blob: 8ecef1685610b9c2402693155fbba2622e1bd185 [file] [log] [blame]
/*
* cifra - embedded cryptography library
* Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all
* copyright and related and neighboring rights to this software to the
* public domain worldwide. This software is distributed without any
* warranty.
*
* You should have received a copy of the CC0 Public Domain Dedication
* along with this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include <string.h>
#include "sha2.h"
#include "blockwise.h"
#include "bitops.h"
#include "handy.h"
#include "tassert.h"
static const uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
# define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
# define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
# define BSIG0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
# define BSIG1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
# define SSIG0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
# define SSIG1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
void cf_sha256_init(cf_sha256_context *ctx)
{
memset(ctx, 0, sizeof *ctx);
ctx->H[0] = 0x6a09e667;
ctx->H[1] = 0xbb67ae85;
ctx->H[2] = 0x3c6ef372;
ctx->H[3] = 0xa54ff53a;
ctx->H[4] = 0x510e527f;
ctx->H[5] = 0x9b05688c;
ctx->H[6] = 0x1f83d9ab;
ctx->H[7] = 0x5be0cd19;
}
void cf_sha224_init(cf_sha256_context *ctx)
{
memset(ctx, 0, sizeof *ctx);
ctx->H[0] = 0xc1059ed8;
ctx->H[1] = 0x367cd507;
ctx->H[2] = 0x3070dd17;
ctx->H[3] = 0xf70e5939;
ctx->H[4] = 0xffc00b31;
ctx->H[5] = 0x68581511;
ctx->H[6] = 0x64f98fa7;
ctx->H[7] = 0xbefa4fa4;
}
static void sha256_update_block(void *vctx, const uint8_t *inp)
{
cf_sha256_context *ctx = vctx;
/* This is a 16-word window into the whole W array. */
uint32_t W[16];
uint32_t a = ctx->H[0],
b = ctx->H[1],
c = ctx->H[2],
d = ctx->H[3],
e = ctx->H[4],
f = ctx->H[5],
g = ctx->H[6],
h = ctx->H[7],
Wt;
size_t t;
for (t = 0; t < 64; t++)
{
/* For W[0..16] we process the input into W.
* For W[16..64] we compute the next W value:
*
* W[t] = SSIG1(W[t - 2]) + W[t - 7] + SSIG0(W[t - 15]) + W[t - 16];
*
* But all W indices are reduced mod 16 into our window.
*/
if (t < 16)
{
W[t] = Wt = read32_be(inp);
inp += 4;
} else {
Wt = SSIG1(W[(t - 2) % 16]) +
W[(t - 7) % 16] +
SSIG0(W[(t - 15) % 16]) +
W[(t - 16) % 16];
W[t % 16] = Wt;
}
uint32_t T1 = h + BSIG1(e) + CH(e, f, g) + K[t] + Wt;
uint32_t T2 = BSIG0(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
ctx->H[0] += a;
ctx->H[1] += b;
ctx->H[2] += c;
ctx->H[3] += d;
ctx->H[4] += e;
ctx->H[5] += f;
ctx->H[6] += g;
ctx->H[7] += h;
ctx->blocks++;
}
void cf_sha256_update(cf_sha256_context *ctx, const void *data, size_t nbytes)
{
cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial,
data, nbytes,
sha256_update_block, ctx);
}
void cf_sha224_update(cf_sha256_context *ctx, const void *data, size_t nbytes)
{
cf_sha256_update(ctx, data, nbytes);
}
void cf_sha256_digest(const cf_sha256_context *ctx, uint8_t hash[CF_SHA256_HASHSZ])
{
/* We copy the context, so the finalisation doesn't effect the caller's
* context. This means the caller can do:
*
* x = init()
* x.update('hello')
* h1 = x.digest()
* x.update(' world')
* h2 = x.digest()
*
* to get h1 = H('hello') and h2 = H('hello world')
*
* This wouldn't work if we applied MD-padding to *ctx.
*/
cf_sha256_context ours = *ctx;
cf_sha256_digest_final(&ours, hash);
}
void cf_sha256_digest_final(cf_sha256_context *ctx, uint8_t hash[CF_SHA256_HASHSZ])
{
uint64_t digested_bytes = ctx->blocks;
digested_bytes = digested_bytes * CF_SHA256_BLOCKSZ + ctx->npartial;
uint64_t digested_bits = digested_bytes * 8;
size_t padbytes = CF_SHA256_BLOCKSZ - ((digested_bytes + 8) % CF_SHA256_BLOCKSZ);
/* Hash 0x80 00 ... block first. */
cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial,
0x80, 0x00, 0x00, padbytes,
sha256_update_block, ctx);
/* Now hash length. */
uint8_t buf[8];
write64_be(digested_bits, buf);
cf_sha256_update(ctx, buf, 8);
/* We ought to have got our padding calculation right! */
assert(ctx->npartial == 0);
write32_be(ctx->H[0], hash + 0);
write32_be(ctx->H[1], hash + 4);
write32_be(ctx->H[2], hash + 8);
write32_be(ctx->H[3], hash + 12);
write32_be(ctx->H[4], hash + 16);
write32_be(ctx->H[5], hash + 20);
write32_be(ctx->H[6], hash + 24);
write32_be(ctx->H[7], hash + 28);
memset(ctx, 0, sizeof *ctx);
}
void cf_sha224_digest(const cf_sha256_context *ctx, uint8_t hash[CF_SHA224_HASHSZ])
{
uint8_t full[CF_SHA256_HASHSZ];
cf_sha256_digest(ctx, full);
memcpy(hash, full, CF_SHA224_HASHSZ);
}
void cf_sha224_digest_final(cf_sha256_context *ctx, uint8_t hash[CF_SHA224_HASHSZ])
{
uint8_t full[CF_SHA256_HASHSZ];
cf_sha256_digest_final(ctx, full);
memcpy(hash, full, CF_SHA224_HASHSZ);
}
const cf_chash cf_sha224 = {
.hashsz = CF_SHA224_HASHSZ,
.blocksz = CF_SHA256_BLOCKSZ,
.init = (cf_chash_init) cf_sha224_init,
.update = (cf_chash_update) cf_sha224_update,
.digest = (cf_chash_digest) cf_sha224_digest
};
const cf_chash cf_sha256 = {
.hashsz = CF_SHA256_HASHSZ,
.blocksz = CF_SHA256_BLOCKSZ,
.init = (cf_chash_init) cf_sha256_init,
.update = (cf_chash_update) cf_sha256_update,
.digest = (cf_chash_digest) cf_sha256_digest
};