| /* |
| * cifra - embedded cryptography library |
| * Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com> |
| * |
| * To the extent possible under law, the author(s) have dedicated all |
| * copyright and related and neighboring rights to this software to the |
| * public domain worldwide. This software is distributed without any |
| * warranty. |
| * |
| * You should have received a copy of the CC0 Public Domain Dedication |
| * along with this software. If not, see |
| * <http://creativecommons.org/publicdomain/zero/1.0/>. |
| */ |
| |
| #include <string.h> |
| |
| #include "sha1.h" |
| #include "blockwise.h" |
| #include "bitops.h" |
| #include "handy.h" |
| #include "tassert.h" |
| |
| void cf_sha1_init(cf_sha1_context *ctx) |
| { |
| memset(ctx, 0, sizeof *ctx); |
| ctx->H[0] = 0x67452301; |
| ctx->H[1] = 0xefcdab89; |
| ctx->H[2] = 0x98badcfe; |
| ctx->H[3] = 0x10325476; |
| ctx->H[4] = 0xc3d2e1f0; |
| } |
| |
| static void sha1_update_block(void *vctx, const uint8_t *inp) |
| { |
| cf_sha1_context *ctx = vctx; |
| |
| /* This is a 16-word window into the whole W array. */ |
| uint32_t W[16]; |
| |
| uint32_t a = ctx->H[0], |
| b = ctx->H[1], |
| c = ctx->H[2], |
| d = ctx->H[3], |
| e = ctx->H[4], |
| Wt; |
| |
| for (size_t t = 0; t < 80; t++) |
| { |
| /* For W[0..16] we process the input into W. |
| * For W[16..79] we compute the next W value: |
| * |
| * W[t] = (W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]) <<< 1 |
| * |
| * But all W indices are reduced mod 16 into our window. |
| */ |
| if (t < 16) |
| { |
| W[t] = Wt = read32_be(inp); |
| inp += 4; |
| } else { |
| Wt = W[(t - 3) % 16] ^ W[(t - 8) % 16] ^ W[(t - 14) % 16] ^ W[(t - 16) % 16]; |
| Wt = rotl32(Wt, 1); |
| W[t % 16] = Wt; |
| } |
| |
| uint32_t f, k; |
| |
| if (t <= 19) |
| { |
| f = (b & c) | (~b & d); |
| k = 0x5a827999; |
| } else if (t <= 39) { |
| f = b ^ c ^ d; |
| k = 0x6ed9eba1; |
| } else if (t <= 59) { |
| f = (b & c) | (b & d) | (c & d); |
| k = 0x8f1bbcdc; |
| } else { |
| f = b ^ c ^ d; |
| k = 0xca62c1d6; |
| } |
| |
| uint32_t temp = rotl32(a, 5) + f + e + k + Wt; |
| e = d; |
| d = c; |
| c = rotl32(b, 30); |
| b = a; |
| a = temp; |
| } |
| |
| ctx->H[0] += a; |
| ctx->H[1] += b; |
| ctx->H[2] += c; |
| ctx->H[3] += d; |
| ctx->H[4] += e; |
| |
| ctx->blocks++; |
| } |
| |
| void cf_sha1_update(cf_sha1_context *ctx, const void *data, size_t nbytes) |
| { |
| cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial, |
| data, nbytes, |
| sha1_update_block, ctx); |
| } |
| |
| void cf_sha1_digest(const cf_sha1_context *ctx, uint8_t hash[CF_SHA1_HASHSZ]) |
| { |
| cf_sha1_context ours = *ctx; |
| cf_sha1_digest_final(&ours, hash); |
| } |
| |
| void cf_sha1_digest_final(cf_sha1_context *ctx, uint8_t hash[CF_SHA1_HASHSZ]) |
| { |
| uint64_t digested_bytes = ctx->blocks; |
| digested_bytes = digested_bytes * CF_SHA1_BLOCKSZ + ctx->npartial; |
| uint64_t digested_bits = digested_bytes * 8; |
| |
| size_t padbytes = CF_SHA1_BLOCKSZ - ((digested_bytes + 8) % CF_SHA1_BLOCKSZ); |
| |
| /* Hash 0x80 00 ... block first. */ |
| cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial, |
| 0x80, 0x00, 0x00, padbytes, |
| sha1_update_block, ctx); |
| |
| /* Now hash length. */ |
| uint8_t buf[8]; |
| write64_be(digested_bits, buf); |
| cf_sha1_update(ctx, buf, 8); |
| |
| /* We ought to have got our padding calculation right! */ |
| assert(ctx->npartial == 0); |
| |
| write32_be(ctx->H[0], hash + 0); |
| write32_be(ctx->H[1], hash + 4); |
| write32_be(ctx->H[2], hash + 8); |
| write32_be(ctx->H[3], hash + 12); |
| write32_be(ctx->H[4], hash + 16); |
| |
| memset(ctx, 0, sizeof *ctx); |
| } |
| |
| const cf_chash cf_sha1 = { |
| .hashsz = CF_SHA1_HASHSZ, |
| .blocksz = CF_SHA1_BLOCKSZ, |
| .init = (cf_chash_init) cf_sha1_init, |
| .update = (cf_chash_update) cf_sha1_update, |
| .digest = (cf_chash_digest) cf_sha1_digest |
| }; |
| |