len) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
assert(sk_raw_len == sizeof(sk_raw));
X25519(secret->base, sk_raw, peerkey.base);
ptls_clear_memory(sk_raw, sizeof(sk_raw));
/* check bad key */
static const uint8_t zeros[X25519_KEY_SIZE] = {0};
if (ptls_mem_equal(secret->base, zeros, X25519_KEY_SIZE)) {
ret = PTLS_ERROR_INCOMPATIBLE_KEY;
goto Exit;
}
/* success */
ret = 0;
goto Exit;
}
#undef X25519_KEY_SIZE
#endif
if ((evppeer = EVP_PKEY_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if (EVP_PKEY_copy_parameters(evppeer, ctx->privkey) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_set1_tls_encodedpoint(evppeer, peerkey.base, peerkey.len) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if ((evpctx = EVP_PKEY_CTX_new(ctx->privkey, NULL)) == NULL) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_derive_init(evpctx) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_derive_set_peer(evpctx, evppeer) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_derive(evpctx, NULL, &secret->len) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if ((secret->base = malloc(secret->len)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if (EVP_PKEY_derive(evpctx, secret->base, &secret->len) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
ret = 0;
Exit:
if (evpctx != NULL)
EVP_PKEY_CTX_free(evpctx);
if (evppeer != NULL)
EVP_PKEY_free(evppeer);
if (ret != 0)
free(secret->base);
if (release) {
evp_keyex_free(ctx);
*_ctx = NULL;
}
return ret;
}
/**
* Upon success, ownership of `pkey` is transferred to the object being created. Otherwise, the refcount remains unchanged.
*/
static int evp_keyex_init(ptls_key_exchange_algorithm_t *algo, ptls_key_exchange_context_t **_ctx, EVP_PKEY *pkey)
{
struct st_evp_keyex_context_t *ctx = NULL;
int ret;
/* instantiate */
if ((ctx = malloc(sizeof(*ctx))) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
*ctx = (struct st_evp_keyex_context_t){{algo, {NULL}, evp_keyex_on_exchange}, pkey};
/* set public key */
if ((ctx->super.pubkey.len = EVP_PKEY_get1_tls_encodedpoint(ctx->privkey, &ctx->super.pubkey.base)) == 0) {
ctx->super.pubkey.base = NULL;
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
*_ctx = &ctx->super;
ret = 0;
Exit:
if (ret != 0 && ctx != NULL) {
ctx->privkey = NULL; /* do not decrement refcount of pkey in case of error */
evp_keyex_free(ctx);
}
return ret;
}
static int evp_keyex_create(ptls_key_exchange_algorithm_t *algo, ptls_key_exchange_context_t **ctx)
{
EVP_PKEY_CTX *evpctx = NULL;
EVP_PKEY *pkey = NULL;
int ret;
/* generate private key */
if ((evpctx = EVP_PKEY_CTX_new_id((int)algo->data, NULL)) == NULL) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_keygen_init(evpctx) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_keygen(evpctx, &pkey) <= 0) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
/* setup */
if ((ret = evp_keyex_init(algo, ctx, pkey)) != 0)
goto Exit;
pkey = NULL;
ret = 0;
Exit:
if (pkey != NULL)
EVP_PKEY_free(pkey);
if (evpctx != NULL)
EVP_PKEY_CTX_free(evpctx);
return ret;
}
static int evp_keyex_exchange(ptls_key_exchange_algorithm_t *algo, ptls_iovec_t *outpubkey, ptls_iovec_t *secret,
ptls_iovec_t peerkey)
{
ptls_key_exchange_context_t *ctx = NULL;
int ret;
outpubkey->base = NULL;
if ((ret = evp_keyex_create(algo, &ctx)) != 0)
goto Exit;
if ((outpubkey->base = malloc(ctx->pubkey.len)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
memcpy(outpubkey->base, ctx->pubkey.base, ctx->pubkey.len);
outpubkey->len = ctx->pubkey.len;
ret = evp_keyex_on_exchange(&ctx, 1, secret, peerkey);
assert(ctx == NULL);
Exit:
if (ctx != NULL)
evp_keyex_on_exchange(&ctx, 1, NULL, ptls_iovec_init(NULL, 0));
if (ret != 0)
free(outpubkey->base);
return ret;
}
#endif
int ptls_openssl_create_key_exchange(ptls_key_exchange_context_t **ctx, EVP_PKEY *pkey)
{
int ret, id;
switch (id = EVP_PKEY_id(pkey)) {
case EVP_PKEY_EC: {
/* obtain eckey */
EC_KEY *eckey = EVP_PKEY_get1_EC_KEY(pkey);
/* determine algo */
ptls_key_exchange_algorithm_t *algo;
switch (EC_GROUP_get_curve_name(EC_KEY_get0_group(eckey))) {
case NID_X9_62_prime256v1:
algo = &ptls_openssl_secp256r1;
break;
#if PTLS_OPENSSL_HAVE_SECP384R1
case NID_secp384r1:
algo = &ptls_openssl_secp384r1;
break;
#endif
#if PTLS_OPENSSL_HAVE_SECP521R1
case NID_secp521r1:
algo = &ptls_openssl_secp521r1;
break;
#endif
default:
EC_KEY_free(eckey);
return PTLS_ERROR_INCOMPATIBLE_KEY;
}
/* load key */
if ((ret = x9_62_init_key(algo, ctx, eckey)) != 0) {
EC_KEY_free(eckey);
return ret;
}
return 0;
} break;
#if PTLS_OPENSSL_HAVE_X25519
case NID_X25519:
if ((ret = evp_keyex_init(&ptls_openssl_x25519, ctx, pkey)) != 0)
return ret;
EVP_PKEY_up_ref(pkey);
return 0;
#endif
default:
return PTLS_ERROR_INCOMPATIBLE_KEY;
}
}
#if PTLS_OPENSSL_HAVE_ASYNC
struct async_sign_ctx {
ptls_async_job_t super;
const ptls_openssl_signature_scheme_t *scheme;
EVP_MD_CTX *ctx;
ASYNC_WAIT_CTX *waitctx;
ASYNC_JOB *job;
size_t siglen;
uint8_t sig[0]; // must be last, see `async_sign_ctx_new`
};
static void async_sign_ctx_free(ptls_async_job_t *_self)
{
struct async_sign_ctx *self = (void *)_self;
/* Once the async operation is complete, the user might call `ptls_free` instead of `ptls_handshake`. In such case, to avoid
* desynchronization, let the backend read the result from the socket. The code below is a loop, but it is not going to block;
* it is the responsibility of the user to refrain from calling `ptls_free` until the asynchronous operation is complete. */
if (self->job != NULL) {
int ret;
while (ASYNC_start_job(&self->job, self->waitctx, &ret, NULL, NULL, 0) == ASYNC_PAUSE)
;
}
EVP_MD_CTX_destroy(self->ctx);
ASYNC_WAIT_CTX_free(self->waitctx);
free(self);
}
int async_sign_ctx_get_fd(ptls_async_job_t *_self)
{
struct async_sign_ctx *self = (void *)_self;
OSSL_ASYNC_FD fds[1];
size_t numfds;
ASYNC_WAIT_CTX_get_all_fds(self->waitctx, NULL, &numfds);
assert(numfds == 1);
ASYNC_WAIT_CTX_get_all_fds(self->waitctx, fds, &numfds);
return (int)fds[0];
}
static ptls_async_job_t *async_sign_ctx_new(const ptls_openssl_signature_scheme_t *scheme, EVP_MD_CTX *ctx, size_t siglen)
{
struct async_sign_ctx *self;
if ((self = malloc(offsetof(struct async_sign_ctx, sig) + siglen)) == NULL)
return NULL;
self->super = (ptls_async_job_t){async_sign_ctx_free, async_sign_ctx_get_fd};
self->scheme = scheme;
self->ctx = ctx;
self->waitctx = ASYNC_WAIT_CTX_new();
self->job = NULL;
self->siglen = siglen;
memset(self->sig, 0, siglen);
return &self->super;
}
static int do_sign_async_job(void *_async)
{
struct async_sign_ctx *async = *(struct async_sign_ctx **)_async;
return EVP_DigestSignFinal(async->ctx, async->sig, &async->siglen);
}
static int do_sign_async(ptls_buffer_t *outbuf, ptls_async_job_t **_async)
{
struct async_sign_ctx *async = (void *)*_async;
int ret;
switch (ASYNC_start_job(&async->job, async->waitctx, &ret, do_sign_async_job, &async, sizeof(async))) {
