blob: 8dce90391eb651cbbe22b3d45d3991e5cad67403 [file] [log] [blame] [edit]
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED || CFG_TUD_ENABLED
#include "tusb.h"
#include "common/tusb_private.h"
#if CFG_TUD_ENABLED
#include "device/usbd_pvt.h"
#endif
#if CFG_TUH_ENABLED
#include "host/usbh_pvt.h"
#endif
// Suppress IAR warning
// Warning[Pe111]: statement is unreachable
#if defined(__ICCARM__)
#pragma diag_suppress = Pe111
#endif
tusb_role_t _tusb_rhport_role[TUP_USBIP_CONTROLLER_NUM] = { TUSB_ROLE_INVALID };
//--------------------------------------------------------------------
// Weak/Default API, can be overwritten by Application
//--------------------------------------------------------------------
TU_ATTR_WEAK void tusb_time_delay_ms_api(uint32_t ms) {
#if CFG_TUSB_OS != OPT_OS_NONE
osal_task_delay(ms);
#else
// delay using millis() (if implemented) and/or frame number if possible
const uint32_t time_ms = tusb_time_millis_api();
while ((tusb_time_millis_api() - time_ms) < ms) {}
#endif
}
TU_ATTR_WEAK void* tusb_app_virt_to_phys(void *virt_addr) {
return virt_addr;
}
TU_ATTR_WEAK void* tusb_app_phys_to_virt(void *phys_addr) {
return phys_addr;
}
TU_ATTR_WEAK void tusb_pre_init_cb(uint8_t rhport, tusb_role_t role) {
(void) rhport;
(void) role;
}
TU_ATTR_WEAK void tusb_post_deinit_cb(uint8_t rhport, tusb_role_t role) {
(void) rhport;
(void) role;
}
//--------------------------------------------------------------------+
// Public API
//--------------------------------------------------------------------+
bool tusb_rhport_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
// backward compatible called with tusb_init(void)
#if defined(TUD_OPT_RHPORT) || defined(TUH_OPT_RHPORT)
if (rh_init == NULL) {
#if CFG_TUD_ENABLED && defined(TUD_OPT_RHPORT)
// init device stack CFG_TUSB_RHPORTx_MODE must be defined
const tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUD_OPT_HIGH_SPEED ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL
};
TU_ASSERT ( tud_rhport_init(TUD_OPT_RHPORT, &dev_init) );
_tusb_rhport_role[TUD_OPT_RHPORT] = TUSB_ROLE_DEVICE;
#endif
#if CFG_TUH_ENABLED && defined(TUH_OPT_RHPORT)
// init host stack CFG_TUSB_RHPORTx_MODE must be defined
const tusb_rhport_init_t host_init = {
.role = TUSB_ROLE_HOST,
.speed = TUH_OPT_HIGH_SPEED ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL
};
TU_ASSERT( tuh_rhport_init(TUH_OPT_RHPORT, &host_init) );
_tusb_rhport_role[TUH_OPT_RHPORT] = TUSB_ROLE_HOST;
#endif
return true;
}
#endif
// new API with explicit rhport and role
TU_ASSERT(rhport < TUP_USBIP_CONTROLLER_NUM && rh_init->role != TUSB_ROLE_INVALID);
