| /* |
| * cifra - embedded cryptography library |
| * Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com> |
| * |
| * To the extent possible under law, the author(s) have dedicated all |
| * copyright and related and neighboring rights to this software to the |
| * public domain worldwide. This software is distributed without any |
| * warranty. |
| * |
| * You should have received a copy of the CC0 Public Domain Dedication |
| * along with this software. If not, see |
| * <http://creativecommons.org/publicdomain/zero/1.0/>. |
| */ |
| |
| #include <string.h> |
| |
| #include "sha2.h" |
| #include "blockwise.h" |
| #include "bitops.h" |
| #include "handy.h" |
| #include "tassert.h" |
| |
| static const uint32_t K[64] = { |
| 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
| 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
| 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
| 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
| 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
| 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
| 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
| 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
| 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
| 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
| 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
| 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
| 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
| 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
| 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
| 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
| }; |
| |
| # define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) |
| # define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| # define BSIG0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) |
| # define BSIG1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) |
| # define SSIG0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) |
| # define SSIG1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) |
| |
| void cf_sha256_init(cf_sha256_context *ctx) |
| { |
| memset(ctx, 0, sizeof *ctx); |
| ctx->H[0] = 0x6a09e667; |
| ctx->H[1] = 0xbb67ae85; |
| ctx->H[2] = 0x3c6ef372; |
| ctx->H[3] = 0xa54ff53a; |
| ctx->H[4] = 0x510e527f; |
| ctx->H[5] = 0x9b05688c; |
| ctx->H[6] = 0x1f83d9ab; |
| ctx->H[7] = 0x5be0cd19; |
| } |
| |
| void cf_sha224_init(cf_sha256_context *ctx) |
| { |
| memset(ctx, 0, sizeof *ctx); |
| ctx->H[0] = 0xc1059ed8; |
| ctx->H[1] = 0x367cd507; |
| ctx->H[2] = 0x3070dd17; |
| ctx->H[3] = 0xf70e5939; |
| ctx->H[4] = 0xffc00b31; |
| ctx->H[5] = 0x68581511; |
| ctx->H[6] = 0x64f98fa7; |
| ctx->H[7] = 0xbefa4fa4; |
| } |
| |
| static void sha256_update_block(void *vctx, const uint8_t *inp) |
| { |
| cf_sha256_context *ctx = vctx; |
| |
| /* This is a 16-word window into the whole W array. */ |
| uint32_t W[16]; |
| |
| uint32_t a = ctx->H[0], |
| b = ctx->H[1], |
| c = ctx->H[2], |
| d = ctx->H[3], |
| e = ctx->H[4], |
| f = ctx->H[5], |
| g = ctx->H[6], |
| h = ctx->H[7], |
| Wt; |
| |
| size_t t; |
| for (t = 0; t < 64; t++) |
| { |
| /* For W[0..16] we process the input into W. |
| * For W[16..64] we compute the next W value: |
| * |
| * W[t] = SSIG1(W[t - 2]) + W[t - 7] + SSIG0(W[t - 15]) + W[t - 16]; |
| * |
| * But all W indices are reduced mod 16 into our window. |
| */ |
| if (t < 16) |
| { |
| W[t] = Wt = read32_be(inp); |
