blob: d6562b49d7567cb26ab4b3b6df56bc95cae456e6 [file] [log] [blame]
/*
* This source file is licensed under the Apache License 2.0 *and* the MIT
* License. Please agree to *both* of the licensing terms!
*
*
* `transformH` function is a derivative work of OpenSSL. The original work
* is covered by the following license:
*
* Copyright 2013-2020 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
*
* All other work, including modifications to the `transformH` function is
* covered by the following MIT license:
*
* Copyright (c) 2020 Fastly, Kazuho Oku
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <immintrin.h>
#include <tmmintrin.h>
#include <nmmintrin.h>
#include <wmmintrin.h>
#include "picotls.h"
#include "picotls/fusion.h"
struct ptls_fusion_aesgcm_context {
ptls_fusion_aesecb_context_t ecb;
size_t capacity;
size_t ghash_cnt;
struct ptls_fusion_aesgcm_ghash_precompute {
__m128i H;
__m128i r;
} ghash[0];
};
struct ctr_context {
ptls_cipher_context_t super;
ptls_fusion_aesecb_context_t fusion;
__m128i bits;
uint8_t is_ready;
};
struct aesgcm_context {
ptls_aead_context_t super;
ptls_fusion_aesgcm_context_t *aesgcm;
/**
* retains the static IV in the upper 96 bits (in little endian)
*/
__m128i static_iv;
};
static const uint64_t poly_[2] __attribute__((aligned(16))) = {1, 0xc200000000000000};
#define poly (*(__m128i *)poly_)
static const uint8_t bswap8_[16] __attribute__((aligned(16))) = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
#define bswap8 (*(__m128i *)bswap8_)
static const uint8_t one8_[16] __attribute__((aligned(16))) = {1};
#define one8 (*(__m128i *)one8_)
/* This function is covered by the Apache License and the MIT License. The origin is crypto/modes/asm/ghash-x86_64.pl of openssl
* at commit 33388b4. */
static __m128i transformH(__m128i H)
{
// # <<1 twist
// pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
__m128i t2 = _mm_shuffle_epi32(H, 0xff);
// movdqa $Hkey,$T1
__m128i t1 = H;
// psllq \$1,$Hkey
H = _mm_slli_epi64(H, 1);
// pxor $T3,$T3 #
__m128i t3 = _mm_setzero_si128();
// psrlq \$63,$T1
t1 = _mm_srli_epi64(t1, 63);
// pcmpgtd $T2,$T3 # broadcast carry bit
t3 = _mm_cmplt_epi32(t2, t3);
// pslldq \$8,$T1
t1 = _mm_slli_si128(t1, 8);
// por $T1,$Hkey # H<<=1
H = _mm_or_si128(t1, H);
// # magic reduction
// pand .L0x1c2_polynomial(%rip),$T3
t3 = _mm_and_si128(t3, poly);
// pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
H = _mm_xor_si128(t3, H);
return H;
}
// end of Apache License code
static __m128i gfmul(__m128i x, __m128i y)
{
__m128i lo = _mm_clmulepi64_si128(x, y, 0x00);
__m128i hi = _mm_clmulepi64_si128(x, y, 0x11);
__m128i a = _mm_shuffle_epi32(x, 78);
__m128i b = _mm_shuffle_epi32(y, 78);
a = _mm_xor_si128(a, x);
b = _mm_xor_si128(b, y);
a = _mm_clmulepi64_si128(a, b, 0x00);
a = _mm_xor_si128(a, lo);
a = _mm_xor_si128(a, hi);
b = _mm_slli_si128(a, 8);
a = _mm_srli_si128(a, 8);
lo = _mm_xor_si128(lo, b);
hi = _mm_xor_si128(hi, a);
// from https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf
__m128i t = _mm_clmulepi64_si128(lo, poly, 0x10);
lo = _mm_shuffle_epi32(lo, 78);
lo = _mm_xor_si128(lo, t);
t = _mm_clmulepi64_si128(lo, poly, 0x10);
lo = _mm_shuffle_epi32(lo, 78);
lo = _mm_xor_si128(lo, t);
return _mm_xor_si128(hi, lo);
}
struct ptls_fusion_gfmul_state {
__m128i hi, lo, mid;
};
static inline void gfmul_onestep(struct ptls_fusion_gfmul_state *gstate, __m128i X,
struct ptls_fusion_aesgcm_ghash_precompute *precompute)
{
X = _mm_shuffle_epi8(X, bswap8);
__m128i t = _mm_clmulepi64_si128(precompute->H, X, 0x00);
gstate->lo = _mm_xor_si128(gstate->lo, t);
t = _mm_clmulepi64_si128(precompute->H, X, 0x11);
gstate->hi = _mm_xor_si128(gstate->hi, t);
t = _mm_shuffle_epi32(X, 78);
t = _mm_xor_si128(t, X);
t = _mm_clmulepi64_si128(precompute->r, t, 0x00);
gstate->mid = _mm_xor_si128(gstate->mid, t);
}
static inline __m128i gfmul_final(struct ptls_fusion_gfmul_state *gstate, __m128i ek0)
{
/* finish multiplication */
gstate->mid = _mm_xor_si128(gstate->mid, gstate->hi);