_tusb_rhport_role[rhport] = rh_init->role;
#if CFG_TUD_ENABLED
if (rh_init->role == TUSB_ROLE_DEVICE) {
TU_ASSERT(tud_rhport_init(rhport, rh_init));
}
#endif
#if CFG_TUH_ENABLED
if (rh_init->role == TUSB_ROLE_HOST) {
TU_ASSERT(tuh_rhport_init(rhport, rh_init));
}
#endif
return true;
}
bool tusb_inited(void) {
bool ret = false;
#if CFG_TUD_ENABLED
if (tud_inited()) {
ret = true;
}
#endif
#if CFG_TUH_ENABLED
if (tuh_inited()) {
ret = true;
}
#endif
return ret;
}
void tusb_int_handler(uint8_t rhport, bool in_isr) {
TU_VERIFY(rhport < TUP_USBIP_CONTROLLER_NUM,);
#if CFG_TUD_ENABLED
if (_tusb_rhport_role[rhport] == TUSB_ROLE_DEVICE) {
(void) in_isr;
dcd_int_handler(rhport);
}
#endif
#if CFG_TUH_ENABLED
if (_tusb_rhport_role[rhport] == TUSB_ROLE_HOST) {
hcd_int_handler(rhport, in_isr);
}
#endif
}
bool tusb_deinit(uint8_t rhport) {
TU_VERIFY(rhport < TUP_USBIP_CONTROLLER_NUM);
bool ret = false;
#if CFG_TUD_ENABLED
if (_tusb_rhport_role[rhport] == TUSB_ROLE_DEVICE) {
TU_ASSERT(tud_deinit(rhport));
_tusb_rhport_role[rhport] = TUSB_ROLE_INVALID;
ret = true;
}
#endif
#if CFG_TUH_ENABLED
if (_tusb_rhport_role[rhport] == TUSB_ROLE_HOST) {
TU_ASSERT(tuh_deinit(rhport));
_tusb_rhport_role[rhport] = TUSB_ROLE_INVALID;
ret = true;
}
#endif
return ret;
}
//--------------------------------------------------------------------+
// Descriptor helper
//--------------------------------------------------------------------+
uint8_t const* tu_desc_find(uint8_t const* desc, uint8_t const* end, uint8_t byte1) {
while (desc + 1 < end) {
if (desc[1] == byte1) {
return desc;
}
desc += desc[DESC_OFFSET_LEN];
}
return NULL;
}
uint8_t const* tu_desc_find2(uint8_t const* desc, uint8_t const* end, uint8_t byte1, uint8_t byte2) {
while (desc + 2 < end) {
if (desc[1] == byte1 && desc[2] == byte2) {
return desc;
}
desc += desc[DESC_OFFSET_LEN];
}
return NULL;
}
uint8_t const* tu_desc_find3(uint8_t const* desc, uint8_t const* end, uint8_t byte1, uint8_t byte2, uint8_t byte3) {
while (desc + 3 < end) {
if (desc[1] == byte1 && desc[2] == byte2 && desc[3] == byte3) {
return desc;
}
desc += desc[DESC_OFFSET_LEN];
}
return NULL;
}
//--------------------------------------------------------------------+
// Endpoint Helper for both Host and Device stack
//--------------------------------------------------------------------+
bool tu_edpt_claim(tu_edpt_state_t* ep_state, osal_mutex_t mutex) {
(void) mutex;
// pre-check to help reducing mutex lock
TU_VERIFY(ep_state->busy == 0);
TU_VERIFY(ep_state->claimed == 0);
(void) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER);
// can only claim the endpoint if it is not busy and not claimed yet.