case ASYNC_PAUSE:
return PTLS_ERROR_ASYNC_OPERATION; // async operation inflight; bail out without getting rid of async context
case ASYNC_ERR:
ret = PTLS_ERROR_LIBRARY;
break;
case ASYNC_NO_JOBS:
ret = PTLS_ERROR_LIBRARY;
break;
case ASYNC_FINISH:
async->job = NULL;
ptls_buffer_pushv(outbuf, async->sig, async->siglen);
ret = 0;
break;
default:
ret = PTLS_ERROR_LIBRARY;
break;
}
Exit:
async_sign_ctx_free(&async->super);
*_async = NULL;
return ret;
}
#endif
static int do_sign(EVP_PKEY *key, const ptls_openssl_signature_scheme_t *scheme, ptls_buffer_t *outbuf,
ptls_iovec_t input, ptls_async_job_t **async)
{
EVP_MD_CTX *ctx = NULL;
const EVP_MD *md = scheme->scheme_md != NULL ? scheme->scheme_md() : NULL;
EVP_PKEY_CTX *pkey_ctx;
size_t siglen;
int ret;
if ((ctx = EVP_MD_CTX_create()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if (EVP_DigestSignInit(ctx, &pkey_ctx, md, NULL, key) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
#if PTLS_OPENSSL_HAVE_ED25519
if (EVP_PKEY_id(key) == EVP_PKEY_ED25519) {
/* ED25519 requires the use of the all-at-once function that appeared in OpenSSL 1.1.1, hence different path */
if (EVP_DigestSign(ctx, NULL, &siglen, input.base, input.len) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if ((ret = ptls_buffer_reserve(outbuf, siglen)) != 0)
goto Exit;
if (EVP_DigestSign(ctx, outbuf->base + outbuf->off, &siglen, input.base, input.len) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
} else
#endif
{
if (EVP_PKEY_id(key) == EVP_PKEY_RSA) {
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, -1) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, md) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
}
if (EVP_DigestSignUpdate(ctx, input.base, input.len) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_DigestSignFinal(ctx, NULL, &siglen) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
/* If permitted by the caller (by providing a non-NULL `async` slot), use the asynchronous signing method and return
* immediately. */
#if PTLS_OPENSSL_HAVE_ASYNC
if (async != NULL) {
if ((*async = async_sign_ctx_new(scheme, ctx, siglen)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
return do_sign_async(outbuf, async);
}
#endif
/* Otherwise, generate signature synchronously. */
if ((ret = ptls_buffer_reserve(outbuf, siglen)) != 0)
goto Exit;
if (EVP_DigestSignFinal(ctx, outbuf->base + outbuf->off, &siglen) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
}
outbuf->off += siglen;
ret = 0;
Exit:
if (ctx != NULL)
EVP_MD_CTX_destroy(ctx);
return ret;
}
struct cipher_context_t {
ptls_cipher_context_t super;
EVP_CIPHER_CTX *evp;
};
static void cipher_dispose(ptls_cipher_context_t *_ctx)
{
struct cipher_context_t *ctx = (struct cipher_context_t *)_ctx;
EVP_CIPHER_CTX_free(ctx->evp);
}
static void cipher_do_init(ptls_cipher_context_t *_ctx, const void *iv)
{
struct cipher_context_t *ctx = (struct cipher_context_t *)_ctx;
int ret;
ret = EVP_EncryptInit_ex(ctx->evp, NULL, NULL, NULL, iv);
assert(ret);
}
static int cipher_setup_crypto(ptls_cipher_context_t *_ctx, int is_enc, const void *key, const EVP_CIPHER *cipher,
void (*do_transform)(ptls_cipher_context_t *, void *, const void *, size_t))
{
struct cipher_context_t *ctx = (struct cipher_context_t *)_ctx;
ctx->super.do_dispose = cipher_dispose;
ctx->super.do_init = cipher_do_init;
ctx->super.do_transform = do_transform;
if ((ctx->evp = EVP_CIPHER_CTX_new()) == NULL)
return PTLS_ERROR_NO_MEMORY;
if (is_enc) {
if (!EVP_EncryptInit_ex(ctx->evp, cipher, NULL, key, NULL))
goto Error;
} else {
if (!EVP_DecryptInit_ex(ctx->evp, cipher, NULL, key, NULL))
goto Error;
EVP_CIPHER_CTX_set_padding(ctx->evp, 0); /* required to disable one block buffering in ECB mode */
}
return 0;
Error:
EVP_CIPHER_CTX_free(ctx->evp);
return PTLS_ERROR_LIBRARY;
}
static void cipher_encrypt(ptls_cipher_context_t *_ctx, void *output, const void *input, size_t _len)
{
struct cipher_context_t *ctx = (struct cipher_context_t *)_ctx;
int len = (int)_len, ret = EVP_EncryptUpdate(ctx->evp, output, &len, input, len);
assert(ret);
assert(len == (int)_len);
}
static void cipher_decrypt(ptls_cipher_context_t *_ctx, void *output, const void *input, size_t _len)
{
struct cipher_context_t *ctx = (struct cipher_context_t *)_ctx;
int len = (int)_len, ret = EVP_DecryptUpdate(ctx->evp, output, &len, input, len);
assert(ret);
assert(len == (int)_len);
}
static int aes128ecb_setup_crypto(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return cipher_setup_crypto(ctx, is_enc, key, EVP_aes_128_ecb(), is_enc ? cipher_encrypt : cipher_decrypt);
}
static int aes256ecb_setup_crypto(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return cipher_setup_crypto(ctx, is_enc, key, EVP_aes_256_ecb(), is_enc ? cipher_encrypt : cipher_decrypt);
}
static int aes128ctr_setup_crypto(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return cipher_setup_crypto(ctx, 1, key, EVP_aes_128_ctr(), cipher_encrypt);
}
static int aes256ctr_setup_crypto(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return cipher_setup_crypto(ctx, 1, key, EVP_aes_256_ctr(), cipher_encrypt);
}
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
#ifdef OPENSSL_IS_BORINGSSL
struct boringssl_chacha20_context_t {
ptls_cipher_context_t super;
uint8_t key[PTLS_CHACHA20_KEY_SIZE];
uint8_t iv[12];
struct {
uint32_t ctr;
uint8_t bytes[64];
size_t len;
} keystream;
};
static void boringssl_chacha20_dispose(ptls_cipher_context_t *_ctx)
{
struct boringssl_chacha20_context_t *ctx = (struct boringssl_chacha20_context_t *)_ctx;
ptls_clear_memory(ctx->key, sizeof(ctx->key));
ptls_clear_memory(ctx->iv, sizeof(ctx->iv));
ptls_clear_memory(ctx->keystream.bytes, sizeof(ctx->keystream.bytes));
}
static void boringssl_chacha20_init(ptls_cipher_context_t *_ctx, const void *_iv)
{
struct boringssl_chacha20_context_t *ctx = (struct boringssl_chacha20_context_t *)_ctx;
const uint8_t *iv = _iv;
memcpy(ctx->iv, iv + 4, sizeof(ctx->iv));
ctx->keystream.ctr = iv[0] | ((uint32_t)iv[1] << 8) | ((uint32_t)iv[2] << 16) | ((uint32_t)iv[3] << 24);
ctx->keystream.len = 0;
}
static inline void boringssl_chacha20_transform_buffered(struct boringssl_chacha20_context_t *ctx, uint8_t **output,
const uint8_t **input, size_t *len)
{
size_t apply_len = *len < ctx->keystream.len ? *len : ctx->keystream.len;
const uint8_t *ks = ctx->keystream.bytes + sizeof(ctx->keystream.bytes) - ctx->keystream.len;
ctx->keystream.len -= apply_len;
*len -= apply_len;
for (size_t i = 0; i < apply_len; ++i)
*(*output)++ = *(*input)++ ^ *ks++;
}
static void boringssl_chacha20_transform(ptls_cipher_context_t *_ctx, void *_output, const void *_input, size_t len)
{
struct boringssl_chacha20_context_t *ctx = (struct boringssl_chacha20_context_t *)_ctx;
uint8_t *output = _output;
const uint8_t *input = _input;
