| /* |
| * This source file is licensed under the Apache License 2.0 *and* the MIT |
| * License. Please agree to *both* of the licensing terms! |
| * |
| * |
| * `transformH` function is a derivative work of OpenSSL. The original work |
| * is covered by the following license: |
| * |
| * Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| * |
| * |
| * All other work, including modifications to the `transformH` function is |
| * covered by the following MIT license: |
| * |
| * Copyright (c) 2020 Fastly, Kazuho Oku |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to |
| * deal in the Software without restriction, including without limitation the |
| * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| * sell copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| #include <stdint.h> |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <immintrin.h> |
| #include <tmmintrin.h> |
| #include <nmmintrin.h> |
| #include <wmmintrin.h> |
| #include "picotls.h" |
| #include "picotls/fusion.h" |
| |
| struct ptls_fusion_aesgcm_context { |
| ptls_fusion_aesecb_context_t ecb; |
| size_t capacity; |
| size_t ghash_cnt; |
| struct ptls_fusion_aesgcm_ghash_precompute { |
| __m128i H; |
| __m128i r; |
| } ghash[0]; |
| }; |
| |
| struct ctr_context { |
| ptls_cipher_context_t super; |
| ptls_fusion_aesecb_context_t fusion; |
| __m128i bits; |
| uint8_t is_ready; |
| }; |
| |
| struct aesgcm_context { |
| ptls_aead_context_t super; |
| ptls_fusion_aesgcm_context_t *aesgcm; |
| /** |
| * retains the static IV in the upper 96 bits (in little endian) |
| */ |
| __m128i static_iv; |
| }; |
| |
| static const uint64_t poly_[2] __attribute__((aligned(16))) = {1, 0xc200000000000000}; |
| #define poly (*(__m128i *)poly_) |
| static const uint8_t bswap8_[16] __attribute__((aligned(16))) = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; |
| #define bswap8 (*(__m128i *)bswap8_) |
| static const uint8_t one8_[16] __attribute__((aligned(16))) = {1}; |
| #define one8 (*(__m128i *)one8_) |
| |
| /* This function is covered by the Apache License and the MIT License. The origin is crypto/modes/asm/ghash-x86_64.pl of openssl |
| * at commit 33388b4. */ |
| static __m128i transformH(__m128i H) |
| { |
| // # <<1 twist |
| // pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword |
| __m128i t2 = _mm_shuffle_epi32(H, 0xff); |
| // movdqa $Hkey,$T1 |
| __m128i t1 = H; |
| // psllq \$1,$Hkey |
| H = _mm_slli_epi64(H, 1); |
| // pxor $T3,$T3 # |
| __m128i t3 = _mm_setzero_si128(); |
| // psrlq \$63,$T1 |
| t1 = _mm_srli_epi64(t1, 63); |
| // pcmpgtd $T2,$T3 # broadcast carry bit |
| t3 = _mm_cmplt_epi32(t2, t3); |
| // pslldq \$8,$T1 |
| t1 = _mm_slli_si128(t1, 8); |
| // por $T1,$Hkey # H<<=1 |
| H = _mm_or_si128(t1, H); |
| |
| // # magic reduction |
| // pand .L0x1c2_polynomial(%rip),$T3 |
| t3 = _mm_and_si128(t3, poly); |
| // pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial |
| H = _mm_xor_si128(t3, H); |
| |
| return H; |
| } |
| // end of Apache License code |
| |
| static __m128i gfmul(__m128i x, __m128i y) |
| { |
| __m128i lo = _mm_clmulepi64_si128(x, y, 0x00); |
| __m128i hi = _mm_clmulepi64_si128(x, y, 0x11); |
| |
| __m128i a = _mm_shuffle_epi32(x, 78); |
| __m128i b = _mm_shuffle_epi32(y, 78); |
| a = _mm_xor_si128(a, x); |
| b = _mm_xor_si128(b, y); |
| |
| a = _mm_clmulepi64_si128(a, b, 0x00); |
| a = _mm_xor_si128(a, lo); |
| a = _mm_xor_si128(a, hi); |
| |
| b = _mm_slli_si128(a, 8); |
| a = _mm_srli_si128(a, 8); |
| |
| lo = _mm_xor_si128(lo, b); |
| hi = _mm_xor_si128(hi, a); |
| |
| // from https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf |
| __m128i t = _mm_clmulepi64_si128(lo, poly, 0x10); |
| lo = _mm_shuffle_epi32(lo, 78); |
| lo = _mm_xor_si128(lo, t); |
| t = _mm_clmulepi64_si128(lo, poly, 0x10); |
| lo = _mm_shuffle_epi32(lo, 78); |
| lo = _mm_xor_si128(lo, t); |
| |
| return _mm_xor_si128(hi, lo); |
| } |
| |
| struct ptls_fusion_gfmul_state { |
| __m128i hi, lo, mid; |
| }; |
| |
| static inline void gfmul_onestep(struct ptls_fusion_gfmul_state *gstate, __m128i X, |