bool const available = (ep_state->busy == 0) && (ep_state->claimed == 0);
if (available) {
ep_state->claimed = 1;
}
(void) osal_mutex_unlock(mutex);
return available;
}
bool tu_edpt_release(tu_edpt_state_t* ep_state, osal_mutex_t mutex) {
(void) mutex;
(void) osal_mutex_lock(mutex, OSAL_TIMEOUT_WAIT_FOREVER);
// can only release the endpoint if it is claimed and not busy
bool const ret = (ep_state->claimed == 1) && (ep_state->busy == 0);
if (ret) {
ep_state->claimed = 0;
}
(void) osal_mutex_unlock(mutex);
return ret;
}
#if CFG_TUSB_DEBUG
bool tu_edpt_validate(const tusb_desc_endpoint_t *desc_ep, tusb_speed_t speed) {
const uint16_t max_packet_size = tu_edpt_packet_size(desc_ep);
TU_LOG2(" Open EP %02X with Size = %u\r\n", desc_ep->bEndpointAddress, max_packet_size);
switch (desc_ep->bmAttributes.xfer) {
case TUSB_XFER_ISOCHRONOUS: {
const uint16_t spec_size = (speed == TUSB_SPEED_HIGH ? 1024 : 1023);
TU_ASSERT(max_packet_size <= spec_size);
break;
}
case TUSB_XFER_BULK:
if (speed == TUSB_SPEED_HIGH) {
// Bulk highspeed must be EXACTLY 512
TU_ASSERT(max_packet_size == 512);
} else {
// Bulk fullspeed can only be 8, 16, 32, 64
TU_ASSERT(max_packet_size == 8 || max_packet_size == 16 || max_packet_size == 32 || max_packet_size == 64);
}
break;
case TUSB_XFER_INTERRUPT: {
uint16_t const spec_size = (speed == TUSB_SPEED_HIGH ? 1024 : 64);
TU_ASSERT(max_packet_size <= spec_size);
break;
}
default:
return false;
}
return true;
}
#endif
bool tu_bind_driver_to_ep_itf(uint8_t driver_id, uint8_t ep2drv[][2], uint8_t itf2drv[], uint8_t itf_max,
const uint8_t *p_desc, uint16_t desc_len) {
const uint8_t *desc_end = p_desc + desc_len;
while (tu_desc_in_bounds(p_desc, desc_end)) {
const uint8_t desc_type = tu_desc_type(p_desc);
if (desc_type == TUSB_DESC_ENDPOINT) {
const uint8_t ep_addr = ((const tusb_desc_endpoint_t *)p_desc)->bEndpointAddress;
const uint8_t ep_num = tu_edpt_number(ep_addr);
const uint8_t ep_dir = tu_edpt_dir(ep_addr);
ep2drv[ep_num][ep_dir] = driver_id;
} else if (desc_type == TUSB_DESC_INTERFACE) {
const tusb_desc_interface_t *desc_itf = (const tusb_desc_interface_t *)p_desc;
if (desc_itf->bAlternateSetting == 0) {
TU_ASSERT(desc_itf->bInterfaceNumber < itf_max);
itf2drv[desc_itf->bInterfaceNumber] = driver_id;
}
}
p_desc = tu_desc_next(p_desc);
}
return true;
}
//--------------------------------------------------------------------+
// Endpoint Stream Helper for both Host and Device stack
//--------------------------------------------------------------------+
bool tu_edpt_stream_init(tu_edpt_stream_t *s, bool is_host, bool is_tx, bool overwritable, void *ff_buf,
uint16_t ff_bufsize, uint8_t *ep_buf, uint16_t ep_bufsize) {
(void) is_tx;
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED == 0 // FIFO is required
if (ff_buf == NULL || ff_bufsize == 0) {
return false;
}
#endif
s->is_host = is_host;
tu_fifo_config(&s->ff, ff_buf, ff_bufsize, overwritable);
#if OSAL_MUTEX_REQUIRED
if (ff_buf != NULL && ff_bufsize > 0) {
osal_mutex_t new_mutex = osal_mutex_create(&s->ff_mutexdef);
tu_fifo_config_mutex(&s->ff, is_tx ? new_mutex : NULL, is_tx ? NULL : new_mutex);
}
#endif
s->ep_buf = ep_buf;
s->ep_bufsize = ep_bufsize;
return true;
}
static bool stream_claim(tu_edpt_stream_t *s) {
TU_VERIFY(s->ep_addr != 0); // must be opened
if (s->is_host) {
#if CFG_TUH_ENABLED
return usbh_edpt_claim(s->hwid, s->ep_addr);
#endif
} else {
#if CFG_TUD_ENABLED
return usbd_edpt_claim(s->hwid, s->ep_addr);
#endif
}
return false;
}
static bool stream_xfer(tu_edpt_stream_t *s, uint16_t count) {
if (s->is_host) {
#if CFG_TUH_ENABLED