if (len == 0)
return;
if (ctx->keystream.len != 0) {
boringssl_chacha20_transform_buffered(ctx, &output, &input, &len);
if (len == 0)
return;
}
assert(ctx->keystream.len == 0);
if (len >= sizeof(ctx->keystream.bytes)) {
size_t blocks = len / CHACHA20POLY1305_BLOCKSIZE;
CRYPTO_chacha_20(output, input, blocks * CHACHA20POLY1305_BLOCKSIZE, ctx->key, ctx->iv, ctx->keystream.ctr);
ctx->keystream.ctr += blocks;
output += blocks * CHACHA20POLY1305_BLOCKSIZE;
input += blocks * CHACHA20POLY1305_BLOCKSIZE;
len -= blocks * CHACHA20POLY1305_BLOCKSIZE;
if (len == 0)
return;
}
memset(ctx->keystream.bytes, 0, CHACHA20POLY1305_BLOCKSIZE);
CRYPTO_chacha_20(ctx->keystream.bytes, ctx->keystream.bytes, CHACHA20POLY1305_BLOCKSIZE, ctx->key, ctx->iv,
ctx->keystream.ctr++);
ctx->keystream.len = sizeof(ctx->keystream.bytes);
boringssl_chacha20_transform_buffered(ctx, &output, &input, &len);
assert(len == 0);
}
static int boringssl_chacha20_setup_crypto(ptls_cipher_context_t *_ctx, int is_enc, const void *key)
{
struct boringssl_chacha20_context_t *ctx = (struct boringssl_chacha20_context_t *)_ctx;
ctx->super.do_dispose = boringssl_chacha20_dispose;
ctx->super.do_init = boringssl_chacha20_init;
ctx->super.do_transform = boringssl_chacha20_transform;
memcpy(ctx->key, key, sizeof(ctx->key));
return 0;
}
#else
static int chacha20_setup_crypto(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return cipher_setup_crypto(ctx, 1, key, EVP_chacha20(), cipher_encrypt);
}
#endif
#endif
#if PTLS_OPENSSL_HAVE_BF
static int bfecb_setup_crypto(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return cipher_setup_crypto(ctx, is_enc, key, EVP_bf_ecb(), is_enc ? cipher_encrypt : cipher_decrypt);
}
#endif
struct aead_crypto_context_t {
ptls_aead_context_t super;
EVP_CIPHER_CTX *evp_ctx;
uint8_t static_iv[PTLS_MAX_IV_SIZE];
};
static void aead_dispose_crypto(ptls_aead_context_t *_ctx)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
if (ctx->evp_ctx != NULL)
EVP_CIPHER_CTX_free(ctx->evp_ctx);
}
static void aead_get_iv(ptls_aead_context_t *_ctx, void *iv)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
memcpy(iv, ctx->static_iv, ctx->super.algo->iv_size);
}
static void aead_set_iv(ptls_aead_context_t *_ctx, const void *iv)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
memcpy(ctx->static_iv, iv, ctx->super.algo->iv_size);
}
static void aead_do_encrypt_init(ptls_aead_context_t *_ctx, uint64_t seq, const void *aad, size_t aadlen)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
uint8_t iv[PTLS_MAX_IV_SIZE];
int ret;
ptls_aead__build_iv(ctx->super.algo, iv, ctx->static_iv, seq);
ret = EVP_EncryptInit_ex(ctx->evp_ctx, NULL, NULL, NULL, iv);
assert(ret);
if (aadlen != 0) {
int blocklen;
ret = EVP_EncryptUpdate(ctx->evp_ctx, NULL, &blocklen, aad, (int)aadlen);
assert(ret);
}
}
static size_t aead_do_encrypt_update(ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
int blocklen, ret;
ret = EVP_EncryptUpdate(ctx->evp_ctx, output, &blocklen, input, (int)inlen);
assert(ret);
return blocklen;
}
static size_t aead_do_encrypt_final(ptls_aead_context_t *_ctx, void *_output)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
uint8_t *output = _output;
size_t off = 0, tag_size = ctx->super.algo->tag_size;
int blocklen, ret;
ret = EVP_EncryptFinal_ex(ctx->evp_ctx, output + off, &blocklen);
assert(ret);
off += blocklen;
ret = EVP_CIPHER_CTX_ctrl(ctx->evp_ctx, EVP_CTRL_GCM_GET_TAG, (int)tag_size, output + off);
assert(ret);
off += tag_size;
return off;
}
static size_t aead_do_decrypt(ptls_aead_context_t *_ctx, void *_output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
uint8_t *output = _output, iv[PTLS_MAX_IV_SIZE];
size_t off = 0, tag_size = ctx->super.algo->tag_size;
int blocklen, ret;
if (inlen < tag_size)
return SIZE_MAX;
ptls_aead__build_iv(ctx->super.algo, iv, ctx->static_iv, seq);
ret = EVP_DecryptInit_ex(ctx->evp_ctx, NULL, NULL, NULL, iv);
assert(ret);
if (aadlen != 0) {
ret = EVP_DecryptUpdate(ctx->evp_ctx, NULL, &blocklen, aad, (int)aadlen);
assert(ret);
}
ret = EVP_DecryptUpdate(ctx->evp_ctx, output + off, &blocklen, input, (int)(inlen - tag_size));
assert(ret);
off += blocklen;
if (!EVP_CIPHER_CTX_ctrl(ctx->evp_ctx, EVP_CTRL_GCM_SET_TAG, (int)tag_size, (void *)((uint8_t *)input + inlen - tag_size)))
return SIZE_MAX;
if (!EVP_DecryptFinal_ex(ctx->evp_ctx, output + off, &blocklen))
return SIZE_MAX;
off += blocklen;
return off;
}
static int aead_setup_crypto(ptls_aead_context_t *_ctx, int is_enc, const void *key, const void *iv, const EVP_CIPHER *cipher)
{
struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *)_ctx;
int ret;
ctx->super.dispose_crypto = aead_dispose_crypto;
ctx->super.do_get_iv = aead_get_iv;
ctx->super.do_set_iv = aead_set_iv;
if (is_enc) {
ctx->super.do_encrypt_init = aead_do_encrypt_init;
ctx->super.do_encrypt_update = aead_do_encrypt_update;
ctx->super.do_encrypt_final = aead_do_encrypt_final;
ctx->super.do_encrypt = ptls_aead__do_encrypt;
ctx->super.do_encrypt_v = ptls_aead__do_encrypt_v;
ctx->super.do_decrypt = NULL;
} else {
ctx->super.do_encrypt_init = NULL;
ctx->super.do_encrypt_update = NULL;
ctx->super.do_encrypt_final = NULL;
ctx->super.do_encrypt = NULL;
ctx->super.do_encrypt_v = NULL;
ctx->super.do_decrypt = aead_do_decrypt;
}
ctx->evp_ctx = NULL;
if ((ctx->evp_ctx = EVP_CIPHER_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Error;
}
if (is_enc) {
if (!EVP_EncryptInit_ex(ctx->evp_ctx, cipher, NULL, key, NULL)) {
ret = PTLS_ERROR_LIBRARY;
goto Error;
}
} else {
if (!EVP_DecryptInit_ex(ctx->evp_ctx, cipher, NULL, key, NULL)) {
ret = PTLS_ERROR_LIBRARY;
goto Error;
}
}
if (!EVP_CIPHER_CTX_ctrl(ctx->evp_ctx, EVP_CTRL_GCM_SET_IVLEN, (int)ctx->super.algo->iv_size, NULL)) {
ret = PTLS_ERROR_LIBRARY;
goto Error;
}
memcpy(ctx->static_iv, iv, ctx->super.algo->iv_size);
return 0;
Error:
aead_dispose_crypto(&ctx->super);
return ret;
}
static int aead_aes128gcm_setup_crypto(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv)
{
return aead_setup_crypto(ctx, is_enc, key, iv, EVP_aes_128_gcm());
}
static int aead_aes256gcm_setup_crypto(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv)
{
return aead_setup_crypto(ctx, is_enc, key, iv, EVP_aes_256_gcm());
}
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
#ifdef OPENSSL_IS_BORINGSSL
struct boringssl_chacha20poly1305_context_t {
struct chacha20poly1305_context_t super;
poly1305_state poly1305;
};
static void boringssl_poly1305_init(struct chacha20poly1305_context_t *_ctx, const void *key)
{
struct boringssl_chacha20poly1305_context_t *ctx = (struct boringssl_chacha20poly1305_context_t *)_ctx;
CRYPTO_poly1305_init(&ctx->poly1305, key);
}
static void boringssl_poly1305_update(struct chacha20poly1305_context_t *_ctx, const void *input, size_t len)
{
struct boringssl_chacha20poly1305_context_t *ctx = (struct boringssl_chacha20poly1305_context_t *)_ctx;
