blob: 91c70fdc686505e71c2709375fd2c67120948ca2 [file] [log] [blame]
/*
*
* Copyright (c) 2020-2021 Project CHIP Authors
* Copyright (c) 2013-2018 Nest Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This file implements the <tt>Inet::TCPEndPoint</tt> class,
* where the CHIP Inet Layer encapsulates methods for interacting
* with TCP transport endpoints (SOCK_DGRAM sockets on Linux and
* BSD-derived systems) or LwIP TCP protocol control blocks, as
* the system is configured accordingly.
*
*/
#define __APPLE_USE_RFC_3542
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include "TCPEndPoint.h"
#include <inet/InetFaultInjection.h>
#include <inet/InetLayer.h>
#include <inet/arpa-inet-compatibility.h>
#include <lib/support/CodeUtils.h>
#include <lib/support/SafeInt.h>
#include <lib/support/logging/CHIPLogging.h>
#include <system/SystemFaultInjection.h>
#include <stdio.h>
#include <string.h>
#include <utility>
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#include <lwip/tcp.h>
#include <lwip/tcpip.h>
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <netinet/tcp.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <unistd.h>
// SOCK_CLOEXEC not defined on all platforms, e.g. iOS/macOS:
#ifndef SOCK_CLOEXEC
#define SOCK_CLOEXEC 0
#endif
#if defined(SOL_TCP)
// socket option level for Linux and BSD systems.
#define TCP_SOCKOPT_LEVEL SOL_TCP
#else
// socket option level for macOS & iOS systems.
#define TCP_SOCKOPT_LEVEL IPPROTO_TCP
#endif
#if defined(TCP_KEEPIDLE)
// socket option for Linux and BSD systems.
#define TCP_IDLE_INTERVAL_OPT_NAME TCP_KEEPIDLE
#else
// socket option for macOS & iOS systems.
#define TCP_IDLE_INTERVAL_OPT_NAME TCP_KEEPALIVE
#endif
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
namespace chip {
namespace Inet {
chip::System::ObjectPool<TCPEndPoint, INET_CONFIG_NUM_TCP_ENDPOINTS> TCPEndPoint::sPool;
#if CHIP_SYSTEM_CONFIG_USE_LWIP
namespace {
/*
* This logic to register a null operation callback with the LwIP TCP/IP task
* ensures that the TCP timer loop is started when a connection is established,
* which is necessary to ensure that initial SYN and SYN-ACK packets are
* retransmitted during the 3-way handshake.
*/
void nil_tcpip_callback(void * _aContext) {}
err_t start_tcp_timers(void)
{
return tcpip_callback(nil_tcpip_callback, NULL);
}
} // anonymous namespace
CHIP_ERROR TCPEndPoint::BindImpl(IPAddressType addrType, const IPAddress & addr, uint16_t port, bool reuseAddr)
{
// Lock LwIP stack
LOCK_TCPIP_CORE();
// Get the appropriate type of PCB.
CHIP_ERROR res = GetPCB(addrType);
// Bind the PCB to the specified address/port.
if (res == CHIP_NO_ERROR)
{
if (reuseAddr)
{
ip_set_option(mTCP, SOF_REUSEADDR);
}
#if LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5
ip_addr_t ipAddr;
if (addr != IPAddress::Any)
{
ipAddr = addr.ToLwIPAddr();
}
else if (addrType == IPAddressType::kIPv6)
{
ipAddr = ip6_addr_any;
}
#if INET_CONFIG_ENABLE_IPV4
else if (addrType == IPAddressType::kIPv4)
{
ipAddr = ip_addr_any;
}
#endif // INET_CONFIG_ENABLE_IPV4
else
res = INET_ERROR_WRONG_ADDRESS_TYPE;
res = chip::System::MapErrorLwIP(tcp_bind(mTCP, &ipAddr, port));
#else // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
if (addrType == IPAddressType::kIPv6)
{
ip6_addr_t ipv6Addr = addr.ToIPv6();
res = chip::System::MapErrorLwIP(tcp_bind_ip6(mTCP, &ipv6Addr, port));
}
#if INET_CONFIG_ENABLE_IPV4
else if (addrType == IPAddressType::kIPv4)
{
ip_addr_t ipv4Addr = addr.ToIPv4();
res = chip::System::MapErrorLwIP(tcp_bind(mTCP, &ipv4Addr, port));
}
#endif // INET_CONFIG_ENABLE_IPV4
else
res = INET_ERROR_WRONG_ADDRESS_TYPE;
#endif // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
return res;
}
CHIP_ERROR TCPEndPoint::ListenImpl(uint16_t backlog)
{
// Start listening for incoming connections.