gstate->mid = _mm_xor_si128(gstate->mid, gstate->lo);
gstate->lo = _mm_xor_si128(gstate->lo, _mm_slli_si128(gstate->mid, 8));
gstate->hi = _mm_xor_si128(gstate->hi, _mm_srli_si128(gstate->mid, 8));
/* fast reduction, using https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf */
__m128i r = _mm_clmulepi64_si128(gstate->lo, poly, 0x10);
gstate->lo = _mm_shuffle_epi32(gstate->lo, 78);
gstate->lo = _mm_xor_si128(gstate->lo, r);
r = _mm_clmulepi64_si128(gstate->lo, poly, 0x10);
gstate->lo = _mm_shuffle_epi32(gstate->lo, 78);
gstate->lo = _mm_xor_si128(gstate->lo, r);
__m128i tag = _mm_xor_si128(gstate->hi, gstate->lo);
tag = _mm_shuffle_epi8(tag, bswap8);
tag = _mm_xor_si128(tag, ek0);
return tag;
}
static inline __m128i aesecb_encrypt(ptls_fusion_aesecb_context_t *ctx, __m128i v)
{
size_t i;
v = _mm_xor_si128(v, ctx->keys[0]);
for (i = 1; i < ctx->rounds; ++i)
v = _mm_aesenc_si128(v, ctx->keys[i]);
v = _mm_aesenclast_si128(v, ctx->keys[i]);
return v;
}
static const uint8_t loadn_mask[31] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static const uint8_t loadn_shuffle[31] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, // first 16 bytes map to byte offsets
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80}; // latter 15 bytes map to zero
static inline __m128i loadn(const void *p, size_t l)
{
__m128i v, mask = _mm_loadu_si128((__m128i *)(loadn_mask + 16 - l));
uintptr_t mod4k = (uintptr_t)p % 4096;
if (PTLS_LIKELY(mod4k <= 4080) || mod4k + l > 4096) {
v = _mm_loadu_si128(p);
} else {
uintptr_t shift = (uintptr_t)p & 15;
__m128i pattern = _mm_loadu_si128((const __m128i *)(loadn_shuffle + shift));
v = _mm_shuffle_epi8(_mm_load_si128((const __m128i *)((uintptr_t)p - shift)), pattern);
}
v = _mm_and_si128(v, mask);
return v;
}
static inline void storen(void *_p, size_t l, __m128i v)
{
uint8_t buf[16], *p = _p;
*(__m128i *)buf = v;
for (size_t i = 0; i != l; ++i)
p[i] = buf[i];
}
void ptls_fusion_aesgcm_encrypt(ptls_fusion_aesgcm_context_t *ctx, void *output, const void *input, size_t inlen, __m128i ctr,
const void *_aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp)
{
/* init the bits (we can always run in full), but use the last slot for calculating ek0, if possible */
#define AESECB6_INIT() \
do { \
ctr = _mm_add_epi64(ctr, one8); \
bits0 = _mm_shuffle_epi8(ctr, bswap8); \
ctr = _mm_add_epi64(ctr, one8); \
bits1 = _mm_shuffle_epi8(ctr, bswap8); \
ctr = _mm_add_epi64(ctr, one8); \
bits2 = _mm_shuffle_epi8(ctr, bswap8); \
ctr = _mm_add_epi64(ctr, one8); \
bits3 = _mm_shuffle_epi8(ctr, bswap8); \
ctr = _mm_add_epi64(ctr, one8); \
bits4 = _mm_shuffle_epi8(ctr, bswap8); \
if (PTLS_LIKELY(srclen > 16 * 5)) { \
ctr = _mm_add_epi64(ctr, one8); \
bits5 = _mm_shuffle_epi8(ctr, bswap8); \
} else { \
if ((state & STATE_EK0_BEEN_FED) == 0) { \
bits5 = ek0; \
state |= STATE_EK0_BEEN_FED; \
} \
if ((state & STATE_SUPP_USED) != 0 && srclen <= 16 * 4 && (const __m128i *)supp->input + 1 <= dst_ghash) { \
bits4 = _mm_loadu_si128(supp->input); \
bits4keys = ((struct ctr_context *)supp->ctx)->fusion.keys; \
state |= STATE_SUPP_IN_PROCESS; \
} \
} \
__m128i k = ctx->ecb.keys[0]; \
bits0 = _mm_xor_si128(bits0, k); \
bits1 = _mm_xor_si128(bits1, k); \
bits2 = _mm_xor_si128(bits2, k); \
bits3 = _mm_xor_si128(bits3, k); \
bits4 = _mm_xor_si128(bits4, bits4keys[0]); \
bits5 = _mm_xor_si128(bits5, k); \
} while (0)
/* aes block update */
#define AESECB6_UPDATE(i) \
do { \
__m128i k = ctx->ecb.keys[i]; \
bits0 = _mm_aesenc_si128(bits0, k); \
bits1 = _mm_aesenc_si128(bits1, k); \
bits2 = _mm_aesenc_si128(bits2, k); \
bits3 = _mm_aesenc_si128(bits3, k); \
bits4 = _mm_aesenc_si128(bits4, bits4keys[i]); \
bits5 = _mm_aesenc_si128(bits5, k); \
} while (0)
/* aesenclast */
#define AESECB6_FINAL(i) \
do { \
__m128i k = ctx->ecb.keys[i]; \
bits0 = _mm_aesenclast_si128(bits0, k); \
bits1 = _mm_aesenclast_si128(bits1, k); \
bits2 = _mm_aesenclast_si128(bits2, k); \
bits3 = _mm_aesenclast_si128(bits3, k); \
bits4 = _mm_aesenclast_si128(bits4, bits4keys[i]); \