| struct ptls_fusion_aesgcm_ghash_precompute *precompute) |
| { |
| X = _mm_shuffle_epi8(X, bswap8); |
| __m128i t = _mm_clmulepi64_si128(precompute->H, X, 0x00); |
| gstate->lo = _mm_xor_si128(gstate->lo, t); |
| t = _mm_clmulepi64_si128(precompute->H, X, 0x11); |
| gstate->hi = _mm_xor_si128(gstate->hi, t); |
| t = _mm_shuffle_epi32(X, 78); |
| t = _mm_xor_si128(t, X); |
| t = _mm_clmulepi64_si128(precompute->r, t, 0x00); |
| gstate->mid = _mm_xor_si128(gstate->mid, t); |
| } |
| |
| static inline __m128i gfmul_final(struct ptls_fusion_gfmul_state *gstate, __m128i ek0) |
| { |
| /* finish multiplication */ |
| gstate->mid = _mm_xor_si128(gstate->mid, gstate->hi); |
| gstate->mid = _mm_xor_si128(gstate->mid, gstate->lo); |
| gstate->lo = _mm_xor_si128(gstate->lo, _mm_slli_si128(gstate->mid, 8)); |
| gstate->hi = _mm_xor_si128(gstate->hi, _mm_srli_si128(gstate->mid, 8)); |
| |
| /* fast reduction, using https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf */ |
| __m128i r = _mm_clmulepi64_si128(gstate->lo, poly, 0x10); |
| gstate->lo = _mm_shuffle_epi32(gstate->lo, 78); |
| gstate->lo = _mm_xor_si128(gstate->lo, r); |
| r = _mm_clmulepi64_si128(gstate->lo, poly, 0x10); |
| gstate->lo = _mm_shuffle_epi32(gstate->lo, 78); |
| gstate->lo = _mm_xor_si128(gstate->lo, r); |
| __m128i tag = _mm_xor_si128(gstate->hi, gstate->lo); |
| tag = _mm_shuffle_epi8(tag, bswap8); |
| tag = _mm_xor_si128(tag, ek0); |
| |
| return tag; |
| } |
| |
| static inline __m128i aesecb_encrypt(ptls_fusion_aesecb_context_t *ctx, __m128i v) |
| { |
| size_t i; |
| |
| v = _mm_xor_si128(v, ctx->keys[0]); |
| for (i = 1; i < ctx->rounds; ++i) |
| v = _mm_aesenc_si128(v, ctx->keys[i]); |
| v = _mm_aesenclast_si128(v, ctx->keys[i]); |
| |
| return v; |
| } |
| |
| static const uint8_t loadn_mask[31] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| static const uint8_t loadn_shuffle[31] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, // first 16 bytes map to byte offsets |
| 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, |
| 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80}; // latter 15 bytes map to zero |
| |
| static inline __m128i loadn(const void *p, size_t l) |
| { |
| __m128i v, mask = _mm_loadu_si128((__m128i *)(loadn_mask + 16 - l)); |
| uintptr_t mod4k = (uintptr_t)p % 4096; |
| |
| if (PTLS_LIKELY(mod4k <= 4080) || mod4k + l > 4096) { |
| v = _mm_loadu_si128(p); |
| } else { |
| uintptr_t shift = (uintptr_t)p & 15; |
| __m128i pattern = _mm_loadu_si128((const __m128i *)(loadn_shuffle + shift)); |
| v = _mm_shuffle_epi8(_mm_load_si128((const __m128i *)((uintptr_t)p - shift)), pattern); |
| } |
| v = _mm_and_si128(v, mask); |
| return v; |
| } |
| |
| static inline void storen(void *_p, size_t l, __m128i v) |
| { |
| uint8_t buf[16], *p = _p; |
| |
| *(__m128i *)buf = v; |
| |
| for (size_t i = 0; i != l; ++i) |
| p[i] = buf[i]; |
| } |
| |
| void ptls_fusion_aesgcm_encrypt(ptls_fusion_aesgcm_context_t *ctx, void *output, const void *input, size_t inlen, __m128i ctr, |
| const void *_aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp) |
| { |
| /* init the bits (we can always run in full), but use the last slot for calculating ek0, if possible */ |
| #define AESECB6_INIT() \ |
| do { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits0 = _mm_shuffle_epi8(ctr, bswap8); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits1 = _mm_shuffle_epi8(ctr, bswap8); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits2 = _mm_shuffle_epi8(ctr, bswap8); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits3 = _mm_shuffle_epi8(ctr, bswap8); \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits4 = _mm_shuffle_epi8(ctr, bswap8); \ |
| if (PTLS_LIKELY(srclen > 16 * 5)) { \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits5 = _mm_shuffle_epi8(ctr, bswap8); \ |
| } else { \ |
| if ((state & STATE_EK0_BEEN_FED) == 0) { \ |
| bits5 = ek0; \ |
| state |= STATE_EK0_BEEN_FED; \ |
| } \ |
| if ((state & STATE_SUPP_USED) != 0 && srclen <= 16 * 4 && (const __m128i *)supp->input + 1 <= dst_ghash) { \ |
| bits4 = _mm_loadu_si128(supp->input); \ |