mTCP = tcp_listen(mTCP);
mLwIPEndPointType = LwIPEndPointType::TCP;
tcp_arg(mTCP, this);
tcp_accept(mTCP, LwIPHandleIncomingConnection);
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::ConnectImpl(const IPAddress & addr, uint16_t port, InterfaceId intfId)
{
CHIP_ERROR res = CHIP_NO_ERROR;
IPAddressType addrType = addr.Type();
// LwIP does not provides an API for initiating a TCP connection via a specific interface.
// As a work-around, if the destination is an IPv6 link-local address, we bind the PCB
// to the link local address associated with the source interface; however this is only
// viable if the endpoint hasn't already been bound.
if (intfId.IsPresent())
{
IPAddress intfLLAddr;
InetLayer & lInetLayer = Layer();
if (!addr.IsIPv6LinkLocal() || mState == State::kBound)
return CHIP_ERROR_NOT_IMPLEMENTED;
res = lInetLayer.GetLinkLocalAddr(intfId, &intfLLAddr);
if (res != CHIP_NO_ERROR)
return res;
res = Bind(IPAddressType::kIPv6, intfLLAddr, 0, true);
if (res != CHIP_NO_ERROR)
return res;
}
// Lock LwIP stack
LOCK_TCPIP_CORE();
res = GetPCB(addrType);
if (res == CHIP_NO_ERROR)
{
tcp_arg(mTCP, this);
tcp_err(mTCP, LwIPHandleError);
#if LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5
ip_addr_t lwipAddr = addr.ToLwIPAddr();
res = chip::System::MapErrorLwIP(tcp_connect(mTCP, &lwipAddr, port, LwIPHandleConnectComplete));
#else // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
if (addrType == IPAddressType::kIPv6)
{
ip6_addr_t lwipAddr = addr.ToIPv6();
res = chip::System::MapErrorLwIP(tcp_connect_ip6(mTCP, &lwipAddr, port, LwIPHandleConnectComplete));
}
#if INET_CONFIG_ENABLE_IPV4
else if (addrType == IPAddressType::kIPv4)
{
ip_addr_t lwipAddr = addr.ToIPv4();
res = chip::System::MapErrorLwIP(tcp_connect(mTCP, &lwipAddr, port, LwIPHandleConnectComplete));
}
#endif // INET_CONFIG_ENABLE_IPV4
else
res = INET_ERROR_WRONG_ADDRESS_TYPE;
#endif // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
// Ensure that TCP timers are started
if (res == CHIP_NO_ERROR)
{
err_t error = start_tcp_timers();
if (error != ERR_OK)
{
res = chip::System::MapErrorLwIP(error);
}
}
if (res == CHIP_NO_ERROR)
{
mState = State::kConnecting;
Retain();
}
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
return res;
}
CHIP_ERROR TCPEndPoint::GetPeerInfo(IPAddress * retAddr, uint16_t * retPort) const
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
// Lock LwIP stack
LOCK_TCPIP_CORE();
CHIP_ERROR res = CHIP_ERROR_CONNECTION_ABORTED;
if (mTCP != nullptr)
{
*retPort = mTCP->remote_port;
#if LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5
*retAddr = IPAddress(mTCP->remote_ip);
#else // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
#if INET_CONFIG_ENABLE_IPV4
*retAddr = PCB_ISIPV6(mTCP) ? IPAddress(mTCP->remote_ip.ip6) : IPAddress(mTCP->remote_ip.ip4);
#else // !INET_CONFIG_ENABLE_IPV4
*retAddr = IPAddress(mTCP->remote_ip.ip6);
#endif // !INET_CONFIG_ENABLE_IPV4