bits5 = _mm_aesenclast_si128(bits5, k); \
} while (0)
__m128i ek0, bits0, bits1, bits2, bits3, bits4, bits5 = _mm_setzero_si128();
const __m128i *bits4keys = ctx->ecb.keys; /* is changed to supp->ctx.keys when calcurating suppout */
struct ptls_fusion_gfmul_state gstate = {0};
__m128i gdatabuf[6];
__m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)inlen * 8), bswap8);
// src and dst are updated after the chunk is processed
const __m128i *src = input;
__m128i *dst = output;
size_t srclen = inlen;
// aad and src_ghash are updated before the chunk is processed (i.e., when the pointers are fed indo the processor)
const __m128i *aad = _aad, *dst_ghash = dst;
size_t dst_ghashlen = srclen;
struct ptls_fusion_aesgcm_ghash_precompute *ghash_precompute = ctx->ghash + (aadlen + 15) / 16 + (srclen + 15) / 16 + 1;
#define STATE_EK0_BEEN_FED 0x3
#define STATE_EK0_INCOMPLETE 0x2
#define STATE_EK0_READY() ((state & STATE_EK0_BEEN_FED) == 0x1)
#define STATE_SUPP_USED 0x4
#define STATE_SUPP_IN_PROCESS 0x8
int32_t state = supp != NULL ? STATE_SUPP_USED : 0;
/* build counter */
ctr = _mm_insert_epi32(ctr, 1, 0);
ek0 = _mm_shuffle_epi8(ctr, bswap8);
/* start preparing AES */
AESECB6_INIT();
AESECB6_UPDATE(1);
/* build first ghash data (only AAD can be fed at this point, as this would be calculated alongside the first AES block) */
const __m128i *gdata = gdatabuf; // points to the elements fed into GHASH
size_t gdata_cnt = 0;
if (PTLS_LIKELY(aadlen != 0)) {
while (gdata_cnt < 6) {
if (PTLS_LIKELY(aadlen < 16)) {
if (aadlen != 0) {
gdatabuf[gdata_cnt++] = loadn(aad, aadlen);
aadlen = 0;
}
goto MainLoop;
}
gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++);
aadlen -= 16;
}
}
/* the main loop */
MainLoop:
while (1) {
/* run AES and multiplication in parallel */
size_t i;
for (i = 2; i < gdata_cnt + 2; ++i) {
AESECB6_UPDATE(i);
gfmul_onestep(&gstate, _mm_loadu_si128(gdata++), --ghash_precompute);
}
for (; i < ctx->ecb.rounds; ++i)
AESECB6_UPDATE(i);
AESECB6_FINAL(i);
/* apply the bit stream to src and write to dest */
if (PTLS_LIKELY(srclen >= 6 * 16)) {
#define APPLY(i) _mm_storeu_si128(dst + i, _mm_xor_si128(_mm_loadu_si128(src + i), bits##i))
APPLY(0);
APPLY(1);
APPLY(2);
APPLY(3);
APPLY(4);
APPLY(5);
#undef APPLY
dst += 6;
src += 6;
srclen -= 6 * 16;
} else {
if ((state & STATE_EK0_BEEN_FED) == STATE_EK0_BEEN_FED) {
ek0 = bits5;
state &= ~STATE_EK0_INCOMPLETE;
}
if ((state & STATE_SUPP_IN_PROCESS) != 0) {
_mm_storeu_si128((__m128i *)supp->output, bits4);
state &= ~(STATE_SUPP_USED | STATE_SUPP_IN_PROCESS);
}
if (srclen != 0) {
#define APPLY(i) \
do { \
if (PTLS_LIKELY(srclen >= 16)) { \
_mm_storeu_si128(dst++, _mm_xor_si128(_mm_loadu_si128(src++), bits##i)); \
srclen -= 16; \
} else if (PTLS_LIKELY(srclen != 0)) { \
bits0 = bits##i; \
goto ApplyRemainder; \
} else { \
goto ApplyEnd; \
} \
} while (0)
APPLY(0);
APPLY(1);
APPLY(2);
APPLY(3);
APPLY(4);
APPLY(5);
#undef APPLY
goto ApplyEnd;
ApplyRemainder:
storen(dst, srclen, _mm_xor_si128(loadn(src, srclen), bits0));
dst = (__m128i *)((uint8_t *)dst + srclen);
srclen = 0;
ApplyEnd:;
}
}
/* next block AES starts here */
AESECB6_INIT();
AESECB6_UPDATE(1);
/* setup gdata */
if (PTLS_UNLIKELY(aadlen != 0)) {
gdata_cnt = 0;
while (gdata_cnt < 6) {
if (aadlen < 16) {
if (aadlen != 0) {
gdatabuf[gdata_cnt++] = loadn(aad, aadlen);
aadlen = 0;
}
goto GdataFillDST;
}
gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++);
aadlen -= 16;
}
gdata = gdatabuf;
} else if (PTLS_LIKELY(dst_ghashlen >= 6 * 16)) {
gdata = dst_ghash;
gdata_cnt = 6;
dst_ghash += 6;
dst_ghashlen -= 96;
} else {
gdata_cnt = 0;
GdataFillDST:
while (gdata_cnt < 6) {
if (dst_ghashlen < 16) {
if (dst_ghashlen != 0) {
gdatabuf[gdata_cnt++] = loadn(dst_ghash, dst_ghashlen);
dst_ghashlen = 0;
}
if (gdata_cnt < 6)
goto Finish;
break;
}
gdatabuf[gdata_cnt++] = _mm_loadu_si128(dst_ghash++);
dst_ghashlen -= 16;
}
gdata = gdatabuf;
}
}
Finish:
gdatabuf[gdata_cnt++] = ac;
/* We have complete set of data to be fed into GHASH. Let's finish the remaining calculation.