CRYPTO_poly1305_update(&ctx->poly1305, input, len);
}
static void boringssl_poly1305_finish(struct chacha20poly1305_context_t *_ctx, void *tag)
{
struct boringssl_chacha20poly1305_context_t *ctx = (struct boringssl_chacha20poly1305_context_t *)_ctx;
CRYPTO_poly1305_finish(&ctx->poly1305, tag);
}
static int boringssl_chacha20poly1305_setup_crypto(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv)
{
return chacha20poly1305_setup_crypto(ctx, is_enc, key, iv, &ptls_openssl_chacha20, boringssl_poly1305_init,
boringssl_poly1305_update, boringssl_poly1305_finish);
}
#else
static int aead_chacha20poly1305_setup_crypto(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv)
{
return aead_setup_crypto(ctx, is_enc, key, iv, EVP_chacha20_poly1305());
}
#endif
#endif
#define _sha256_final(ctx, md) SHA256_Final((md), (ctx))
ptls_define_hash(sha256, SHA256_CTX, SHA256_Init, SHA256_Update, _sha256_final);
#define _sha384_final(ctx, md) SHA384_Final((md), (ctx))
ptls_define_hash(sha384, SHA512_CTX, SHA384_Init, SHA384_Update, _sha384_final);
#define _sha512_final(ctx, md) SHA512_Final((md), (ctx))
ptls_define_hash(sha512, SHA512_CTX, SHA512_Init, SHA512_Update, _sha512_final);
static int sign_certificate(ptls_sign_certificate_t *_self, ptls_t *tls, ptls_async_job_t **async, uint16_t *selected_algorithm,
ptls_buffer_t *outbuf, ptls_iovec_t input, const uint16_t *algorithms, size_t num_algorithms)
{
ptls_openssl_sign_certificate_t *self = (ptls_openssl_sign_certificate_t *)_self;
const ptls_openssl_signature_scheme_t *scheme;
/* Just resume the asynchronous operation, if one is in flight. */
#if PTLS_OPENSSL_HAVE_ASYNC
if (async != NULL && *async != NULL) {
struct async_sign_ctx *sign_ctx = (struct async_sign_ctx *)(*async);
*selected_algorithm = sign_ctx->scheme->scheme_id;
return do_sign_async(outbuf, async);
}
#endif
/* Select the algorithm or return failure if none found. */
if ((scheme = ptls_openssl_select_signature_scheme(self->schemes, algorithms, num_algorithms)) == NULL)
return PTLS_ALERT_HANDSHAKE_FAILURE;
*selected_algorithm = scheme->scheme_id;
#if PTLS_OPENSSL_HAVE_ASYNC
if (!self->async && async != NULL) {
/* indicate to `do_sign` that async mode is disabled for this operation */
assert(*async == NULL);
async = NULL;
}
#endif
return do_sign(self->key, scheme, outbuf, input, async);
}
static X509 *to_x509(ptls_iovec_t vec)
{
const uint8_t *p = vec.base;
return d2i_X509(NULL, &p, (long)vec.len);
}
static int verify_sign(void *verify_ctx, uint16_t algo, ptls_iovec_t data, ptls_iovec_t signature)
{
EVP_PKEY *key = verify_ctx;
const ptls_openssl_signature_scheme_t *scheme;
EVP_MD_CTX *ctx = NULL;
EVP_PKEY_CTX *pkey_ctx = NULL;
int ret = 0;
if (data.base == NULL)
goto Exit;
if ((scheme = ptls_openssl_lookup_signature_schemes(key)) == NULL) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
for (; scheme->scheme_id != UINT16_MAX; ++scheme)
if (scheme->scheme_id == algo)
goto SchemeFound;
ret = PTLS_ALERT_ILLEGAL_PARAMETER;
goto Exit;
SchemeFound:
if ((ctx = EVP_MD_CTX_create()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
#if PTLS_OPENSSL_HAVE_ED25519
if (EVP_PKEY_id(key) == EVP_PKEY_ED25519) {
/* ED25519 requires the use of the all-at-once function that appeared in OpenSSL 1.1.1, hence different path */
if (EVP_DigestVerifyInit(ctx, &pkey_ctx, NULL, NULL, key) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_DigestVerify(ctx, signature.base, signature.len, data.base, data.len) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
} else
#endif
{
if (EVP_DigestVerifyInit(ctx, &pkey_ctx, scheme->scheme_md(), NULL, key) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_id(key) == EVP_PKEY_RSA) {
if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, -1) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, scheme->scheme_md()) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
}
if (EVP_DigestVerifyUpdate(ctx, data.base, data.len) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (EVP_DigestVerifyFinal(ctx, signature.base, signature.len) != 1) {
ret = PTLS_ALERT_DECRYPT_ERROR;
goto Exit;
}
}
ret = 0;
Exit:
if (ctx != NULL)
EVP_MD_CTX_destroy(ctx);
EVP_PKEY_free(key);
return ret;
}
int ptls_openssl_init_sign_certificate(ptls_openssl_sign_certificate_t *self, EVP_PKEY *key)
{
*self = (ptls_openssl_sign_certificate_t){.super = {sign_certificate}, .async = 0 /* libssl has it off by default too */};
if ((self->schemes = ptls_openssl_lookup_signature_schemes(key)) == NULL)
return PTLS_ERROR_INCOMPATIBLE_KEY;
EVP_PKEY_up_ref(key);
self->key = key;
return 0;
}
void ptls_openssl_dispose_sign_certificate(ptls_openssl_sign_certificate_t *self)
{
EVP_PKEY_free(self->key);
}
static int serialize_cert(X509 *cert, ptls_iovec_t *dst)
{
int len = i2d_X509(cert, NULL);
assert(len > 0);
if ((dst->base = malloc(len)) == NULL)
return PTLS_ERROR_NO_MEMORY;
unsigned char *p = dst->base;
dst->len = i2d_X509(cert, &p);
assert(len == dst->len);
return 0;
}
int ptls_openssl_load_certificates(ptls_context_t *ctx, X509 *cert, STACK_OF(X509) * chain)
{
ptls_iovec_t *list = NULL;
size_t slot = 0, count = (cert != NULL) + (chain != NULL ? sk_X509_num(chain) : 0);
int ret;
assert(ctx->certificates.list == NULL);
if ((list = malloc(sizeof(*list) * count)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if (cert != NULL) {
if ((ret = serialize_cert(cert, list + slot++)) != 0)
goto Exit;
}
if (chain != NULL) {
int i;
for (i = 0; i != sk_X509_num(chain); ++i) {
if ((ret = serialize_cert(sk_X509_value(chain, i), list + slot++)) != 0)
goto Exit;
}
}
assert(slot == count);
ctx->certificates.list = list;
ctx->certificates.count = count;
ret = 0;
Exit:
if (ret != 0 && list != NULL) {
size_t i;
for (i = 0; i != slot; ++i)
free(list[i].base);
free(list);
}
return ret;
}
static int verify_cert_chain(X509_STORE *store, X509 *cert, STACK_OF(X509) * chain, int is_server, const char *server_name,
int *ossl_x509_err)
{
X509_STORE_CTX *verify_ctx;
int ret;
*ossl_x509_err = 0;
/* verify certificate chain */
if ((verify_ctx = X509_STORE_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if (X509_STORE_CTX_init(verify_ctx, store, cert, chain) != 1) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
{ /* setup verify params */
X509_VERIFY_PARAM *params = X509_STORE_CTX_get0_param(verify_ctx);
X509_VERIFY_PARAM_set_purpose(params, is_server ? X509_PURPOSE_SSL_CLIENT : X509_PURPOSE_SSL_SERVER);
X509_VERIFY_PARAM_set_depth(params, 98); /* use the default of OpenSSL 1.0.2 and above; see `man SSL_CTX_set_verify` */
/* when _acting_ as client, set the server name */
if (!is_server) {
assert(server_name != NULL && "ptls_set_server_name MUST be called");
if (ptls_server_name_is_ipaddr(server_name)) {
X509_VERIFY_PARAM_set1_ip_asc(params, server_name);
} else {
X509_VERIFY_PARAM_set1_host(params, server_name, strlen(server_name));