#endif // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
res = CHIP_NO_ERROR;
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
return res;
}
CHIP_ERROR TCPEndPoint::GetLocalInfo(IPAddress * retAddr, uint16_t * retPort) const
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
// Lock LwIP stack
LOCK_TCPIP_CORE();
CHIP_ERROR res = CHIP_ERROR_CONNECTION_ABORTED;
if (mTCP != nullptr)
{
*retPort = mTCP->local_port;
#if LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5
*retAddr = IPAddress(mTCP->local_ip);
#else // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
#if INET_CONFIG_ENABLE_IPV4
*retAddr = PCB_ISIPV6(mTCP) ? IPAddress(mTCP->local_ip.ip6) : IPAddress(mTCP->local_ip.ip4);
#else // !INET_CONFIG_ENABLE_IPV4
*retAddr = IPAddress(mTCP->local_ip.ip6);
#endif // !INET_CONFIG_ENABLE_IPV4
#endif // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
res = CHIP_NO_ERROR;
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
return res;
}
CHIP_ERROR TCPEndPoint::GetInterfaceId(InterfaceId * retInterface)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
// TODO: Does netif_get_by_index(mTCP->netif_idx) do the right thing? I
// can't quite tell whether LwIP supports a specific interface id for TCP at
// all. For now just claim no particular interface id.
*retInterface = InterfaceId::Null();
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::SendQueuedImpl(bool queueWasEmpty)
{
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
if (!mUserTimeoutTimerRunning)
{
// Timer was not running before this send. So, start
// the timer.
StartTCPUserTimeoutTimer();
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::EnableNoDelay()
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
// Lock LwIP stack
LOCK_TCPIP_CORE();
CHIP_ERROR res = CHIP_ERROR_CONNECTION_ABORTED;
if (mTCP != nullptr)
{
tcp_nagle_disable(mTCP);
res = CHIP_NO_ERROR;
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
return res;
}
CHIP_ERROR TCPEndPoint::EnableKeepAlive(uint16_t interval, uint16_t timeoutCount)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_ERROR_NOT_IMPLEMENTED;
#if LWIP_TCP_KEEPALIVE
// Lock LwIP stack
LOCK_TCPIP_CORE();
if (mTCP != NULL)
{
// Set the idle interval
mTCP->keep_idle = (uint32_t) interval * 1000;
// Set the probe retransmission interval.
mTCP->keep_intvl = (uint32_t) interval * 1000;
// Set the probe timeout count
mTCP->keep_cnt = timeoutCount;
// Enable keepalives for the connection.
ip_set_option(mTCP, SOF_KEEPALIVE);
res = CHIP_NO_ERROR;
}
else
{
res = CHIP_ERROR_CONNECTION_ABORTED;
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
#endif // LWIP_TCP_KEEPALIVE
return res;
}
CHIP_ERROR TCPEndPoint::DisableKeepAlive()
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_ERROR_NOT_IMPLEMENTED;
#if LWIP_TCP_KEEPALIVE
// Lock LwIP stack
LOCK_TCPIP_CORE();
if (mTCP != NULL)
{
// Disable keepalives on the connection.