* Note that by now, all AES operations for payload encryption and ek0 are complete. This is is because it is necessary for GCM
* to process at least the same amount of data (i.e. payload-blocks + AC), and because AES is at least one 96-byte block ahead.
*/
assert(STATE_EK0_READY());
for (size_t i = 0; i < gdata_cnt; ++i)
gfmul_onestep(&gstate, gdatabuf[i], --ghash_precompute);
_mm_storeu_si128(dst, gfmul_final(&gstate, ek0));
/* Finish the calculation of supplemental vector. Done at the very last, because the sample might cover the GCM tag. */
if ((state & STATE_SUPP_USED) != 0) {
size_t i;
if ((state & STATE_SUPP_IN_PROCESS) == 0) {
bits4keys = ((struct ctr_context *)supp->ctx)->fusion.keys;
bits4 = _mm_xor_si128(_mm_loadu_si128(supp->input), bits4keys[0]);
i = 1;
} else {
i = 2;
}
do {
bits4 = _mm_aesenc_si128(bits4, bits4keys[i++]);
} while (i != ctx->ecb.rounds);
bits4 = _mm_aesenclast_si128(bits4, bits4keys[i]);
_mm_storeu_si128((__m128i *)supp->output, bits4);
}
#undef AESECB6_INIT
#undef AESECB6_UPDATE
#undef AESECB6_FINAL
#undef STATE_EK0_BEEN_FOUND
#undef STATE_EK0_READY
#undef STATE_SUPP_IN_PROCESS
}
int ptls_fusion_aesgcm_decrypt(ptls_fusion_aesgcm_context_t *ctx, void *output, const void *input, size_t inlen, __m128i ctr,
const void *_aad, size_t aadlen, const void *tag)
{
__m128i ek0 = _mm_setzero_si128(), bits0, bits1 = _mm_setzero_si128(), bits2 = _mm_setzero_si128(), bits3 = _mm_setzero_si128(),
bits4 = _mm_setzero_si128(), bits5 = _mm_setzero_si128();
struct ptls_fusion_gfmul_state gstate = {0};
__m128i gdatabuf[6];
__m128i ac = _mm_shuffle_epi8(_mm_set_epi32(0, (int)aadlen * 8, 0, (int)inlen * 8), bswap8);
struct ptls_fusion_aesgcm_ghash_precompute *ghash_precompute = ctx->ghash + (aadlen + 15) / 16 + (inlen + 15) / 16 + 1;
const __m128i *gdata; // points to the elements fed into GHASH
size_t gdata_cnt;
const __m128i *src_ghash = input, *src_aes = input, *aad = _aad;
__m128i *dst = output;
size_t nondata_aes_cnt = 0, src_ghashlen = inlen, src_aeslen = inlen;
/* schedule ek0 and suppkey */
ctr = _mm_add_epi64(ctr, one8);
bits0 = _mm_xor_si128(_mm_shuffle_epi8(ctr, bswap8), ctx->ecb.keys[0]);
++nondata_aes_cnt;
#define STATE_IS_FIRST_RUN 0x1
#define STATE_GHASH_HAS_MORE 0x2
int state = STATE_IS_FIRST_RUN | STATE_GHASH_HAS_MORE;
/* the main loop */
while (1) {
/* setup gdata */
if (PTLS_UNLIKELY(aadlen != 0)) {
gdata = gdatabuf;
gdata_cnt = 0;
while (gdata_cnt < 6) {
if (aadlen < 16) {
if (aadlen != 0) {
gdatabuf[gdata_cnt++] = loadn(aad, aadlen);
aadlen = 0;
++nondata_aes_cnt;
}
goto GdataFillSrc;
}
gdatabuf[gdata_cnt++] = _mm_loadu_si128(aad++);
aadlen -= 16;
++nondata_aes_cnt;
}
} else if (PTLS_LIKELY(src_ghashlen >= 6 * 16)) {
gdata = src_ghash;
gdata_cnt = 6;
src_ghash += 6;
src_ghashlen -= 6 * 16;
} else {
gdata = gdatabuf;
gdata_cnt = 0;
GdataFillSrc:
while (gdata_cnt < 6) {
if (src_ghashlen < 16) {
if (src_ghashlen != 0) {
gdatabuf[gdata_cnt++] = loadn(src_ghash, src_ghashlen);
src_ghash = (__m128i *)((uint8_t *)src_ghash + src_ghashlen);
src_ghashlen = 0;
}
if (gdata_cnt < 6 && (state & STATE_GHASH_HAS_MORE) != 0) {
gdatabuf[gdata_cnt++] = ac;
state &= ~STATE_GHASH_HAS_MORE;
}
break;
}
gdatabuf[gdata_cnt++] = _mm_loadu_si128(src_ghash++);
src_ghashlen -= 16;
}
}
/* setup aes bits */