X509_VERIFY_PARAM_set_hostflags(params, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS);
}
}
}
if (X509_verify_cert(verify_ctx) != 1) {
*ossl_x509_err = X509_STORE_CTX_get_error(verify_ctx);
switch (*ossl_x509_err) {
case X509_V_ERR_OUT_OF_MEM:
ret = PTLS_ERROR_NO_MEMORY;
break;
case X509_V_ERR_CERT_REVOKED:
ret = PTLS_ALERT_CERTIFICATE_REVOKED;
break;
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_CERT_HAS_EXPIRED:
ret = PTLS_ALERT_CERTIFICATE_EXPIRED;
break;
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
case X509_V_ERR_CERT_UNTRUSTED:
case X509_V_ERR_CERT_REJECTED:
ret = PTLS_ALERT_UNKNOWN_CA;
break;
case X509_V_ERR_HOSTNAME_MISMATCH:
case X509_V_ERR_INVALID_CA:
ret = PTLS_ALERT_BAD_CERTIFICATE;
break;
default:
ret = PTLS_ALERT_CERTIFICATE_UNKNOWN;
break;
}
goto Exit;
}
ret = 0;
Exit:
if (verify_ctx != NULL)
X509_STORE_CTX_free(verify_ctx);
return ret;
}
static int verify_cert(ptls_verify_certificate_t *_self, ptls_t *tls, const char *server_name,
int (**verifier)(void *, uint16_t, ptls_iovec_t, ptls_iovec_t), void **verify_data, ptls_iovec_t *certs,
size_t num_certs)
{
ptls_openssl_verify_certificate_t *self = (ptls_openssl_verify_certificate_t *)_self;
X509 *cert = NULL;
STACK_OF(X509) *chain = sk_X509_new_null();
size_t i;
int ossl_x509_err, ret;
/* If any certs are given, convert them to OpenSSL representation, then verify the cert chain. If no certs are given, just give
* the override_callback to see if we want to stay fail open. */
if (num_certs != 0) {
if ((cert = to_x509(certs[0])) == NULL) {
ret = PTLS_ALERT_BAD_CERTIFICATE;
goto Exit;
}
for (i = 1; i != num_certs; ++i) {
X509 *interm = to_x509(certs[i]);
if (interm == NULL) {
ret = PTLS_ALERT_BAD_CERTIFICATE;
goto Exit;
}
sk_X509_push(chain, interm);
}
ret = verify_cert_chain(self->cert_store, cert, chain, ptls_is_server(tls), server_name, &ossl_x509_err);
} else {
ret = PTLS_ALERT_CERTIFICATE_REQUIRED;
ossl_x509_err = 0;
}
/* When override callback is available, let it override the error. */
if (self->override_callback != NULL)
ret = self->override_callback->cb(self->override_callback, tls, ret, ossl_x509_err, cert, chain);
if (ret != 0 || num_certs == 0)
goto Exit;
/* extract public key for verifying the TLS handshake signature */
if ((*verify_data = X509_get_pubkey(cert)) == NULL) {
ret = PTLS_ALERT_BAD_CERTIFICATE;
goto Exit;
}
*verifier = verify_sign;
Exit:
if (chain != NULL)
sk_X509_pop_free(chain, X509_free);
if (cert != NULL)
X509_free(cert);
return ret;
}
int ptls_openssl_init_verify_certificate(ptls_openssl_verify_certificate_t *self, X509_STORE *store)
{
*self = (ptls_openssl_verify_certificate_t){{verify_cert, default_signature_schemes}, NULL};
if (store != NULL) {
X509_STORE_up_ref(store);
self->cert_store = store;
} else {
/* use default store */
if ((self->cert_store = ptls_openssl_create_default_certificate_store()) == NULL)
return -1;
}
return 0;
}
void ptls_openssl_dispose_verify_certificate(ptls_openssl_verify_certificate_t *self)
{
X509_STORE_free(self->cert_store);
}
X509_STORE *ptls_openssl_create_default_certificate_store(void)
{
X509_STORE *store;
X509_LOOKUP *lookup;
if ((store = X509_STORE_new()) == NULL)
goto Error;
if ((lookup = X509_STORE_add_lookup(store, X509_LOOKUP_file())) == NULL)
goto Error;
X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
if ((lookup = X509_STORE_add_lookup(store, X509_LOOKUP_hash_dir())) == NULL)
goto Error;
X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
return store;
Error:
if (store != NULL)
X509_STORE_free(store);
return NULL;
}
static int verify_raw_cert(ptls_verify_certificate_t *_self, ptls_t *tls, const char *server_name,
int (**verifier)(void *, uint16_t algo, ptls_iovec_t, ptls_iovec_t), void **verify_data,
ptls_iovec_t *certs, size_t num_certs)
{
ptls_openssl_raw_pubkey_verify_certificate_t *self = (ptls_openssl_raw_pubkey_verify_certificate_t *)_self;
int ret = PTLS_ALERT_BAD_CERTIFICATE;
ptls_iovec_t expected_pubkey = {0};
assert(num_certs != 0);
if (num_certs != 1)
goto Exit;
int r = i2d_PUBKEY(self->expected_pubkey, &expected_pubkey.base);
if (r <= 0) {
ret = PTLS_ALERT_BAD_CERTIFICATE;
goto Exit;
}
expected_pubkey.len = r;
if (certs[0].len != expected_pubkey.len)
goto Exit;
if (!ptls_mem_equal(expected_pubkey.base, certs[0].base, certs[0].len))
goto Exit;
EVP_PKEY_up_ref(self->expected_pubkey);
*verify_data = self->expected_pubkey;
*verifier = verify_sign;
ret = 0;
Exit:
OPENSSL_free(expected_pubkey.base);
return ret;
}
int ptls_openssl_raw_pubkey_init_verify_certificate(ptls_openssl_raw_pubkey_verify_certificate_t *self, EVP_PKEY *expected_pubkey)
{
EVP_PKEY_up_ref(expected_pubkey);
*self = (ptls_openssl_raw_pubkey_verify_certificate_t){{verify_raw_cert, default_signature_schemes}, expected_pubkey};
return 0;
}
void ptls_openssl_raw_pubkey_dispose_verify_certificate(ptls_openssl_raw_pubkey_verify_certificate_t *self)
{
EVP_PKEY_free(self->expected_pubkey);
}
#define TICKET_LABEL_SIZE 16
#define TICKET_IV_SIZE EVP_MAX_IV_LENGTH
int ptls_openssl_encrypt_ticket(ptls_buffer_t *buf, ptls_iovec_t src,
int (*cb)(unsigned char *key_name, unsigned char *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc))
{
EVP_CIPHER_CTX *cctx = NULL;
HMAC_CTX *hctx = NULL;
uint8_t *dst;
int clen, ret;
if ((cctx = EVP_CIPHER_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((hctx = HMAC_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((ret = ptls_buffer_reserve(buf, TICKET_LABEL_SIZE + TICKET_IV_SIZE + src.len + EVP_MAX_BLOCK_LENGTH + EVP_MAX_MD_SIZE)) !=
0)
goto Exit;
dst = buf->base + buf->off;
/* fill label and iv, as well as obtaining the keys */
if (!(*cb)(dst, dst + TICKET_LABEL_SIZE, cctx, hctx, 1)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += TICKET_LABEL_SIZE + TICKET_IV_SIZE;
/* encrypt */
if (!EVP_EncryptUpdate(cctx, dst, &clen, src.base, (int)src.len)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += clen;
if (!EVP_EncryptFinal_ex(cctx, dst, &clen)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += clen;
/* append hmac */
if (!HMAC_Update(hctx, buf->base + buf->off, dst - (buf->base + buf->off)) || !HMAC_Final(hctx, dst, NULL)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += HMAC_size(hctx);
assert(dst <= buf->base + buf->capacity);
buf->off += dst - (buf->base + buf->off);
ret = 0;
Exit:
if (cctx != NULL)
EVP_CIPHER_CTX_free(cctx);
if (hctx != NULL)
HMAC_CTX_free(hctx);
return ret;
}
int ptls_openssl_decrypt_ticket(ptls_buffer_t *buf, ptls_iovec_t src,
int (*cb)(unsigned char *key_name, unsigned char *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc))
{
EVP_CIPHER_CTX *cctx = NULL;
HMAC_CTX *hctx = NULL;
int clen, ret;
if ((cctx = EVP_CIPHER_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((hctx = HMAC_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
/* obtain cipher and hash context.