| bits4keys = ((struct ctr_context *)supp->ctx)->fusion.keys; \ |
| state |= STATE_SUPP_IN_PROCESS; \ |
| } \ |
| } \ |
| __m128i k = ctx->ecb.keys[0]; \ |
| bits0 = _mm_xor_si128(bits0, k); \ |
| bits1 = _mm_xor_si128(bits1, k); \ |
| bits2 = _mm_xor_si128(bits2, k); \ |
| bits3 = _mm_xor_si128(bits3, k); \ |
| bits4 = _mm_xor_si128(bits4, bits4keys[0]); \ |
| bits5 = _mm_xor_si128(bits5, k); \ |
| } while (0) |
| |
| /* aes block update */ |
| #define AESECB6_UPDATE(i) \ |
| do { \ |
| __m128i k = ctx->ecb.keys[i]; \ |
| bits0 = _mm_aesenc_si128(bits0, k); \ |
| bits1 = _mm_aesenc_si128(bits1, k); \ |
| bits2 = _mm_aesenc_si128(bits2, k); \ |
| bits3 = _mm_aesenc_si128(bits3, k); \ |
| bits4 = _mm_aesenc_si128(bits4, bits4keys[i]); \ |
| bits5 = _mm_aesenc_si128(bits5, k); \ |
| } while (0) |
| |
| /* aesenclast */ |
| #define AESECB6_FINAL(i) \ |
| do { \ |
| __m128i k = ctx->ecb.keys[i]; \ |
| bits0 = _mm_aesenclast_si128(bits0, k); \ |
| bits1 = _mm_aesenclast_si128(bits1, k); \ |
| bits2 = _mm_aesenclast_si128(bits2, k); \ |
| bits3 = _mm_aesenclast_si128(bits3, k); \ |
| bits4 = _mm_aesenclast_si128(bits4, bits4keys[i]); \ |
| bits5 = _mm_aesenclast_si128(bits5, k); \ |
| } while (0) |
| |
| __m128i ek0, bits0, bits1, bits2, bits3, bits4, bits5 = _mm_setzero_si128(); |
| const __m128i *bits4keys = ctx->ecb.keys; /* is changed to supp->ctx.keys when calcurating suppout */ |
| struct ptls_fusion_gfmul_state gstate = {0}; |
| __m128i gdatabuf[6]; |
| __m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)inlen * 8), bswap8); |
| |
| // src and dst are updated after the chunk is processed |
| const __m128i *src = input; |
| __m128i *dst = output; |
| size_t srclen = inlen; |
| // aad and src_ghash are updated before the chunk is processed (i.e., when the pointers are fed indo the processor) |
| const __m128i *aad = _aad, *dst_ghash = dst; |
| size_t dst_ghashlen = srclen; |
| |
| struct ptls_fusion_aesgcm_ghash_precompute *ghash_precompute = ctx->ghash + (aadlen + 15) / 16 + (srclen + 15) / 16 + 1; |
| |
| #define STATE_EK0_BEEN_FED 0x3 |
| #define STATE_EK0_INCOMPLETE 0x2 |
| #define STATE_EK0_READY() ((state & STATE_EK0_BEEN_FED) == 0x1) |
| #define STATE_SUPP_USED 0x4 |
| #define STATE_SUPP_IN_PROCESS 0x8 |
| int32_t state = supp != NULL ? STATE_SUPP_USED : 0; |
| |
| /* build counter */ |
| ctr = _mm_insert_epi32(ctr, 1, 0); |
| ek0 = _mm_shuffle_epi8(ctr, bswap8); |
| |
| /* start preparing AES */ |
| AESECB6_INIT(); |
| AESECB6_UPDATE(1); |
| |
| /* build first ghash data (only AAD can be fed at this point, as this would be calculated alongside the first AES block) */ |
| const __m128i *gdata = gdatabuf; // points to the elements fed into GHASH |
| size_t gdata_cnt = 0; |
| if (PTLS_LIKELY(aadlen != 0)) { |
| while (gdata_cnt < 6) { |
| if (PTLS_LIKELY(aadlen < 16)) { |
| if (aadlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn(aad, aadlen); |
| aadlen = 0; |
| } |
| goto MainLoop; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++); |
| aadlen -= 16; |
| } |
| } |
| |
| /* the main loop */ |
| MainLoop: |
| while (1) { |
| /* run AES and multiplication in parallel */ |
| size_t i; |
| for (i = 2; i < gdata_cnt + 2; ++i) { |
| AESECB6_UPDATE(i); |
| gfmul_onestep(&gstate, _mm_loadu_si128(gdata++), --ghash_precompute); |
| } |
| for (; i < ctx->ecb.rounds; ++i) |
| AESECB6_UPDATE(i); |
| AESECB6_FINAL(i); |
| |
| /* apply the bit stream to src and write to dest */ |
| if (PTLS_LIKELY(srclen >= 6 * 16)) { |
| #define APPLY(i) _mm_storeu_si128(dst + i, _mm_xor_si128(_mm_loadu_si128(src + i), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| dst += 6; |
| src += 6; |
| srclen -= 6 * 16; |
| } else { |
| if ((state & STATE_EK0_BEEN_FED) == STATE_EK0_BEEN_FED) { |
| ek0 = bits5; |
| state &= ~STATE_EK0_INCOMPLETE; |
| } |
| if ((state & STATE_SUPP_IN_PROCESS) != 0) { |
| _mm_storeu_si128((__m128i *)supp->output, bits4); |
| state &= ~(STATE_SUPP_USED | STATE_SUPP_IN_PROCESS); |
| } |
| if (srclen != 0) { |
| #define APPLY(i) \ |
| do { \ |
| if (PTLS_LIKELY(srclen >= 16)) { \ |