if (PTLS_LIKELY(nondata_aes_cnt == 0))
goto InitAllBits;
switch (nondata_aes_cnt) {
#define INIT_BITS(n, keys) \
case n: \
ctr = _mm_add_epi64(ctr, one8); \
bits##n = _mm_xor_si128(_mm_shuffle_epi8(ctr, bswap8), keys[0]);
InitAllBits:
INIT_BITS(0, ctx->ecb.keys);
INIT_BITS(1, ctx->ecb.keys);
INIT_BITS(2, ctx->ecb.keys);
INIT_BITS(3, ctx->ecb.keys);
INIT_BITS(4, ctx->ecb.keys);
INIT_BITS(5, ctx->ecb.keys);
#undef INIT_BITS
}
{ /* run aes and ghash */
#define AESECB6_UPDATE(i) \
do { \
__m128i k = ctx->ecb.keys[i]; \
bits0 = _mm_aesenc_si128(bits0, k); \
bits1 = _mm_aesenc_si128(bits1, k); \
bits2 = _mm_aesenc_si128(bits2, k); \
bits3 = _mm_aesenc_si128(bits3, k); \
bits4 = _mm_aesenc_si128(bits4, k); \
bits5 = _mm_aesenc_si128(bits5, k); \
} while (0)
size_t aesi;
for (aesi = 1; aesi <= gdata_cnt; ++aesi) {
AESECB6_UPDATE(aesi);
gfmul_onestep(&gstate, _mm_loadu_si128(gdata++), --ghash_precompute);
}
for (; aesi < ctx->ecb.rounds; ++aesi)
AESECB6_UPDATE(aesi);
__m128i k = ctx->ecb.keys[aesi];
bits0 = _mm_aesenclast_si128(bits0, k);
bits1 = _mm_aesenclast_si128(bits1, k);
bits2 = _mm_aesenclast_si128(bits2, k);
bits3 = _mm_aesenclast_si128(bits3, k);
bits4 = _mm_aesenclast_si128(bits4, k);
bits5 = _mm_aesenclast_si128(bits5, k);
#undef AESECB6_UPDATE
}
/* apply aes bits */
if (PTLS_LIKELY(nondata_aes_cnt == 0 && src_aeslen >= 6 * 16)) {
#define APPLY(i) _mm_storeu_si128(dst + i, _mm_xor_si128(_mm_loadu_si128(src_aes + i), bits##i))
APPLY(0);
APPLY(1);
APPLY(2);
APPLY(3);
APPLY(4);
APPLY(5);
#undef APPLY
dst += 6;
src_aes += 6;
src_aeslen -= 6 * 16;
} else {
if ((state & STATE_IS_FIRST_RUN) != 0) {
ek0 = bits0;
state &= ~STATE_IS_FIRST_RUN;
}
switch (nondata_aes_cnt) {
#define APPLY(i) \
case i: \
if (PTLS_LIKELY(src_aeslen > 16)) { \
_mm_storeu_si128(dst++, _mm_xor_si128(_mm_loadu_si128(src_aes++), bits##i)); \
src_aeslen -= 16; \
} else { \
bits0 = bits##i; \
goto Finish; \
}
APPLY(0);
APPLY(1);
APPLY(2);
APPLY(3);
APPLY(4);
APPLY(5);
#undef APPLY
}
nondata_aes_cnt = 0;
}
}
Finish:
if (src_aeslen == 16) {
_mm_storeu_si128(dst, _mm_xor_si128(_mm_loadu_si128(src_aes), bits0));
} else if (src_aeslen != 0) {
storen(dst, src_aeslen, _mm_xor_si128(loadn(src_aes, src_aeslen), bits0));
}
assert((state & STATE_IS_FIRST_RUN) == 0);
/* the only case where AES operation is complete and GHASH is not is when the application of AC is remaining */
if ((state & STATE_GHASH_HAS_MORE) != 0) {
assert(ghash_precompute - 1 == ctx->ghash);
gfmul_onestep(&gstate, ac, --ghash_precompute);
}
__m128i calctag = gfmul_final(&gstate, ek0);
return _mm_movemask_epi8(_mm_cmpeq_epi8(calctag, _mm_loadu_si128(tag))) == 0xffff;
#undef STATE_IS_FIRST_RUN
#undef STATE_GHASH_HAS_MORE
}
static __m128i expand_key(__m128i key, __m128i temp)
{
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, temp);
return key;
}
void ptls_fusion_aesecb_init(ptls_fusion_aesecb_context_t *ctx, int is_enc, const void *key, size_t key_size)
{
assert(is_enc && "decryption is not supported (yet)");
size_t i = 0;
switch (key_size) {
case 16: /* AES128 */
ctx->rounds = 10;
break;
case 32: /* AES256 */
ctx->rounds = 14;
break;
default:
assert(!"invalid key size; AES128 / AES256 are supported");
break;
}
ctx->keys[i++] = _mm_loadu_si128((__m128i *)key);
if (key_size == 32)
ctx->keys[i++] = _mm_loadu_si128((__m128i *)key + 1);