* Note: no need to handle renew, since in picotls we always send a new ticket to minimize the chance of ticket reuse */
if (src.len < TICKET_LABEL_SIZE + TICKET_IV_SIZE) {
ret = PTLS_ALERT_DECODE_ERROR;
goto Exit;
}
if (!(*cb)(src.base, src.base + TICKET_LABEL_SIZE, cctx, hctx, 0)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
/* check hmac, and exclude label, iv, hmac */
size_t hmac_size = HMAC_size(hctx);
if (src.len < TICKET_LABEL_SIZE + TICKET_IV_SIZE + hmac_size) {
ret = PTLS_ALERT_DECODE_ERROR;
goto Exit;
}
src.len -= hmac_size;
uint8_t hmac[EVP_MAX_MD_SIZE];
if (!HMAC_Update(hctx, src.base, src.len) || !HMAC_Final(hctx, hmac, NULL)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (!ptls_mem_equal(src.base + src.len, hmac, hmac_size)) {
ret = PTLS_ALERT_HANDSHAKE_FAILURE;
goto Exit;
}
src.base += TICKET_LABEL_SIZE + TICKET_IV_SIZE;
src.len -= TICKET_LABEL_SIZE + TICKET_IV_SIZE;
/* decrypt */
if ((ret = ptls_buffer_reserve(buf, src.len)) != 0)
goto Exit;
if (!EVP_DecryptUpdate(cctx, buf->base + buf->off, &clen, src.base, (int)src.len)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
buf->off += clen;
if (!EVP_DecryptFinal_ex(cctx, buf->base + buf->off, &clen)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
buf->off += clen;
ret = 0;
Exit:
if (cctx != NULL)
EVP_CIPHER_CTX_free(cctx);
if (hctx != NULL)
HMAC_CTX_free(hctx);
return ret;
}
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
int ptls_openssl_encrypt_ticket_evp(ptls_buffer_t *buf, ptls_iovec_t src,
int (*cb)(unsigned char *key_name, unsigned char *iv, EVP_CIPHER_CTX *ctx, EVP_MAC_CTX *hctx,
int enc))
{
EVP_CIPHER_CTX *cctx = NULL;
EVP_MAC *mac = NULL;
EVP_MAC_CTX *hctx = NULL;
size_t hlen;
uint8_t *dst;
int clen, ret;
if ((cctx = EVP_CIPHER_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((hctx = EVP_MAC_CTX_new(mac)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((ret = ptls_buffer_reserve(buf, TICKET_LABEL_SIZE + TICKET_IV_SIZE + src.len + EVP_MAX_BLOCK_LENGTH + EVP_MAX_MD_SIZE)) !=
0)
goto Exit;
dst = buf->base + buf->off;
/* fill label and iv, as well as obtaining the keys */
if (!(*cb)(dst, dst + TICKET_LABEL_SIZE, cctx, hctx, 1)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += TICKET_LABEL_SIZE + TICKET_IV_SIZE;
/* encrypt */
if (!EVP_EncryptUpdate(cctx, dst, &clen, src.base, (int)src.len)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += clen;
if (!EVP_EncryptFinal_ex(cctx, dst, &clen)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += clen;
/* append hmac */
if (!EVP_MAC_update(hctx, buf->base + buf->off, dst - (buf->base + buf->off)) ||
!EVP_MAC_final(hctx, dst, &hlen, EVP_MAC_CTX_get_mac_size(hctx))) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
dst += hlen;
assert(dst <= buf->base + buf->capacity);
buf->off += dst - (buf->base + buf->off);
ret = 0;
Exit:
if (cctx != NULL)
EVP_CIPHER_CTX_free(cctx);
if (hctx != NULL)
EVP_MAC_CTX_free(hctx);
if (mac != NULL)
EVP_MAC_free(mac);
return ret;
}
int ptls_openssl_decrypt_ticket_evp(ptls_buffer_t *buf, ptls_iovec_t src,
int (*cb)(unsigned char *key_name, unsigned char *iv, EVP_CIPHER_CTX *ctx, EVP_MAC_CTX *hctx,
int enc))
{
EVP_CIPHER_CTX *cctx = NULL;
EVP_MAC *mac = NULL;
EVP_MAC_CTX *hctx = NULL;
size_t hlen;
int clen, ret;
if ((cctx = EVP_CIPHER_CTX_new()) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((mac = EVP_MAC_fetch(NULL, "HMAC", NULL)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
if ((hctx = EVP_MAC_CTX_new(mac)) == NULL) {
ret = PTLS_ERROR_NO_MEMORY;
goto Exit;
}
/* obtain cipher and hash context.
* Note: no need to handle renew, since in picotls we always send a new ticket to minimize the chance of ticket reuse */
if (src.len < TICKET_LABEL_SIZE + TICKET_IV_SIZE) {
ret = PTLS_ALERT_DECODE_ERROR;
goto Exit;
}
if (!(*cb)(src.base, src.base + TICKET_LABEL_SIZE, cctx, hctx, 0)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
/* check hmac, and exclude label, iv, hmac */
size_t hmac_size = EVP_MAC_CTX_get_mac_size(hctx);
if (src.len < TICKET_LABEL_SIZE + TICKET_IV_SIZE + hmac_size) {
ret = PTLS_ALERT_DECODE_ERROR;
goto Exit;
}
src.len -= hmac_size;
uint8_t hmac[EVP_MAX_MD_SIZE];
if (!EVP_MAC_update(hctx, src.base, src.len) || !EVP_MAC_final(hctx, hmac, &hlen, sizeof(hmac))) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
if (!ptls_mem_equal(src.base + src.len, hmac, hmac_size)) {
ret = PTLS_ALERT_HANDSHAKE_FAILURE;
goto Exit;
}
src.base += TICKET_LABEL_SIZE + TICKET_IV_SIZE;
src.len -= TICKET_LABEL_SIZE + TICKET_IV_SIZE;
/* decrypt */
if ((ret = ptls_buffer_reserve(buf, src.len)) != 0)
goto Exit;
if (!EVP_DecryptUpdate(cctx, buf->base + buf->off, &clen, src.base, (int)src.len)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
buf->off += clen;
if (!EVP_DecryptFinal_ex(cctx, buf->base + buf->off, &clen)) {
ret = PTLS_ERROR_LIBRARY;
goto Exit;
}
buf->off += clen;
ret = 0;
Exit:
if (cctx != NULL)
EVP_CIPHER_CTX_free(cctx);
if (hctx != NULL)
EVP_MAC_CTX_free(hctx);
if (mac != NULL)
EVP_MAC_free(mac);
return ret;
}
#endif
ptls_key_exchange_algorithm_t ptls_openssl_secp256r1 = {.id = PTLS_GROUP_SECP256R1,
.name = PTLS_GROUP_NAME_SECP256R1,
.create = x9_62_create_key_exchange,
.exchange = secp_key_exchange,
.data = NID_X9_62_prime256v1};
#if PTLS_OPENSSL_HAVE_SECP384R1
ptls_key_exchange_algorithm_t ptls_openssl_secp384r1 = {.id = PTLS_GROUP_SECP384R1,
.name = PTLS_GROUP_NAME_SECP384R1,
.create = x9_62_create_key_exchange,
.exchange = secp_key_exchange,
.data = NID_secp384r1};
#endif