| _mm_storeu_si128(dst++, _mm_xor_si128(_mm_loadu_si128(src++), bits##i)); \ |
| srclen -= 16; \ |
| } else if (PTLS_LIKELY(srclen != 0)) { \ |
| bits0 = bits##i; \ |
| goto ApplyRemainder; \ |
| } else { \ |
| goto ApplyEnd; \ |
| } \ |
| } while (0) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| goto ApplyEnd; |
| ApplyRemainder: |
| storen(dst, srclen, _mm_xor_si128(loadn(src, srclen), bits0)); |
| dst = (__m128i *)((uint8_t *)dst + srclen); |
| srclen = 0; |
| ApplyEnd:; |
| } |
| } |
| |
| /* next block AES starts here */ |
| AESECB6_INIT(); |
| |
| AESECB6_UPDATE(1); |
| |
| /* setup gdata */ |
| if (PTLS_UNLIKELY(aadlen != 0)) { |
| gdata_cnt = 0; |
| while (gdata_cnt < 6) { |
| if (aadlen < 16) { |
| if (aadlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn(aad, aadlen); |
| aadlen = 0; |
| } |
| goto GdataFillDST; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++); |
| aadlen -= 16; |
| } |
| gdata = gdatabuf; |
| } else if (PTLS_LIKELY(dst_ghashlen >= 6 * 16)) { |
| gdata = dst_ghash; |
| gdata_cnt = 6; |
| dst_ghash += 6; |
| dst_ghashlen -= 96; |
| } else { |
| gdata_cnt = 0; |
| GdataFillDST: |
| while (gdata_cnt < 6) { |
| if (dst_ghashlen < 16) { |
| if (dst_ghashlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn(dst_ghash, dst_ghashlen); |
| dst_ghashlen = 0; |
| } |
| if (gdata_cnt < 6) |
| goto Finish; |
| break; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(dst_ghash++); |
| dst_ghashlen -= 16; |
| } |
| gdata = gdatabuf; |
| } |
| } |
| |
| Finish: |
| gdatabuf[gdata_cnt++] = ac; |
| |
| /* We have complete set of data to be fed into GHASH. Let's finish the remaining calculation. |
| * Note that by now, all AES operations for payload encryption and ek0 are complete. This is is because it is necessary for GCM |
| * to process at least the same amount of data (i.e. payload-blocks + AC), and because AES is at least one 96-byte block ahead. |
| */ |
| assert(STATE_EK0_READY()); |
| for (size_t i = 0; i < gdata_cnt; ++i) |
| gfmul_onestep(&gstate, gdatabuf[i], --ghash_precompute); |
| |
| _mm_storeu_si128(dst, gfmul_final(&gstate, ek0)); |
| |
| /* Finish the calculation of supplemental vector. Done at the very last, because the sample might cover the GCM tag. */ |
| if ((state & STATE_SUPP_USED) != 0) { |
| size_t i; |
| if ((state & STATE_SUPP_IN_PROCESS) == 0) { |
| bits4keys = ((struct ctr_context *)supp->ctx)->fusion.keys; |
| bits4 = _mm_xor_si128(_mm_loadu_si128(supp->input), bits4keys[0]); |
| i = 1; |
| } else { |
| i = 2; |
| } |
| do { |
| bits4 = _mm_aesenc_si128(bits4, bits4keys[i++]); |
| } while (i != ctx->ecb.rounds); |
| bits4 = _mm_aesenclast_si128(bits4, bits4keys[i]); |
| _mm_storeu_si128((__m128i *)supp->output, bits4); |
| } |
| |
| #undef AESECB6_INIT |
| #undef AESECB6_UPDATE |
| #undef AESECB6_FINAL |
| #undef STATE_EK0_BEEN_FOUND |
| #undef STATE_EK0_READY |
| #undef STATE_SUPP_IN_PROCESS |
| } |
| |
| int ptls_fusion_aesgcm_decrypt(ptls_fusion_aesgcm_context_t *ctx, void *output, const void *input, size_t inlen, __m128i ctr, |
| const void *_aad, size_t aadlen, const void *tag) |
| { |
| __m128i ek0 = _mm_setzero_si128(), bits0, bits1 = _mm_setzero_si128(), bits2 = _mm_setzero_si128(), bits3 = _mm_setzero_si128(), |
| bits4 = _mm_setzero_si128(), bits5 = _mm_setzero_si128(); |
| struct ptls_fusion_gfmul_state gstate = {0}; |
| __m128i gdatabuf[6]; |
| __m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)inlen * 8), bswap8); |
| struct ptls_fusion_aesgcm_ghash_precompute *ghash_precompute = ctx->ghash + (aadlen + 15) / 16 + (inlen + 15) / 16 + 1; |
| |
| const __m128i *gdata; // points to the elements fed into GHASH |
| size_t gdata_cnt; |
| |
| const __m128i *src_ghash = input, *src_aes = input, *aad = _aad; |
| __m128i *dst = output; |
| size_t nondata_aes_cnt = 0, src_ghashlen = inlen, src_aeslen = inlen; |
| |
| /* schedule ek0 and suppkey */ |
| ctr = _mm_add_epi64(ctr, one8); |
| bits0 = _mm_xor_si128(_mm_shuffle_epi8(ctr, bswap8), ctx->ecb.keys[0]); |
| ++nondata_aes_cnt; |
| |
| #define STATE_IS_FIRST_RUN 0x1 |
| #define STATE_GHASH_HAS_MORE 0x2 |