#define EXPAND(R) \
do { \
ctx->keys[i] = expand_key(ctx->keys[i - key_size / 16], \
_mm_shuffle_epi32(_mm_aeskeygenassist_si128(ctx->keys[i - 1], R), _MM_SHUFFLE(3, 3, 3, 3))); \
if (i == ctx->rounds) \
goto Done; \
++i; \
if (key_size > 24) { \
ctx->keys[i] = expand_key(ctx->keys[i - key_size / 16], \
_mm_shuffle_epi32(_mm_aeskeygenassist_si128(ctx->keys[i - 1], R), _MM_SHUFFLE(2, 2, 2, 2))); \
++i; \
} \
} while (0)
EXPAND(0x1);
EXPAND(0x2);
EXPAND(0x4);
EXPAND(0x8);
EXPAND(0x10);
EXPAND(0x20);
EXPAND(0x40);
EXPAND(0x80);
EXPAND(0x1b);
EXPAND(0x36);
#undef EXPAND
Done:
assert(i == ctx->rounds);
}
void ptls_fusion_aesecb_dispose(ptls_fusion_aesecb_context_t *ctx)
{
ptls_clear_memory(ctx, sizeof(*ctx));
}
void ptls_fusion_aesecb_encrypt(ptls_fusion_aesecb_context_t *ctx, void *dst, const void *src)
{
__m128i v = _mm_loadu_si128(src);
v = aesecb_encrypt(ctx, v);
_mm_storeu_si128(dst, v);
}
/**
* returns the number of ghash entries that is required to handle an AEAD block of given size
*/
static size_t aesgcm_calc_ghash_cnt(size_t capacity)
{
// round-up by block size, add to handle worst split of the size between AAD and payload, plus context to hash AC
return (capacity + 15) / 16 + 2;
}
static void setup_one_ghash_entry(ptls_fusion_aesgcm_context_t *ctx)
{
if (ctx->ghash_cnt != 0)
ctx->ghash[ctx->ghash_cnt].H = gfmul(ctx->ghash[ctx->ghash_cnt - 1].H, ctx->ghash[0].H);
__m128i r = _mm_shuffle_epi32(ctx->ghash[ctx->ghash_cnt].H, 78);
r = _mm_xor_si128(r, ctx->ghash[ctx->ghash_cnt].H);
ctx->ghash[ctx->ghash_cnt].r = r;
++ctx->ghash_cnt;
}
ptls_fusion_aesgcm_context_t *ptls_fusion_aesgcm_new(const void *key, size_t key_size, size_t capacity)
{
ptls_fusion_aesgcm_context_t *ctx;
size_t ghash_cnt = aesgcm_calc_ghash_cnt(capacity);
if ((ctx = malloc(sizeof(*ctx) + sizeof(ctx->ghash[0]) * ghash_cnt)) == NULL)
return NULL;
ptls_fusion_aesecb_init(&ctx->ecb, 1, key, key_size);
ctx->capacity = capacity;
ctx->ghash[0].H = aesecb_encrypt(&ctx->ecb, _mm_setzero_si128());
ctx->ghash[0].H = _mm_shuffle_epi8(ctx->ghash[0].H, bswap8);
ctx->ghash[0].H = transformH(ctx->ghash[0].H);
ctx->ghash_cnt = 0;
while (ctx->ghash_cnt < ghash_cnt)
setup_one_ghash_entry(ctx);
return ctx;
}
ptls_fusion_aesgcm_context_t *ptls_fusion_aesgcm_set_capacity(ptls_fusion_aesgcm_context_t *ctx, size_t capacity)
{
size_t ghash_cnt = aesgcm_calc_ghash_cnt(capacity);
if (ghash_cnt <= ctx->ghash_cnt)
return ctx;
if ((ctx = realloc(ctx, sizeof(*ctx) + sizeof(ctx->ghash[0]) * ghash_cnt)) == NULL)
return NULL;
ctx->capacity = capacity;
while (ghash_cnt < ctx->ghash_cnt)
setup_one_ghash_entry(ctx);
return ctx;
}
void ptls_fusion_aesgcm_free(ptls_fusion_aesgcm_context_t *ctx)
{
ptls_clear_memory(ctx->ghash, sizeof(ctx->ghash[0]) * ctx->ghash_cnt);
ctx->ghash_cnt = 0;
ptls_fusion_aesecb_dispose(&ctx->ecb);
free(ctx);
}
static void ctr_dispose(ptls_cipher_context_t *_ctx)
{
struct ctr_context *ctx = (struct ctr_context *)_ctx;
ptls_fusion_aesecb_dispose(&ctx->fusion);
_mm_storeu_si128(&ctx->bits, _mm_setzero_si128());
}
static void ctr_init(ptls_cipher_context_t *_ctx, const void *iv)
{
struct ctr_context *ctx = (struct ctr_context *)_ctx;
_mm_storeu_si128(&ctx->bits, aesecb_encrypt(&ctx->fusion, _mm_loadu_si128(iv)));
ctx->is_ready = 1;
}