return usbh_edpt_xfer(s->hwid, s->ep_addr, count ? s->ep_buf : NULL, count);
#endif
} else {
#if CFG_TUD_ENABLED
if (s->ep_buf == NULL) {
return usbd_edpt_xfer_fifo(s->hwid, s->ep_addr, &s->ff, count, false);
} else {
return usbd_edpt_xfer(s->hwid, s->ep_addr, count ? s->ep_buf : NULL, count, false);
}
#endif
}
return false;
}
static bool stream_release(tu_edpt_stream_t *s) {
if (s->is_host) {
#if CFG_TUH_ENABLED
return usbh_edpt_release(s->hwid, s->ep_addr);
#endif
} else {
#if CFG_TUD_ENABLED
return usbd_edpt_release(s->hwid, s->ep_addr);
#endif
}
return false;
}
//--------------------------------------------------------------------+
// Stream Write
//--------------------------------------------------------------------+
bool tu_edpt_stream_write_zlp_if_needed(tu_edpt_stream_t *s, uint32_t last_xferred_bytes) {
// ZLP condition: no pending data, last transferred bytes is multiple of packet size
TU_VERIFY(tu_fifo_empty(&s->ff) && last_xferred_bytes > 0 && (0 == (last_xferred_bytes & (s->mps - 1))));
TU_VERIFY(stream_claim(s));
TU_ASSERT(stream_xfer(s, 0));
return true;
}
uint32_t tu_edpt_stream_write_xfer(tu_edpt_stream_t *s) {
const uint16_t ff_count = tu_fifo_count(&s->ff);
TU_VERIFY(ff_count > 0, 0); // skip if no data
TU_VERIFY(stream_claim(s), 0);
// Pull data from FIFO -> EP buf
uint16_t count;
if (s->ep_buf == NULL) {
count = ff_count;
} else {
count = tu_fifo_read_n(&s->ff, s->ep_buf, s->ep_bufsize);
}
if (count > 0) {
TU_ASSERT(stream_xfer(s, count), 0);
return count;
} else {
// Release endpoint since we don't make any transfer
// Note: data is dropped if terminal is not connected
stream_release(s);
return 0;
}
}
uint32_t tu_edpt_stream_write(tu_edpt_stream_t *s, const void *buffer, uint32_t bufsize) {
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED
if (0 == tu_fifo_depth(&s->ff)) {
// non-fifo mode: TX need ep buffer
TU_VERIFY(s->ep_buf != NULL, 0);
TU_VERIFY(stream_claim(s), 0);
uint32_t xact_len = tu_min32(bufsize, s->ep_bufsize);
memcpy(s->ep_buf, buffer, xact_len);
TU_ASSERT(stream_xfer(s, (uint16_t) xact_len), 0);
return xact_len;
} else
#endif
{
TU_VERIFY(bufsize > 0);
const uint16_t ret = tu_fifo_write_n(&s->ff, buffer, (uint16_t) bufsize);
// flush if fifo has more than packet size or
// in rare case: fifo depth is configured too small (which never reach packet size)
if ((tu_fifo_count(&s->ff) >= s->mps) || (tu_fifo_depth(&s->ff) < s->mps)) {
tu_edpt_stream_write_xfer(s);
}
return ret;
}
}
uint32_t tu_edpt_stream_write_available(tu_edpt_stream_t *s) {
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED
if (0 == tu_fifo_depth(&s->ff)) {
// non-fifo mode
TU_VERIFY(s->ep_addr > 0); // must be opened
bool is_busy = true;
if (s->is_host) {
#if CFG_TUH_ENABLED
is_busy = usbh_edpt_busy(s->hwid, s->ep_addr);
#endif
} else {
#if CFG_TUD_ENABLED
is_busy = usbd_edpt_busy(s->hwid, s->ep_addr);
#endif
}
return is_busy ? 0 : s->ep_bufsize;
} else
#endif
{
return (uint32_t)tu_fifo_remaining(&s->ff);
}
}
//--------------------------------------------------------------------+
// Stream Read
//--------------------------------------------------------------------+
uint32_t tu_edpt_stream_read_xfer(tu_edpt_stream_t *s) {
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED
if (0 == tu_fifo_depth(&s->ff)) {
// non-fifo mode: RX need ep buffer
TU_VERIFY(s->ep_buf != NULL, 0);
TU_VERIFY(stream_claim(s), 0);
TU_ASSERT(stream_xfer(s, s->ep_bufsize), 0);
return s->ep_bufsize;
} else
#endif
{
uint16_t available = tu_fifo_remaining(&s->ff);
// Prepare for incoming data but only allow what we can store in the ring buffer.