| int state = STATE_IS_FIRST_RUN | STATE_GHASH_HAS_MORE; |
| |
| /* the main loop */ |
| while (1) { |
| |
| /* setup gdata */ |
| if (PTLS_UNLIKELY(aadlen != 0)) { |
| gdata = gdatabuf; |
| gdata_cnt = 0; |
| while (gdata_cnt < 6) { |
| if (aadlen < 16) { |
| if (aadlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn(aad, aadlen); |
| aadlen = 0; |
| ++nondata_aes_cnt; |
| } |
| goto GdataFillSrc; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++); |
| aadlen -= 16; |
| ++nondata_aes_cnt; |
| } |
| } else if (PTLS_LIKELY(src_ghashlen >= 6 * 16)) { |
| gdata = src_ghash; |
| gdata_cnt = 6; |
| src_ghash += 6; |
| src_ghashlen -= 6 * 16; |
| } else { |
| gdata = gdatabuf; |
| gdata_cnt = 0; |
| GdataFillSrc: |
| while (gdata_cnt < 6) { |
| if (src_ghashlen < 16) { |
| if (src_ghashlen != 0) { |
| gdatabuf[gdata_cnt++] = loadn(src_ghash, src_ghashlen); |
| src_ghash = (__m128i *)((uint8_t *)src_ghash + src_ghashlen); |
| src_ghashlen = 0; |
| } |
| if (gdata_cnt < 6 && (state & STATE_GHASH_HAS_MORE) != 0) { |
| gdatabuf[gdata_cnt++] = ac; |
| state &= ~STATE_GHASH_HAS_MORE; |
| } |
| break; |
| } |
| gdatabuf[gdata_cnt++] = _mm_loadu_si128(src_ghash++); |
| src_ghashlen -= 16; |
| } |
| } |
| |
| /* setup aes bits */ |
| if (PTLS_LIKELY(nondata_aes_cnt == 0)) |
| goto InitAllBits; |
| switch (nondata_aes_cnt) { |
| #define INIT_BITS(n, keys) \ |
| case n: \ |
| ctr = _mm_add_epi64(ctr, one8); \ |
| bits##n = _mm_xor_si128(_mm_shuffle_epi8(ctr, bswap8), keys[0]); |
| InitAllBits: |
| INIT_BITS(0, ctx->ecb.keys); |
| INIT_BITS(1, ctx->ecb.keys); |
| INIT_BITS(2, ctx->ecb.keys); |
| INIT_BITS(3, ctx->ecb.keys); |
| INIT_BITS(4, ctx->ecb.keys); |
| INIT_BITS(5, ctx->ecb.keys); |
| #undef INIT_BITS |
| } |
| |
| { /* run aes and ghash */ |
| #define AESECB6_UPDATE(i) \ |
| do { \ |
| __m128i k = ctx->ecb.keys[i]; \ |
| bits0 = _mm_aesenc_si128(bits0, k); \ |
| bits1 = _mm_aesenc_si128(bits1, k); \ |
| bits2 = _mm_aesenc_si128(bits2, k); \ |
| bits3 = _mm_aesenc_si128(bits3, k); \ |
| bits4 = _mm_aesenc_si128(bits4, k); \ |
| bits5 = _mm_aesenc_si128(bits5, k); \ |
| } while (0) |
| |
| size_t aesi; |
| for (aesi = 1; aesi <= gdata_cnt; ++aesi) { |
| AESECB6_UPDATE(aesi); |
| gfmul_onestep(&gstate, _mm_loadu_si128(gdata++), --ghash_precompute); |
| } |
| for (; aesi < ctx->ecb.rounds; ++aesi) |
| AESECB6_UPDATE(aesi); |
| __m128i k = ctx->ecb.keys[aesi]; |
| bits0 = _mm_aesenclast_si128(bits0, k); |
| bits1 = _mm_aesenclast_si128(bits1, k); |
| bits2 = _mm_aesenclast_si128(bits2, k); |
| bits3 = _mm_aesenclast_si128(bits3, k); |
| bits4 = _mm_aesenclast_si128(bits4, k); |
| bits5 = _mm_aesenclast_si128(bits5, k); |
| |
| #undef AESECB6_UPDATE |
| } |
| |
| /* apply aes bits */ |
| if (PTLS_LIKELY(nondata_aes_cnt == 0 && src_aeslen >= 6 * 16)) { |
| #define APPLY(i) _mm_storeu_si128(dst + i, _mm_xor_si128(_mm_loadu_si128(src_aes + i), bits##i)) |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| dst += 6; |
| src_aes += 6; |
| src_aeslen -= 6 * 16; |
| } else { |
| if ((state & STATE_IS_FIRST_RUN) != 0) { |
| ek0 = bits0; |
| state &= ~STATE_IS_FIRST_RUN; |
| } |
| switch (nondata_aes_cnt) { |
| #define APPLY(i) \ |
| case i: \ |
| if (PTLS_LIKELY(src_aeslen > 16)) { \ |
| _mm_storeu_si128(dst++, _mm_xor_si128(_mm_loadu_si128(src_aes++), bits##i)); \ |
| src_aeslen -= 16; \ |
| } else { \ |
| bits0 = bits##i; \ |
| goto Finish; \ |
| } |
| APPLY(0); |
| APPLY(1); |
| APPLY(2); |
| APPLY(3); |
| APPLY(4); |
| APPLY(5); |
| #undef APPLY |
| } |
| nondata_aes_cnt = 0; |
| } |
| } |
| |
| Finish: |
| if (src_aeslen == 16) { |
| _mm_storeu_si128(dst, _mm_xor_si128(_mm_loadu_si128(src_aes), bits0)); |
| } else if (src_aeslen != 0) { |
| storen(dst, src_aeslen, _mm_xor_si128(loadn(src_aes, src_aeslen), bits0)); |
| } |
| |
| assert((state & STATE_IS_FIRST_RUN) == 0); |
| |
| /* the only case where AES operation is complete and GHASH is not is when the application of AC is remaining */ |
| if ((state & STATE_GHASH_HAS_MORE) != 0) { |
| assert(ghash_precompute - 1 == ctx->ghash); |
| gfmul_onestep(&gstate, ac, --ghash_precompute); |