static void ctr_transform(ptls_cipher_context_t *_ctx, void *output, const void *input, size_t len)
{
struct ctr_context *ctx = (struct ctr_context *)_ctx;
assert((ctx->is_ready && len <= 16) ||
!"CTR transfomation is supported only once per call to `init` and the maximum size is limited to 16 bytes");
ctx->is_ready = 0;
if (len < 16) {
storen(output, len, _mm_xor_si128(_mm_loadu_si128(&ctx->bits), loadn(input, len)));
} else {
_mm_storeu_si128(output, _mm_xor_si128(_mm_loadu_si128(&ctx->bits), _mm_loadu_si128(input)));
}
}
static int aesctr_setup(ptls_cipher_context_t *_ctx, int is_enc, const void *key, size_t key_size)
{
struct ctr_context *ctx = (struct ctr_context *)_ctx;
ctx->super.do_dispose = ctr_dispose;
ctx->super.do_init = ctr_init;
ctx->super.do_transform = ctr_transform;
ptls_fusion_aesecb_init(&ctx->fusion, 1, key, key_size);
ctx->is_ready = 0;
return 0;
}
static int aes128ctr_setup(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return aesctr_setup(ctx, is_enc, key, PTLS_AES128_KEY_SIZE);
}
static int aes256ctr_setup(ptls_cipher_context_t *ctx, int is_enc, const void *key)
{
return aesctr_setup(ctx, is_enc, key, PTLS_AES256_KEY_SIZE);
}
static void aesgcm_dispose_crypto(ptls_aead_context_t *_ctx)
{
struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx;
ptls_fusion_aesgcm_free(ctx->aesgcm);
}
static void aead_do_encrypt_init(ptls_aead_context_t *_ctx, uint64_t seq, const void *aad, size_t aadlen)
{
assert(!"FIXME");
}
static size_t aead_do_encrypt_update(ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen)
{
assert(!"FIXME");
return SIZE_MAX;
}
static size_t aead_do_encrypt_final(ptls_aead_context_t *_ctx, void *_output)
{
assert(!"FIXME");
return SIZE_MAX;
}
static inline __m128i calc_counter(struct aesgcm_context *ctx, uint64_t seq)
{
__m128i ctr = _mm_setzero_si128();
ctr = _mm_insert_epi64(ctr, seq, 0);
ctr = _mm_slli_si128(ctr, 4);
ctr = _mm_xor_si128(ctx->static_iv, ctr);
return ctr;
}
void aead_do_encrypt(struct st_ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen, ptls_aead_supplementary_encryption_t *supp)
{
struct aesgcm_context *ctx = (void *)_ctx;
if (inlen + aadlen > ctx->aesgcm->capacity)
ctx->aesgcm = ptls_fusion_aesgcm_set_capacity(ctx->aesgcm, inlen + aadlen);
ptls_fusion_aesgcm_encrypt(ctx->aesgcm, output, input, inlen, calc_counter(ctx, seq), aad, aadlen, supp);
}
static size_t aead_do_decrypt(ptls_aead_context_t *_ctx, void *output, const void *input, size_t inlen, uint64_t seq,
const void *aad, size_t aadlen)
{
struct aesgcm_context *ctx = (void *)_ctx;
if (inlen < 16)
return SIZE_MAX;
size_t enclen = inlen - 16;
if (enclen + aadlen > ctx->aesgcm->capacity)
ctx->aesgcm = ptls_fusion_aesgcm_set_capacity(ctx->aesgcm, enclen + aadlen);
if (!ptls_fusion_aesgcm_decrypt(ctx->aesgcm, output, input, enclen, calc_counter(ctx, seq), aad, aadlen,
(const uint8_t *)input + enclen))
return SIZE_MAX;
return enclen;
}
static inline void aesgcm_xor_iv(ptls_aead_context_t *_ctx, const void *_bytes, size_t len)
{
struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx;
__m128i xor_mask = loadn(_bytes, len);
xor_mask = _mm_shuffle_epi8(xor_mask, bswap8);
ctx->static_iv = _mm_xor_si128(ctx->static_iv, xor_mask);
}
static int aesgcm_setup(ptls_aead_context_t *_ctx, int is_enc, const void *key, const void *iv, size_t key_size)