#if PTLS_OPENSSL_HAVE_SECP521R1
ptls_key_exchange_algorithm_t ptls_openssl_secp521r1 = {.id = PTLS_GROUP_SECP521R1,
.name = PTLS_GROUP_NAME_SECP521R1,
.create = x9_62_create_key_exchange,
.exchange = secp_key_exchange,
.data = NID_secp521r1};
#endif
#if PTLS_OPENSSL_HAVE_X25519
ptls_key_exchange_algorithm_t ptls_openssl_x25519 = {.id = PTLS_GROUP_X25519,
.name = PTLS_GROUP_NAME_X25519,
.create = evp_keyex_create,
.exchange = evp_keyex_exchange,
.data = NID_X25519};
#endif
ptls_key_exchange_algorithm_t *ptls_openssl_key_exchanges[] = {&ptls_openssl_secp256r1, NULL};
ptls_cipher_algorithm_t ptls_openssl_aes128ecb = {
"AES128-ECB", PTLS_AES128_KEY_SIZE, PTLS_AES_BLOCK_SIZE, 0 /* iv size */, sizeof(struct cipher_context_t),
aes128ecb_setup_crypto};
ptls_cipher_algorithm_t ptls_openssl_aes128ctr = {
"AES128-CTR", PTLS_AES128_KEY_SIZE, 1, PTLS_AES_IV_SIZE, sizeof(struct cipher_context_t), aes128ctr_setup_crypto};
ptls_aead_algorithm_t ptls_openssl_aes128gcm = {"AES128-GCM",
PTLS_AESGCM_CONFIDENTIALITY_LIMIT,
PTLS_AESGCM_INTEGRITY_LIMIT,
&ptls_openssl_aes128ctr,
&ptls_openssl_aes128ecb,
PTLS_AES128_KEY_SIZE,
PTLS_AESGCM_IV_SIZE,
PTLS_AESGCM_TAG_SIZE,
{PTLS_TLS12_AESGCM_FIXED_IV_SIZE, PTLS_TLS12_AESGCM_RECORD_IV_SIZE},
0,
0,
sizeof(struct aead_crypto_context_t),
aead_aes128gcm_setup_crypto};
ptls_cipher_algorithm_t ptls_openssl_aes256ecb = {
"AES256-ECB", PTLS_AES256_KEY_SIZE, PTLS_AES_BLOCK_SIZE, 0 /* iv size */, sizeof(struct cipher_context_t),
aes256ecb_setup_crypto};
ptls_cipher_algorithm_t ptls_openssl_aes256ctr = {
"AES256-CTR", PTLS_AES256_KEY_SIZE, 1 /* block size */, PTLS_AES_IV_SIZE, sizeof(struct cipher_context_t),
aes256ctr_setup_crypto};
ptls_aead_algorithm_t ptls_openssl_aes256gcm = {"AES256-GCM",
PTLS_AESGCM_CONFIDENTIALITY_LIMIT,
PTLS_AESGCM_INTEGRITY_LIMIT,
&ptls_openssl_aes256ctr,
&ptls_openssl_aes256ecb,
PTLS_AES256_KEY_SIZE,
PTLS_AESGCM_IV_SIZE,
PTLS_AESGCM_TAG_SIZE,
{PTLS_TLS12_AESGCM_FIXED_IV_SIZE, PTLS_TLS12_AESGCM_RECORD_IV_SIZE},
0,
0,
sizeof(struct aead_crypto_context_t),
aead_aes256gcm_setup_crypto};
ptls_hash_algorithm_t ptls_openssl_sha256 = {"sha256", PTLS_SHA256_BLOCK_SIZE, PTLS_SHA256_DIGEST_SIZE, sha256_create,
PTLS_ZERO_DIGEST_SHA256};
ptls_hash_algorithm_t ptls_openssl_sha384 = {"sha384", PTLS_SHA384_BLOCK_SIZE, PTLS_SHA384_DIGEST_SIZE, sha384_create,
PTLS_ZERO_DIGEST_SHA384};
ptls_hash_algorithm_t ptls_openssl_sha512 = {"sha512", PTLS_SHA512_BLOCK_SIZE, PTLS_SHA512_DIGEST_SIZE, sha512_create,
PTLS_ZERO_DIGEST_SHA512};
ptls_cipher_suite_t ptls_openssl_aes128gcmsha256 = {.id = PTLS_CIPHER_SUITE_AES_128_GCM_SHA256,
.name = PTLS_CIPHER_SUITE_NAME_AES_128_GCM_SHA256,
.aead = &ptls_openssl_aes128gcm,
.hash = &ptls_openssl_sha256};
ptls_cipher_suite_t ptls_openssl_tls12_ecdhe_rsa_aes128gcmsha256 = {.id = PTLS_CIPHER_SUITE_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
.name =
PTLS_CIPHER_SUITE_NAME_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
.aead = &ptls_openssl_aes128gcm,
.hash = &ptls_openssl_sha256};
ptls_cipher_suite_t ptls_openssl_tls12_ecdhe_ecdsa_aes128gcmsha256 = {
.id = PTLS_CIPHER_SUITE_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
.name = PTLS_CIPHER_SUITE_NAME_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
.aead = &ptls_openssl_aes128gcm,
.hash = &ptls_openssl_sha256};
ptls_cipher_suite_t ptls_openssl_aes256gcmsha384 = {.id = PTLS_CIPHER_SUITE_AES_256_GCM_SHA384,
.name = PTLS_CIPHER_SUITE_NAME_AES_256_GCM_SHA384,
.aead = &ptls_openssl_aes256gcm,
.hash = &ptls_openssl_sha384};
ptls_cipher_suite_t ptls_openssl_tls12_ecdhe_rsa_aes256gcmsha384 = {.id = PTLS_CIPHER_SUITE_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
.name =
PTLS_CIPHER_SUITE_NAME_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
.aead = &ptls_openssl_aes256gcm,
.hash = &ptls_openssl_sha384};
ptls_cipher_suite_t ptls_openssl_tls12_ecdhe_ecdsa_aes256gcmsha384 = {
.id = PTLS_CIPHER_SUITE_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
.name = PTLS_CIPHER_SUITE_NAME_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
.aead = &ptls_openssl_aes256gcm,
.hash = &ptls_openssl_sha384};
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
ptls_cipher_algorithm_t ptls_openssl_chacha20 = {
.name = "CHACHA20",
.key_size = PTLS_CHACHA20_KEY_SIZE,
.block_size = 1,
.iv_size = PTLS_CHACHA20_IV_SIZE,
#ifdef OPENSSL_IS_BORINGSSL
.context_size = sizeof(struct boringssl_chacha20_context_t),
.setup_crypto = boringssl_chacha20_setup_crypto,
#else
.context_size = sizeof(struct cipher_context_t),
.setup_crypto = chacha20_setup_crypto,
#endif
};
ptls_aead_algorithm_t ptls_openssl_chacha20poly1305 = {
.name = "CHACHA20-POLY1305",
.confidentiality_limit = PTLS_CHACHA20POLY1305_CONFIDENTIALITY_LIMIT,
.integrity_limit = PTLS_CHACHA20POLY1305_INTEGRITY_LIMIT,
.ctr_cipher = &ptls_openssl_chacha20,
.ecb_cipher = NULL,
.key_size = PTLS_CHACHA20_KEY_SIZE,
.iv_size = PTLS_CHACHA20POLY1305_IV_SIZE,
.tag_size = PTLS_CHACHA20POLY1305_TAG_SIZE,
.tls12 = {.fixed_iv_size = PTLS_TLS12_CHACHAPOLY_FIXED_IV_SIZE, .record_iv_size = PTLS_TLS12_CHACHAPOLY_RECORD_IV_SIZE},
.non_temporal = 0,
.align_bits = 0,
#ifdef OPENSSL_IS_BORINGSSL
.context_size = sizeof(struct boringssl_chacha20poly1305_context_t),
.setup_crypto = boringssl_chacha20poly1305_setup_crypto,
#else
.context_size = sizeof(struct aead_crypto_context_t),
.setup_crypto = aead_chacha20poly1305_setup_crypto,
#endif
};
ptls_cipher_suite_t ptls_openssl_chacha20poly1305sha256 = {.id = PTLS_CIPHER_SUITE_CHACHA20_POLY1305_SHA256,