| } |
| |
| __m128i calctag = gfmul_final(&gstate, ek0); |
| |
| return _mm_movemask_epi8(_mm_cmpeq_epi8(calctag, _mm_loadu_si128(tag))) == 0xffff; |
| |
| #undef STATE_IS_FIRST_RUN |
| #undef STATE_GHASH_HAS_MORE |
| } |
| |
| static __m128i expand_key(__m128i key, __m128i temp) |
| { |
| key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
| key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
| key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
| |
| key = _mm_xor_si128(key, temp); |
| |
| return key; |
| } |
| |
| void ptls_fusion_aesecb_init(ptls_fusion_aesecb_context_t *ctx, int is_enc, const void *key, size_t key_size) |
| { |
| assert(is_enc && "decryption is not supported (yet)"); |
| |
| size_t i = 0; |
| |
| switch (key_size) { |
| case 16: /* AES128 */ |
| ctx->rounds = 10; |
| break; |
| case 32: /* AES256 */ |
| ctx->rounds = 14; |
| break; |
| default: |
| assert(!"invalid key size; AES128 / AES256 are supported"); |
| break; |
| } |
| |
| ctx->keys[i++] = _mm_loadu_si128((__m128i *)key); |
| if (key_size == 32) |
| ctx->keys[i++] = _mm_loadu_si128((__m128i *)key + 1); |
| |
| #define EXPAND(R) \ |
| do { \ |
| ctx->keys[i] = expand_key(ctx->keys[i - key_size / 16], \ |
| _mm_shuffle_epi32(_mm_aeskeygenassist_si128(ctx->keys[i - 1], R), _MM_SHUFFLE(3, 3, 3, 3))); \ |
| if (i == ctx->rounds) \ |
| goto Done; \ |
| ++i; \ |
| if (key_size > 24) { \ |
| ctx->keys[i] = expand_key(ctx->keys[i - key_size / 16], \ |
| _mm_shuffle_epi32(_mm_aeskeygenassist_si128(ctx->keys[i - 1], R), _MM_SHUFFLE(2, 2, 2, 2))); \ |
| ++i; \ |
| } \ |
| } while (0) |
| EXPAND(0x1); |
| EXPAND(0x2); |
| EXPAND(0x4); |
| EXPAND(0x8); |
| EXPAND(0x10); |
| EXPAND(0x20); |
| EXPAND(0x40); |
| EXPAND(0x80); |
| EXPAND(0x1b); |
| EXPAND(0x36); |
| #undef EXPAND |
| Done: |
| assert(i == ctx->rounds); |
| } |
| |
| void ptls_fusion_aesecb_dispose(ptls_fusion_aesecb_context_t *ctx) |
| { |
| ptls_clear_memory(ctx, sizeof(*ctx)); |
| } |
| |
| void ptls_fusion_aesecb_encrypt(ptls_fusion_aesecb_context_t *ctx, void *dst, const void *src) |
| { |
| __m128i v = _mm_loadu_si128(src); |
| v = aesecb_encrypt(ctx, v); |
| _mm_storeu_si128(dst, v); |
| } |
| |
| /** |
| * returns the number of ghash entries that is required to handle an AEAD block of given size |
| */ |
| static size_t aesgcm_calc_ghash_cnt(size_t capacity) |
| { |
| // round-up by block size, add to handle worst split of the size between AAD and payload, plus context to hash AC |
| return (capacity + 15) / 16 + 2; |
| } |
| |
| static void setup_one_ghash_entry(ptls_fusion_aesgcm_context_t *ctx) |
| { |
| if (ctx->ghash_cnt != 0) |
| ctx->ghash[ctx->ghash_cnt].H = gfmul(ctx->ghash[ctx->ghash_cnt - 1].H, ctx->ghash[0].H); |
| |
| __m128i r = _mm_shuffle_epi32(ctx->ghash[ctx->ghash_cnt].H, 78); |
| r = _mm_xor_si128(r, ctx->ghash[ctx->ghash_cnt].H); |
| ctx->ghash[ctx->ghash_cnt].r = r; |
| |
| ++ctx->ghash_cnt; |
| } |
| |
| ptls_fusion_aesgcm_context_t *ptls_fusion_aesgcm_new(const void *key, size_t key_size, size_t capacity) |
| { |
| ptls_fusion_aesgcm_context_t *ctx; |
| size_t ghash_cnt = aesgcm_calc_ghash_cnt(capacity); |
| |
| if ((ctx = malloc(sizeof(*ctx) + sizeof(ctx->ghash[0]) * ghash_cnt)) == NULL) |
| return NULL; |
| |
| ptls_fusion_aesecb_init(&ctx->ecb, 1, key, key_size); |
| |
| ctx->capacity = capacity; |
| |
| ctx->ghash[0].H = aesecb_encrypt(&ctx->ecb, _mm_setzero_si128()); |
| ctx->ghash[0].H = _mm_shuffle_epi8(ctx->ghash[0].H, bswap8); |
| ctx->ghash[0].H = transformH(ctx->ghash[0].H); |
| ctx->ghash_cnt = 0; |
| while (ctx->ghash_cnt < ghash_cnt) |
| setup_one_ghash_entry(ctx); |
| |
| return ctx; |
| } |
| |
| ptls_fusion_aesgcm_context_t *ptls_fusion_aesgcm_set_capacity(ptls_fusion_aesgcm_context_t *ctx, size_t capacity) |
| { |
| size_t ghash_cnt = aesgcm_calc_ghash_cnt(capacity); |
| |
| if (ghash_cnt <= ctx->ghash_cnt) |
| return ctx; |
| |
| if ((ctx = realloc(ctx, sizeof(*ctx) + sizeof(ctx->ghash[0]) * ghash_cnt)) == NULL) |
| return NULL; |
| |
| ctx->capacity = capacity; |
| while (ghash_cnt < ctx->ghash_cnt) |
| setup_one_ghash_entry(ctx); |