ip_reset_option(mTCP, SOF_KEEPALIVE);
res = CHIP_NO_ERROR;
}
else
{
res = CHIP_ERROR_CONNECTION_ABORTED;
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
#endif // LWIP_TCP_KEEPALIVE
return res;
}
CHIP_ERROR TCPEndPoint::SetUserTimeoutImpl(uint32_t userTimeoutMillis)
{
return CHIP_ERROR_NOT_IMPLEMENTED;
}
void TCPEndPoint::InitImpl()
{
mUnackedLength = 0;
}
CHIP_ERROR TCPEndPoint::DriveSendingImpl()
{
CHIP_ERROR err = CHIP_NO_ERROR;
// Lock LwIP stack
LOCK_TCPIP_CORE();
// If the connection hasn't been aborted ...
if (mTCP != NULL)
{
err_t lwipErr;
// Determine the current send window size. This is the maximum amount we can write to the connection.
uint16_t sendWindowSize = tcp_sndbuf(mTCP);
// If there's data to be sent and the send window is open...
bool canSend = (RemainingToSend() > 0 && sendWindowSize > 0);
if (canSend)
{
// Find first packet buffer with remaining data to send by skipping
// all sent but un-acked data.
TCPEndPoint::BufferOffset startOfUnsent = FindStartOfUnsent();
// While there's data to be sent and a window to send it in...
do
{
VerifyOrDie(!startOfUnsent.buffer.IsNull());
uint16_t bufDataLen = startOfUnsent.buffer->DataLength();
// Get a pointer to the start of unsent data within the first buffer on the unsent queue.
const uint8_t * sendData = startOfUnsent.buffer->Start() + startOfUnsent.offset;
// Determine the amount of data to send from the current buffer.
uint16_t sendLen = static_cast<uint16_t>(bufDataLen - startOfUnsent.offset);
if (sendLen > sendWindowSize)
sendLen = sendWindowSize;
// Call LwIP to queue the data to be sent, telling it if there's more data to come.
// Data is queued in-place as a reference within the source packet buffer. It is
// critical that the underlying packet buffer not be freed until the data
// is acknowledged, otherwise retransmissions could use an invalid
// backing. Using TCP_WRITE_FLAG_COPY would eliminate this requirement, but overall
// requires many more memory allocations which may be problematic when very
// memory-constrained or when using pool-based allocations.
lwipErr = tcp_write(mTCP, sendData, sendLen, (canSend) ? TCP_WRITE_FLAG_MORE : 0);
if (lwipErr != ERR_OK)
{
err = chip::System::MapErrorLwIP(lwipErr);
break;
}
// Start accounting for the data sent as yet-to-be-acked.
// This cast is safe, because mUnackedLength + sendLen <= bufDataLen, which fits in uint16_t.
mUnackedLength = static_cast<uint16_t>(mUnackedLength + sendLen);
// Adjust the unsent data offset by the length of data that was written.
// If the entire buffer has been sent advance to the next one.
// This cast is safe, because startOfUnsent.offset + sendLen <= bufDataLen, which fits in uint16_t.
startOfUnsent.offset = static_cast<uint16_t>(startOfUnsent.offset + sendLen);
if (startOfUnsent.offset == bufDataLen)
{
startOfUnsent.buffer.Advance();
startOfUnsent.offset = 0;
}
// Adjust the remaining window size.
sendWindowSize = static_cast<uint16_t>(sendWindowSize - sendLen);
// Determine if there's more data to be sent after this buffer.
canSend = (RemainingToSend() > 0 && sendWindowSize > 0);
} while (canSend);
// Call LwIP to send the queued data.
INET_FAULT_INJECT(FaultInjection::kFault_Send, err = chip::System::MapErrorLwIP(ERR_RTE));
if (err == CHIP_NO_ERROR)
{
lwipErr = tcp_output(mTCP);
if (lwipErr != ERR_OK)
err = chip::System::MapErrorLwIP(lwipErr);
}
}
if (err == CHIP_NO_ERROR)
{
// If in the SendShutdown state and the unsent queue is now empty, shutdown the PCB for sending.