// TODO Actually we can still carry out the transfer, keeping count of received bytes
// and slowly move it to the FIFO when read().
// This pre-check reduces endpoint claiming
TU_VERIFY(available >= s->mps);
TU_VERIFY(stream_claim(s), 0);
available = tu_fifo_remaining(&s->ff); // re-get available since fifo can be changed
if (available >= s->mps) {
// multiple of packet size limit by ep bufsize
uint16_t count = (uint16_t) (available & ~(s->mps - 1));
if (s->ep_buf != NULL) {
count = tu_min16(count, s->ep_bufsize);
}
TU_ASSERT(stream_xfer(s, count), 0);
return count;
} else {
// Release endpoint since we don't make any transfer
stream_release(s);
return 0;
}
}
}
uint32_t tu_edpt_stream_read(tu_edpt_stream_t *s, void *buffer, uint32_t bufsize) {
const uint32_t num_read = tu_fifo_read_n(&s->ff, buffer, (uint16_t)bufsize);
tu_edpt_stream_read_xfer(s);
return num_read;
}
//--------------------------------------------------------------------+
// Debug
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG
#include <ctype.h>
#if CFG_TUSB_DEBUG >= CFG_TUH_LOG_LEVEL || CFG_TUSB_DEBUG >= CFG_TUD_LOG_LEVEL
char const* const tu_str_speed[] = {"Full", "Low", "High"};
char const* const tu_str_std_request[] = {
"Get Status",
"Clear Feature",
"Reserved",
"Set Feature",
"Reserved",
"Set Address",
"Get Descriptor",
"Set Descriptor",
"Get Configuration",
"Set Configuration",
"Get Interface",
"Set Interface",
"Synch Frame"
};
char const* const tu_str_xfer_result[] = {
"OK", "FAILED", "STALLED", "TIMEOUT"
};
#endif
static void dump_str_line(uint8_t const* buf, uint16_t count) {
tu_printf(" |");
// each line is 16 bytes
for (uint16_t i = 0; i < count; i++) {
int ch = buf[i];
tu_printf("%c", isprint(ch) ? ch : '.');
}
tu_printf("|\r\n");
}
/* Print out memory contents
* - buf : buffer
* - count : number of item
* - indent: prefix spaces on every line
*/
void tu_print_mem(void const* buf, uint32_t count, uint8_t indent) {
uint8_t const size = 1; // fixed 1 byte for now
if (!buf || !count) {
tu_printf("NULL\r\n");
return;
}
uint8_t const* buf8 = (uint8_t const*) buf;
char format[] = "%00X";
format[2] += (uint8_t) (2 * size); // 1 byte = 2 hex digits
const uint8_t item_per_line = 16 / size;
for (unsigned int i = 0; i < count; i++) {
unsigned int value = 0;
if (i % item_per_line == 0) {
// Print Ascii
if (i != 0) {
dump_str_line(buf8 - 16, 16);
}
for (uint8_t s = 0; s < indent; s++) {
tu_printf(" ");
}
// print offset or absolute address
tu_printf("%04X: ", 16 * i / item_per_line);
}
tu_memcpy_s(&value, sizeof(value), buf8, size);
buf8 += size;
tu_printf(" ");
tu_printf(format, value);
}
// fill up last row to 16 for printing ascii
const uint32_t remain = count % 16;
uint8_t nback = (uint8_t) (remain ? remain : 16);
if (remain > 0) {
for (uint32_t i = 0; i < 16 - remain; i++) {
tu_printf(" ");
for (int j = 0; j < 2 * size; j++) {
tu_printf(" ");
}
}
}
dump_str_line(buf8 - nback, nback);
}
#endif
#endif // host or device enabled