| |
| return ctx; |
| } |
| |
| void ptls_fusion_aesgcm_free(ptls_fusion_aesgcm_context_t *ctx) |
| { |
| ptls_clear_memory(ctx->ghash, sizeof(ctx->ghash[0]) * ctx->ghash_cnt); |
| ctx->ghash_cnt = 0; |
| ptls_fusion_aesecb_dispose(&ctx->ecb); |
| free(ctx); |
| } |
| |
| static void ctr_dispose(ptls_cipher_context_t *_ctx) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| ptls_fusion_aesecb_dispose(&ctx->fusion); |
| _mm_storeu_si128(&ctx->bits, _mm_setzero_si128()); |
| } |
| |
| static void ctr_init(ptls_cipher_context_t *_ctx, const void *iv) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| _mm_storeu_si128(&ctx->bits, aesecb_encrypt(&ctx->fusion, _mm_loadu_si128(iv))); |
| ctx->is_ready = 1; |
| } |
| |
| static void ctr_transform(ptls_cipher_context_t *_ctx, void *output, const void *input, size_t len) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| |
| assert((ctx->is_ready && len <= 16) || |
| !"CTR transfomation is supported only once per call to `init` and the maximum size is limited to 16 bytes"); |
| ctx->is_ready = 0; |
| |
| if (len < 16) { |
| storen(output, len, _mm_xor_si128(_mm_loadu_si128(&ctx->bits), loadn(input, len))); |
| } else { |
| _mm_storeu_si128(output, _mm_xor_si128(_mm_loadu_si128(&ctx->bits), _mm_loadu_si128(input))); |
| } |
| } |
| |
| static int aesctr_setup(ptls_cipher_context_t *_ctx, int is_enc, const void *key, size_t key_size) |
| { |
| struct ctr_context *ctx = (struct ctr_context *)_ctx; |
| |
| ctx->super.do_dispose = ctr_dispose; |
| ctx->super.do_init = ctr_init; |
| ctx->super.do_transform = ctr_transform; |
| ptls_fusion_aesecb_init(&ctx->fusion, 1, key, key_size); |
| ctx->is_ready = 0; |
| |
| return 0; |
| } |
| |
| static int aes128ctr_setup(ptls_cipher_context_t *ctx, int is_enc, const void *key) |
| { |
| return aesctr_setup(ctx, is_enc, key, PTLS_AES128_KEY_SIZE); |
| } |
| |
| static int aes256ctr_setup(ptls_cipher_context_t *ctx, int is_enc, const void *key) |
| { |
| return aesctr_setup(ctx, is_enc, key, PTLS_AES256_KEY_SIZE); |
| } |
| |
| static void aesgcm_dispose_crypto(ptls_aead_context_t *_ctx) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| |
| ptls_fusion_aesgcm_free(ctx->aesgcm); |
| } |
| |
| static void aead_do_encrypt_init(ptls_aead_context_t *_ctx, uint64_t seq, const void *aad, size_t aadlen) |
| { |
| assert(!"FIXME"); |
| } |
| |
| static size_t aead_do_encrypt_update(ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen) |
| { |
| assert(!"FIXME"); |
| return SIZE_MAX; |
| } |
| |
| static size_t aead_do_encrypt_final(ptls_aead_context_t *_ctx, void *_output) |
| { |
| assert(!"FIXME"); |
| return SIZE_MAX; |
| } |
| |
| static inline __m128i calc_counter(struct aesgcm_context *ctx, uint64_t seq) |
| { |
| __m128i ctr = _mm_setzero_si128(); |
| ctr = _mm_insert_epi64(ctr, seq, 0); |
| ctr = _mm_slli_si128(ctr, 4); |
| ctr = _mm_xor_si128(ctx->static_iv, ctr); |
| return ctr; |
| } |
| |
| void aead_do_encrypt(struct st_ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen, uint64_t seq, |
| const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp) |
| { |
| struct aesgcm_context *ctx = (void *)_ctx; |
| |
| if (inlen + aadlen > ctx->aesgcm->capacity) |
| ctx->aesgcm = ptls_fusion_aesgcm_set_capacity(ctx->aesgcm, inlen + aadlen); |
| ptls_fusion_aesgcm_encrypt(ctx->aesgcm, output, input, inlen, calc_counter(ctx, seq), aad, aadlen, supp); |
| } |
| |
| static size_t aead_do_decrypt(ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen, uint64_t seq, |
| const void *aad, size_t aadlen) |
| { |
| struct aesgcm_context *ctx = (void *)_ctx; |
| |
| if (inlen < 16) |
| return SIZE_MAX; |
| |
| size_t enclen = inlen - 16; |
| if (enclen + aadlen > ctx->aesgcm->capacity) |
| ctx->aesgcm = ptls_fusion_aesgcm_set_capacity(ctx->aesgcm, enclen + aadlen); |
| if (!ptls_fusion_aesgcm_decrypt(ctx->aesgcm, output, input, enclen, calc_counter(ctx, seq), aad, aadlen, |
| (const uint8_t *)input + enclen)) |
| return SIZE_MAX; |
| return enclen; |
| } |
| |