if (mState == State::kSendShutdown && (RemainingToSend() == 0))
{
lwipErr = tcp_shutdown(mTCP, 0, 1);
if (lwipErr != ERR_OK)
err = chip::System::MapErrorLwIP(lwipErr);
}
}
}
else
err = CHIP_ERROR_CONNECTION_ABORTED;
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
return err;
}
void TCPEndPoint::HandleConnectCompleteImpl() {}
void TCPEndPoint::DoCloseImpl(CHIP_ERROR err, State oldState)
{
// Lock LwIP stack
LOCK_TCPIP_CORE();
// If the LwIP PCB hasn't been closed yet...
if (mTCP != NULL)
{
// If the endpoint was a connection endpoint (vs. a listening endpoint)...
if (oldState != State::kListening)
{
// Prevent further callbacks for incoming data. This has the effect of instructing
// LwIP to discard any further data received from the peer.
tcp_recv(mTCP, NULL);
// If entering the Closed state...
if (mState == State::kClosed)
{
// Prevent further callbacks to the error handler.
//
// Note: It is important to understand that LwIP can continue to make callbacks after
// a PCB has been closed via the tcp_close() API. In particular, LwIP will continue
// to call the 'data sent' callback to signal the acknowledgment of data that was
// sent, but not acknowledged, prior to the close call. Additionally, LwIP will call
// the error callback if the peer fails to respond in a timely manner to the either
// sent data or the FIN. Unfortunately, there is no callback in the case where the
// connection closes successfully. Because of this, it is impossible know definitively
// when LwIP will no longer make callbacks to its user. Thus we must block further
// callbacks to prevent them from happening after the endpoint has been freed.
//
tcp_err(mTCP, NULL);
// If the endpoint is being closed without error, THEN call tcp_close() to close the underlying
// TCP connection gracefully, preserving any in-transit send data.
if (err == CHIP_NO_ERROR)
{
tcp_close(mTCP);
}
// OTHERWISE, call tcp_abort() to abort the TCP connection, discarding any in-transit data.
else
{
tcp_abort(mTCP);
}
// Discard the reference to the PCB to ensure there is no further interaction with it
// after this point.
mTCP = NULL;
mLwIPEndPointType = LwIPEndPointType::Unknown;
}
}
// OTHERWISE the endpoint was being used for listening, so simply close it.
else
{
tcp_close(mTCP);
// Discard the reference to the PCB to ensure there is no further interaction with it
// after this point.
mTCP = NULL;
mLwIPEndPointType = LwIPEndPointType::Unknown;
}
}
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
if (mState == State::kClosed)
{
mUnackedLength = 0;
}
}
CHIP_ERROR TCPEndPoint::AckReceive(uint16_t len)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_NO_ERROR;
// Lock LwIP stack
LOCK_TCPIP_CORE();
if (mTCP != nullptr)
tcp_recved(mTCP, len);
else
res = CHIP_ERROR_CONNECTION_ABORTED;
// Unlock LwIP stack
UNLOCK_TCPIP_CORE();
return res;
}
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
void TCPEndPoint::TCPUserTimeoutHandler(chip::System::Layer * aSystemLayer, void * aAppState)
{
TCPEndPoint * tcpEndPoint = reinterpret_cast<TCPEndPoint *>(aAppState);
VerifyOrDie((aSystemLayer != nullptr) && (tcpEndPoint != nullptr));
// Set the timer running flag to false
tcpEndPoint->mUserTimeoutTimerRunning = false;
// Close Connection as we have timed out and there is still
// data not sent out successfully.
tcpEndPoint->DoClose(INET_ERROR_TCP_USER_TIMEOUT, false);
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
uint16_t TCPEndPoint::RemainingToSend()
{
if (mSendQueue.IsNull())
{
return 0;
}
else
{
// We can never have reported more unacked data than there is pending
// in the send queue! This would indicate a critical accounting bug.