{
struct aesgcm_context *ctx = (struct aesgcm_context *)_ctx;
ctx->static_iv = loadn(iv, PTLS_AESGCM_IV_SIZE);
ctx->static_iv = _mm_shuffle_epi8(ctx->static_iv, bswap8);
if (key == NULL)
return 0;
ctx->super.dispose_crypto = aesgcm_dispose_crypto;
ctx->super.do_xor_iv = aesgcm_xor_iv;
ctx->super.do_encrypt_init = aead_do_encrypt_init;
ctx->super.do_encrypt_update = aead_do_encrypt_update;
ctx->super.do_encrypt_final = aead_do_encrypt_final;
ctx->super.do_encrypt = aead_do_encrypt;
ctx->super.do_decrypt = aead_do_decrypt;
ctx->aesgcm = ptls_fusion_aesgcm_new(key, key_size, 1500 /* assume ordinary packet size */);
return 0;
}
static int aes128gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv)
{
return aesgcm_setup(ctx, is_enc, key, iv, PTLS_AES128_KEY_SIZE);
}
static int aes256gcm_setup(ptls_aead_context_t *ctx, int is_enc, const void *key, const void *iv)
{
return aesgcm_setup(ctx, is_enc, key, iv, PTLS_AES256_KEY_SIZE);
}
ptls_cipher_algorithm_t ptls_fusion_aes128ctr = {"AES128-CTR",
PTLS_AES128_KEY_SIZE,
1, // block size
PTLS_AES_IV_SIZE,
sizeof(struct ctr_context),
aes128ctr_setup};
ptls_cipher_algorithm_t ptls_fusion_aes256ctr = {"AES256-CTR",
PTLS_AES256_KEY_SIZE,
1, // block size
PTLS_AES_IV_SIZE,
sizeof(struct ctr_context),
aes256ctr_setup};
ptls_aead_algorithm_t ptls_fusion_aes128gcm = {"AES128-GCM",
PTLS_AESGCM_CONFIDENTIALITY_LIMIT,
PTLS_AESGCM_INTEGRITY_LIMIT,
&ptls_fusion_aes128ctr,
NULL, // &ptls_fusion_aes128ecb,
PTLS_AES128_KEY_SIZE,
PTLS_AESGCM_IV_SIZE,
PTLS_AESGCM_TAG_SIZE,
sizeof(struct aesgcm_context),
aes128gcm_setup};
ptls_aead_algorithm_t ptls_fusion_aes256gcm = {"AES256-GCM",
PTLS_AESGCM_CONFIDENTIALITY_LIMIT,
PTLS_AESGCM_INTEGRITY_LIMIT,
&ptls_fusion_aes256ctr,
NULL, // &ptls_fusion_aes256ecb,
PTLS_AES256_KEY_SIZE,
PTLS_AESGCM_IV_SIZE,
PTLS_AESGCM_TAG_SIZE,
sizeof(struct aesgcm_context),
aes256gcm_setup};
#ifdef _WINDOWS
/**
* ptls_fusion_is_supported_by_cpu:
* Check that the CPU has extended instructions for PCMUL, AES and AVX2.
* This test assumes that the CPU is following the x86/x64 architecture.
* A slightly more refined test could check that the cpu_info spells out
* "genuineIntel" or "authenticAMD", but would fail in presence of
* little known CPU brands or some VM */
int ptls_fusion_is_supported_by_cpu(void)
{
uint32_t cpu_info[4];
uint32_t nb_ids;
int is_supported = 0;
__cpuid(cpu_info, 0);
nb_ids = cpu_info[0];
if (nb_ids >= 7) {
uint32_t leaf1_ecx;
__cpuid(cpu_info, 1);
leaf1_ecx = cpu_info[2];
if (/* PCLMUL */ (leaf1_ecx & (1 << 5)) != 0 && /* AES */ (leaf1_ecx & (1 << 25)) != 0) {
uint32_t leaf7_ebx;
__cpuid(cpu_info, 7);
leaf7_ebx = cpu_info[1];
is_supported = /* AVX2 */ (leaf7_ebx & (1 << 5)) != 0;
}
}
return is_supported;
}
#else
int ptls_fusion_is_supported_by_cpu(void)
{
unsigned leaf1_ecx, leaf7_ebx;
{ /* GCC-specific code to obtain CPU features */
unsigned leaf_cnt;
__asm__("cpuid" : "=a"(leaf_cnt) : "a"(0) : "ebx", "ecx", "edx");
if (leaf_cnt < 7)
return 0;
__asm__("cpuid" : "=c"(leaf1_ecx) : "a"(1) : "ebx", "edx");
__asm__("cpuid" : "=b"(leaf7_ebx) : "a"(7), "c"(0) : "edx");
}
/* AVX2 */
if ((leaf7_ebx & (1 << 5)) == 0)
return 0;
/* AES */
if ((leaf1_ecx & (1 << 25)) == 0)
return 0;
/* PCLMUL */
if ((leaf1_ecx & (1 << 1)) == 0)
return 0;
return 1;
}
#endif