| static inline void aesgcm_xor_iv(ptls_aead_context_t *_ctx, const void *_bytes, size_t len) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| __m128i xor_mask = loadn(_bytes, len); |
| xor_mask = _mm_shuffle_epi8(xor_mask, bswap8); |
| ctx->static_iv = _mm_xor_si128(ctx->static_iv, xor_mask); |
| } |
| |
| static int aesgcm_setup(ptls_aead_context_t *_ctx, int is_enc, const void *key, const void *iv, size_t key_size) |
| { |
| struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx; |
| |
| ctx->static_iv = loadn(iv, PTLS_AESGCM_IV_SIZE); |
| ctx->static_iv = _mm_shuffle_epi8(ctx->static_iv, bswap8); |
| if (key == NULL) |
| return 0; |
| |
| ctx->super.dispose_crypto = aesgcm_dispose_crypto; |
| ctx->super.do_xor_iv = aesgcm_xor_iv; |
| ctx->super.do_encrypt_init = aead_do_encrypt_init; |
| ctx->super.do_encrypt_update = aead_do_encrypt_update; |
| ctx->super.do_encrypt_final = aead_do_encrypt_final; |
| ctx->super.do_encrypt = aead_do_encrypt; |
| ctx->super.do_decrypt = aead_do_decrypt; |
| |
| ctx->aesgcm = ptls_fusion_aesgcm_new(key, key_size, 1500 /* assume ordinary packet size */); |
| |
| return 0; |
| } |
| |
| static int aes128gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv) |
| { |
| return aesgcm_setup(ctx, is_enc, key, iv, PTLS_AES128_KEY_SIZE); |
| } |
| |
| static int aes256gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv) |
| { |
| return aesgcm_setup(ctx, is_enc, key, iv, PTLS_AES256_KEY_SIZE); |
| } |
| |
| ptls_cipher_algorithm_t ptls_fusion_aes128ctr = {"AES128-CTR", |
| PTLS_AES128_KEY_SIZE, |
| 1, // block size |
| PTLS_AES_IV_SIZE, |
| sizeof(struct ctr_context), |
| aes128ctr_setup}; |
| ptls_cipher_algorithm_t ptls_fusion_aes256ctr = {"AES256-CTR", |
| PTLS_AES256_KEY_SIZE, |
| 1, // block size |
| PTLS_AES_IV_SIZE, |
| sizeof(struct ctr_context), |
| aes256ctr_setup}; |
| ptls_aead_algorithm_t ptls_fusion_aes128gcm = {"AES128-GCM", |
| PTLS_AESGCM_CONFIDENTIALITY_LIMIT, |
| PTLS_AESGCM_INTEGRITY_LIMIT, |
| &ptls_fusion_aes128ctr, |
| NULL, // &ptls_fusion_aes128ecb, |
| PTLS_AES128_KEY_SIZE, |
| PTLS_AESGCM_IV_SIZE, |
| PTLS_AESGCM_TAG_SIZE, |
| sizeof(struct aesgcm_context), |
| aes128gcm_setup}; |
| ptls_aead_algorithm_t ptls_fusion_aes256gcm = {"AES256-GCM", |
| PTLS_AESGCM_CONFIDENTIALITY_LIMIT, |
| PTLS_AESGCM_INTEGRITY_LIMIT, |
| &ptls_fusion_aes256ctr, |
| NULL, // &ptls_fusion_aes256ecb, |
| PTLS_AES256_KEY_SIZE, |
| PTLS_AESGCM_IV_SIZE, |
| PTLS_AESGCM_TAG_SIZE, |
| sizeof(struct aesgcm_context), |
| aes256gcm_setup}; |
| |
| #ifdef _WINDOWS |
| /** |
| * ptls_fusion_is_supported_by_cpu: |
| * Check that the CPU has extended instructions for PCMUL, AES and AVX2. |
| * This test assumes that the CPU is following the x86/x64 architecture. |
| * A slightly more refined test could check that the cpu_info spells out |
| * "genuineIntel" or "authenticAMD", but would fail in presence of |
| * little known CPU brands or some VM */ |
| int ptls_fusion_is_supported_by_cpu(void) |
| { |
| uint32_t cpu_info[4]; |
| uint32_t nb_ids; |
| int is_supported = 0; |
| |
| __cpuid(cpu_info, 0); |
| nb_ids = cpu_info[0]; |
| |
| if (nb_ids >= 7) { |
| uint32_t leaf1_ecx; |
| __cpuid(cpu_info, 1); |
| leaf1_ecx = cpu_info[2]; |
| |
| if (/* PCLMUL */ (leaf1_ecx & (1 << 5)) != 0 && /* AES */ (leaf1_ecx & (1 << 25)) != 0) { |
| uint32_t leaf7_ebx; |
| __cpuid(cpu_info, 7); |
| leaf7_ebx = cpu_info[1]; |
| |
| is_supported = /* AVX2 */ (leaf7_ebx & (1 << 5)) != 0; |
| } |
| } |
| |
| return is_supported; |
| } |
| #else |
| int ptls_fusion_is_supported_by_cpu(void) |
| { |
| unsigned leaf1_ecx, leaf7_ebx; |
| |
| { /* GCC-specific code to obtain CPU features */ |
| unsigned leaf_cnt; |
| __asm__("cpuid" : "=a"(leaf_cnt) : "a"(0) : "ebx", "ecx", "edx"); |
| if (leaf_cnt < 7) |
| return 0; |
| __asm__("cpuid" : "=c"(leaf1_ecx) : "a"(1) : "ebx", "edx"); |
| __asm__("cpuid" : "=b"(leaf7_ebx) : "a"(7), "c"(0) : "edx"); |
| } |
| |
| /* AVX2 */ |
| if ((leaf7_ebx & (1 << 5)) == 0) |
| return 0; |
| /* AES */ |
| if ((leaf1_ecx & (1 << 25)) == 0) |
| return 0; |
| /* PCLMUL */ |
| if ((leaf1_ecx & (1 << 1)) == 0) |
| return 0; |
| |
| return 1; |
| } |
| #endif |