VerifyOrDie(mUnackedLength <= mSendQueue->TotalLength());
return static_cast<uint16_t>(mSendQueue->TotalLength() - mUnackedLength);
}
}
TCPEndPoint::BufferOffset TCPEndPoint::FindStartOfUnsent()
{
// Find first packet buffer with remaining data to send by skipping
// all sent but un-acked data. This is necessary because of the Consume()
// call in HandleDataSent(), which potentially releases backing memory for
// fully-sent packet buffers, causing an invalidation of all possible
// offsets one might have cached. The TCP acnowledgements may come back
// with a variety of sizes depending on prior activity, and size of the
// send window. The only way to ensure we get the correct offsets into
// unsent data while retaining the buffers that have un-acked data is to
// traverse all sent-but-unacked data in the chain to reach the beginning
// of ready-to-send data.
TCPEndPoint::BufferOffset startOfUnsent(mSendQueue.Retain());
uint16_t leftToSkip = mUnackedLength;
VerifyOrDie(leftToSkip < mSendQueue->TotalLength());
while (leftToSkip > 0)
{
VerifyOrDie(!startOfUnsent.buffer.IsNull());
uint16_t bufDataLen = startOfUnsent.buffer->DataLength();
if (leftToSkip >= bufDataLen)
{
// We have more to skip than current packet buffer size.
// Follow the chain to continue.
startOfUnsent.buffer.Advance();
leftToSkip = static_cast<uint16_t>(leftToSkip - bufDataLen);
}
else
{
// Done skipping all data, currentUnsentBuf is first packet buffer
// containing unsent data.
startOfUnsent.offset = leftToSkip;
leftToSkip = 0;
}
}
return startOfUnsent;
}
CHIP_ERROR TCPEndPoint::GetPCB(IPAddressType addrType)
{
// IMMPORTANT: This method MUST be called with the LwIP stack LOCKED!
#if LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5
if (mTCP == NULL)
{
switch (addrType)
{
case IPAddressType::kIPv6:
mTCP = tcp_new_ip_type(IPADDR_TYPE_V6);
break;
#if INET_CONFIG_ENABLE_IPV4
case IPAddressType::kIPv4:
mTCP = tcp_new_ip_type(IPADDR_TYPE_V4);
break;
#endif // INET_CONFIG_ENABLE_IPV4
default:
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
if (mTCP == NULL)
{
return CHIP_ERROR_NO_MEMORY;
}
else
{
mLwIPEndPointType = LwIPEndPointType::TCP;
}
}
else
{
switch (IP_GET_TYPE(&mTCP->local_ip))
{
case IPADDR_TYPE_V6:
if (addrType != IPAddressType::kIPv6)
return INET_ERROR_WRONG_ADDRESS_TYPE;
break;
#if INET_CONFIG_ENABLE_IPV4
case IPADDR_TYPE_V4:
if (addrType != IPAddressType::kIPv4)
return INET_ERROR_WRONG_ADDRESS_TYPE;
break;
#endif // INET_CONFIG_ENABLE_IPV4
default:
break;
}
}
#else // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
if (mTCP == NULL)
{
if (addrType == IPAddressType::kIPv6)
mTCP = tcp_new_ip6();
#if INET_CONFIG_ENABLE_IPV4
else if (addrType == IPAddressType::kIPv4)
mTCP = tcp_new();
#endif // INET_CONFIG_ENABLE_IPV4
else
return INET_ERROR_WRONG_ADDRESS_TYPE;
if (mTCP == NULL)
{
return CHIP_ERROR_NO_MEMORY;
}
else
{
mLwIPEndPointType = LwIPEndPointType::TCP;
}
}
else
{
#if INET_CONFIG_ENABLE_IPV4
const IPAddressType pcbType = PCB_ISIPV6(mTCP) ? IPAddressType::kIPv6 : IPAddressType::kIPv4;
#else // !INET_CONFIG_ENABLE_IPV4
const IPAddressType pcbType = IPAddressType::kIPv6;
#endif // !INET_CONFIG_ENABLE_IPV4
if (addrType != pcbType)
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
#endif // LWIP_VERSION_MAJOR <= 1 || LWIP_VERSION_MINOR >= 5
return CHIP_NO_ERROR;
}
void TCPEndPoint::HandleDataSent(uint16_t lenSent)
{
if (IsConnected())
{
// Ensure we do not have internal inconsistency in the lwIP, which
// could cause invalid pointer accesses.