| inp += 4; |
| } else { |
| Wt = SSIG1(W[(t - 2) % 16]) + |
| W[(t - 7) % 16] + |
| SSIG0(W[(t - 15) % 16]) + |
| W[(t - 16) % 16]; |
| W[t % 16] = Wt; |
| } |
| |
| uint32_t T1 = h + BSIG1(e) + CH(e, f, g) + K[t] + Wt; |
| uint32_t T2 = BSIG0(a) + MAJ(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| |
| ctx->H[0] += a; |
| ctx->H[1] += b; |
| ctx->H[2] += c; |
| ctx->H[3] += d; |
| ctx->H[4] += e; |
| ctx->H[5] += f; |
| ctx->H[6] += g; |
| ctx->H[7] += h; |
| |
| ctx->blocks++; |
| } |
| |
| void cf_sha256_update(cf_sha256_context *ctx, const void *data, size_t nbytes) |
| { |
| cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial, |
| data, nbytes, |
| sha256_update_block, ctx); |
| } |
| |
| void cf_sha224_update(cf_sha256_context *ctx, const void *data, size_t nbytes) |
| { |
| cf_sha256_update(ctx, data, nbytes); |
| } |
| |
| void cf_sha256_digest(const cf_sha256_context *ctx, uint8_t hash[CF_SHA256_HASHSZ]) |
| { |
| /* We copy the context, so the finalisation doesn't effect the caller's |
| * context. This means the caller can do: |
| * |
| * x = init() |
| * x.update('hello') |
| * h1 = x.digest() |
| * x.update(' world') |
| * h2 = x.digest() |
| * |
| * to get h1 = H('hello') and h2 = H('hello world') |
| * |
| * This wouldn't work if we applied MD-padding to *ctx. |
| */ |
| |
| cf_sha256_context ours = *ctx; |
| cf_sha256_digest_final(&ours, hash); |
| } |
| |
| void cf_sha256_digest_final(cf_sha256_context *ctx, uint8_t hash[CF_SHA256_HASHSZ]) |
| { |
| uint64_t digested_bytes = ctx->blocks; |
| digested_bytes = digested_bytes * CF_SHA256_BLOCKSZ + ctx->npartial; |
| uint64_t digested_bits = digested_bytes * 8; |
| |
| size_t padbytes = CF_SHA256_BLOCKSZ - ((digested_bytes + 8) % CF_SHA256_BLOCKSZ); |
| |
| /* Hash 0x80 00 ... block first. */ |
| cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial, |
| 0x80, 0x00, 0x00, padbytes, |
| sha256_update_block, ctx); |
| |
| /* Now hash length. */ |
| uint8_t buf[8]; |
| write64_be(digested_bits, buf); |
| cf_sha256_update(ctx, buf, 8); |
| |
| /* We ought to have got our padding calculation right! */ |
| assert(ctx->npartial == 0); |
| |
| write32_be(ctx->H[0], hash + 0); |
| write32_be(ctx->H[1], hash + 4); |
| write32_be(ctx->H[2], hash + 8); |
| write32_be(ctx->H[3], hash + 12); |
| write32_be(ctx->H[4], hash + 16); |
| write32_be(ctx->H[5], hash + 20); |
| write32_be(ctx->H[6], hash + 24); |
| write32_be(ctx->H[7], hash + 28); |
| |
| memset(ctx, 0, sizeof *ctx); |
| } |
| |
| void cf_sha224_digest(const cf_sha256_context *ctx, uint8_t hash[CF_SHA224_HASHSZ]) |
| { |
| uint8_t full[CF_SHA256_HASHSZ]; |
| cf_sha256_digest(ctx, full); |
| memcpy(hash, full, CF_SHA224_HASHSZ); |
| } |
| |
| void cf_sha224_digest_final(cf_sha256_context *ctx, uint8_t hash[CF_SHA224_HASHSZ]) |
| { |
| uint8_t full[CF_SHA256_HASHSZ]; |
| cf_sha256_digest_final(ctx, full); |
| memcpy(hash, full, CF_SHA224_HASHSZ); |
| } |
| |
| const cf_chash cf_sha224 = { |
| .hashsz = CF_SHA224_HASHSZ, |
| .blocksz = CF_SHA256_BLOCKSZ, |
| .init = (cf_chash_init) cf_sha224_init, |
| .update = (cf_chash_update) cf_sha224_update, |
| .digest = (cf_chash_digest) cf_sha224_digest |
| }; |
| |
| const cf_chash cf_sha256 = { |
| .hashsz = CF_SHA256_HASHSZ, |
| .blocksz = CF_SHA256_BLOCKSZ, |
| .init = (cf_chash_init) cf_sha256_init, |
| .update = (cf_chash_update) cf_sha256_update, |
| .digest = (cf_chash_digest) cf_sha256_digest |
| }; |
| |