.name = PTLS_CIPHER_SUITE_NAME_CHACHA20_POLY1305_SHA256,
.aead = &ptls_openssl_chacha20poly1305,
.hash = &ptls_openssl_sha256};
ptls_cipher_suite_t ptls_openssl_tls12_ecdhe_rsa_chacha20poly1305sha256 = {
.id = PTLS_CIPHER_SUITE_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
.name = PTLS_CIPHER_SUITE_NAME_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
.aead = &ptls_openssl_chacha20poly1305,
.hash = &ptls_openssl_sha256};
ptls_cipher_suite_t ptls_openssl_tls12_ecdhe_ecdsa_chacha20poly1305sha256 = {
.id = PTLS_CIPHER_SUITE_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
.name = PTLS_CIPHER_SUITE_NAME_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
.aead = &ptls_openssl_chacha20poly1305,
.hash = &ptls_openssl_sha256};
#endif
#if PTLS_HAVE_AEGIS
ptls_aead_algorithm_t ptls_openssl_aegis128l = {
.name = "AEGIS-128L",
.confidentiality_limit = PTLS_AEGIS128L_CONFIDENTIALITY_LIMIT,
.integrity_limit = PTLS_AEGIS128L_INTEGRITY_LIMIT,
.ctr_cipher = NULL,
.ecb_cipher = NULL,
.key_size = PTLS_AEGIS128L_KEY_SIZE,
.iv_size = PTLS_AEGIS128L_IV_SIZE,
.tag_size = PTLS_AEGIS128L_TAG_SIZE,
.tls12 = { .fixed_iv_size = 0, .record_iv_size = 0 },
.non_temporal = 0,
.align_bits = 0,
.context_size = sizeof(struct aegis128l_context_t),
.setup_crypto = aegis128l_setup_crypto,
};
ptls_cipher_suite_t ptls_openssl_aegis128lsha256 = {.id = PTLS_CIPHER_SUITE_AEGIS128L_SHA256,
.name = PTLS_CIPHER_SUITE_NAME_AEGIS128L_SHA256,
.aead = &ptls_openssl_aegis128l,
.hash = &ptls_openssl_sha256};
ptls_aead_algorithm_t ptls_openssl_aegis256 = {
.name = "AEGIS-256",
.confidentiality_limit = PTLS_AEGIS256_CONFIDENTIALITY_LIMIT,
.integrity_limit = PTLS_AEGIS256_INTEGRITY_LIMIT,
.ctr_cipher = NULL,
.ecb_cipher = NULL,
.key_size = PTLS_AEGIS256_KEY_SIZE,
.iv_size = PTLS_AEGIS256_IV_SIZE,
.tag_size = PTLS_AEGIS256_TAG_SIZE,
.tls12 = { .fixed_iv_size = 0, .record_iv_size = 0 },
.non_temporal = 0,
.align_bits = 0,
.context_size = sizeof(struct aegis256_context_t),
.setup_crypto = aegis256_setup_crypto,
};
ptls_cipher_suite_t ptls_openssl_aegis256sha384 = {.id = PTLS_CIPHER_SUITE_AEGIS256_SHA384,
.name = PTLS_CIPHER_SUITE_NAME_AEGIS256_SHA384,
.aead = &ptls_openssl_aegis256,
.hash = &ptls_openssl_sha384};
#endif
ptls_cipher_suite_t *ptls_openssl_cipher_suites[] = {// ciphers used with sha384 (must be first)
&ptls_openssl_aes256gcmsha384,
// ciphers used with sha256
&ptls_openssl_aes128gcmsha256,
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
&ptls_openssl_chacha20poly1305sha256,
#endif
NULL};
ptls_cipher_suite_t *ptls_openssl_cipher_suites_all[] = {// ciphers used with sha384 (must be first)
#if PTLS_HAVE_AEGIS
&ptls_openssl_aegis256sha384,
#endif
&ptls_openssl_aes256gcmsha384,
// ciphers used with sha256
#if PTLS_HAVE_AEGIS
&ptls_openssl_aegis128lsha256,
#endif
&ptls_openssl_aes128gcmsha256,
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
&ptls_openssl_chacha20poly1305sha256,
#endif
NULL};
ptls_cipher_suite_t *ptls_openssl_tls12_cipher_suites[] = {&ptls_openssl_tls12_ecdhe_rsa_aes128gcmsha256,
&ptls_openssl_tls12_ecdhe_ecdsa_aes128gcmsha256,
&ptls_openssl_tls12_ecdhe_rsa_aes256gcmsha384,
&ptls_openssl_tls12_ecdhe_ecdsa_aes256gcmsha384,
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
&ptls_openssl_tls12_ecdhe_rsa_chacha20poly1305sha256,
&ptls_openssl_tls12_ecdhe_ecdsa_chacha20poly1305sha256,
#endif
NULL};
#if PTLS_OPENSSL_HAVE_BF
ptls_cipher_algorithm_t ptls_openssl_bfecb = {"BF-ECB", PTLS_BLOWFISH_KEY_SIZE, PTLS_BLOWFISH_BLOCK_SIZE,
0 /* iv size */, sizeof(struct cipher_context_t), bfecb_setup_crypto};
#endif
ptls_hpke_kem_t ptls_openssl_hpke_kem_p256sha256 = {PTLS_HPKE_KEM_P256_SHA256, &ptls_openssl_secp256r1, &ptls_openssl_sha256};
ptls_hpke_kem_t ptls_openssl_hpke_kem_p384sha384 = {PTLS_HPKE_KEM_P384_SHA384, &ptls_openssl_secp384r1, &ptls_openssl_sha384};
#if PTLS_OPENSSL_HAVE_X25519
ptls_hpke_kem_t ptls_openssl_hpke_kem_x25519sha256 = {PTLS_HPKE_KEM_X25519_SHA256, &ptls_openssl_x25519, &ptls_openssl_sha256};
#endif
ptls_hpke_kem_t *ptls_openssl_hpke_kems[] = {&ptls_openssl_hpke_kem_p384sha384,
#if PTLS_OPENSSL_HAVE_X25519
&ptls_openssl_hpke_kem_x25519sha256,
#endif
&ptls_openssl_hpke_kem_p256sha256, NULL};
ptls_hpke_cipher_suite_t ptls_openssl_hpke_aes128gcmsha256 = {
.id = {.kdf = PTLS_HPKE_HKDF_SHA256, .aead = PTLS_HPKE_AEAD_AES_128_GCM},
.name = "HKDF-SHA256/AES-128-GCM",
.hash = &ptls_openssl_sha256,
.aead = &ptls_openssl_aes128gcm};
ptls_hpke_cipher_suite_t ptls_openssl_hpke_aes128gcmsha512 = {
.id = {.kdf = PTLS_HPKE_HKDF_SHA512, .aead = PTLS_HPKE_AEAD_AES_128_GCM},
.name = "HKDF-SHA512/AES-128-GCM",
.hash = &ptls_openssl_sha512,
.aead = &ptls_openssl_aes128gcm};
ptls_hpke_cipher_suite_t ptls_openssl_hpke_aes256gcmsha384 = {
.id = {.kdf = PTLS_HPKE_HKDF_SHA384, .aead = PTLS_HPKE_AEAD_AES_256_GCM},
.name = "HKDF-SHA384/AES-256-GCM",
.hash = &ptls_openssl_sha384,
.aead = &ptls_openssl_aes256gcm};
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
ptls_hpke_cipher_suite_t ptls_openssl_hpke_chacha20poly1305sha256 = {
.id = {.kdf = PTLS_HPKE_HKDF_SHA256, .aead = PTLS_HPKE_AEAD_CHACHA20POLY1305},
.name = "HKDF-SHA256/ChaCha20Poly1305",
.hash = &ptls_openssl_sha256,
.aead = &ptls_openssl_chacha20poly1305};
#endif
ptls_hpke_cipher_suite_t *ptls_openssl_hpke_cipher_suites[] = {&ptls_openssl_hpke_aes128gcmsha256,
&ptls_openssl_hpke_aes256gcmsha384,
#if PTLS_OPENSSL_HAVE_CHACHA20_POLY1305
&ptls_openssl_hpke_chacha20poly1305sha256,
#endif
&ptls_openssl_hpke_aes128gcmsha512, /* likely only for tests */
NULL};