if (lenSent > mUnackedLength)
{
ChipLogError(Inet, "Got more ACKed bytes (%d) than were pending (%d)", (int) lenSent, (int) mUnackedLength);
DoClose(CHIP_ERROR_UNEXPECTED_EVENT, false);
return;
}
else if (mSendQueue.IsNull())
{
ChipLogError(Inet, "Got ACK for %d bytes but data backing gone", (int) lenSent);
DoClose(CHIP_ERROR_UNEXPECTED_EVENT, false);
return;
}
// Consume data off the head of the send queue equal to the amount of data being acknowledged.
mSendQueue.Consume(lenSent);
mUnackedLength = static_cast<uint16_t>(mUnackedLength - lenSent);
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
// Only change the UserTimeout timer if lenSent > 0,
// indicating progress being made in sending data
// across.
if (lenSent > 0)
{
if (RemainingToSend() == 0)
{
// If the output queue has been flushed then stop the timer.
StopTCPUserTimeoutTimer();
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
// Notify up if all outstanding data has been acknowledged
SetTCPSendIdleAndNotifyChange(true);
#endif // INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
}
else
{
// Progress is being made. So, shift the timer
// forward if it was started.
RestartTCPUserTimeoutTimer();
}
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
// Mark the connection as being active.
MarkActive();
// If requested, call the app's OnDataSent callback.
if (OnDataSent != NULL)
OnDataSent(this, lenSent);
// If unsent data exists, attempt to send it now...
if (RemainingToSend() > 0)
DriveSending();
// If in the closing state and the send queue is now empty, attempt to transition to closed.
if ((mState == State::kClosing) && (RemainingToSend() == 0))
DoClose(CHIP_NO_ERROR, false);
}
}
void TCPEndPoint::HandleDataReceived(System::PacketBufferHandle && buf)
{
// Only receive new data while in the Connected or SendShutdown states.
if (mState == State::kConnected || mState == State::kSendShutdown)
{
// Mark the connection as being active.
MarkActive();
// If we received a data buffer, queue it on the receive queue. If there's already data in
// the queue, compact the data into the head buffer.
if (!buf.IsNull())
{
if (mRcvQueue.IsNull())
{
mRcvQueue = std::move(buf);
}
else
{
mRcvQueue->AddToEnd(std::move(buf));
mRcvQueue->CompactHead();
}
}
// Otherwise buf == NULL means the other side closed the connection, so ...
else
{
// If in the Connected state and the app has provided an OnPeerClose callback,
// enter the ReceiveShutdown state. Providing an OnPeerClose callback allows
// the app to decide whether to keep the send side of the connection open after
// the peer has closed. If no OnPeerClose is provided, we assume that the app
// wants to close both directions and automatically enter the Closing state.
if (mState == State::kConnected && OnPeerClose != NULL)
mState = State::kReceiveShutdown;
else
mState = State::kClosing;
// Call the app's OnPeerClose.
if (OnPeerClose != NULL)
OnPeerClose(this);
}
// Drive the received data into the app.
DriveReceiving();
}
}
void TCPEndPoint::HandleIncomingConnection(TCPEndPoint * conEP)
{
CHIP_ERROR err = CHIP_NO_ERROR;
IPAddress peerAddr;
uint16_t peerPort;
if (mState == State::kListening)
{
// If there's no callback available, fail with an error.
if (OnConnectionReceived == NULL)
err = CHIP_ERROR_NO_CONNECTION_HANDLER;
// Extract the peer's address information.
if (err == CHIP_NO_ERROR)
err = conEP->GetPeerInfo(&peerAddr, &peerPort);
// If successful, call the app's callback function.
if (err == CHIP_NO_ERROR)
OnConnectionReceived(this, conEP, peerAddr, peerPort);
// Otherwise clean up and call the app's error callback.
else if (OnAcceptError != NULL)
OnAcceptError(this, err);
}
else
err = CHIP_ERROR_INCORRECT_STATE;
// If something failed above, abort and free the connection end point.
if (err != CHIP_NO_ERROR)
conEP->Free();
}
void TCPEndPoint::HandleError(CHIP_ERROR err)
{
if (mState == State::kListening)
{
if (OnAcceptError != NULL)
OnAcceptError(this, err);
}
else
DoClose(err, false);
}
err_t TCPEndPoint::LwIPHandleConnectComplete(void * arg, struct tcp_pcb * tpcb, err_t lwipErr)
{
err_t res = ERR_OK;
if (arg != NULL)
{
CHIP_ERROR conErr;
TCPEndPoint * ep = static_cast<TCPEndPoint *>(arg);
System::LayerLwIP * lSystemLayer = static_cast<System::LayerLwIP *>(ep->Layer().SystemLayer());
if (lwipErr == ERR_OK)
{
// Setup LwIP callback functions for data transmission.
tcp_recv(ep->mTCP, LwIPHandleDataReceived);
tcp_sent(ep->mTCP, LwIPHandleDataSent);
}
// Post callback to HandleConnectComplete.
conErr = chip::System::MapErrorLwIP(lwipErr);
if (lSystemLayer->PostEvent(*ep, kInetEvent_TCPConnectComplete, static_cast<uintptr_t>(conErr.AsInteger())) !=
CHIP_NO_ERROR)
res = ERR_ABRT;
}
else
res = ERR_ABRT;
if (res != ERR_OK)
tcp_abort(tpcb);
return res;
}
err_t TCPEndPoint::LwIPHandleIncomingConnection(void * arg, struct tcp_pcb * tpcb, err_t lwipErr)
{
CHIP_ERROR err = chip::System::MapErrorLwIP(lwipErr);
if (arg != NULL)
{
TCPEndPoint * listenEP = static_cast<TCPEndPoint *>(arg);
TCPEndPoint * conEP = NULL;
System::LayerLwIP * lSystemLayer = static_cast<System::LayerLwIP *>(listenEP->Layer().SystemLayer());
// Tell LwIP we've accepted the connection so it can decrement the listen PCB's pending_accepts counter.
tcp_accepted(listenEP->mTCP);
// If we did in fact receive a connection, rather than an error, attempt to allocate an end point object.
//
// NOTE: Although most of the LwIP callbacks defer the real work to happen on the endpoint's thread
// (by posting events to the thread's event queue) we can't do that here because as soon as this
// function returns, LwIP is free to begin calling callbacks on the new PCB. For that to work we need
// to have an end point associated with the PCB.
//
if (err == CHIP_NO_ERROR)
{
InetLayer & lInetLayer = listenEP->Layer();
err = lInetLayer.NewTCPEndPoint(&conEP);
}
// Ensure that TCP timers have been started
if (err == CHIP_NO_ERROR)
{
err_t error = start_tcp_timers();
if (error != ERR_OK)
{
err = chip::System::MapErrorLwIP(error);
}
}
// If successful in allocating an end point...
if (err == CHIP_NO_ERROR)
{
// Put the new end point into the Connected state.
conEP->mState = State::kConnected;
conEP->mTCP = tpcb;
conEP->mLwIPEndPointType = LwIPEndPointType::TCP;
conEP->Retain();
// Setup LwIP callback functions for the new PCB.
tcp_arg(tpcb, conEP);
tcp_recv(tpcb, LwIPHandleDataReceived);
tcp_sent(tpcb, LwIPHandleDataSent);
tcp_err(tpcb, LwIPHandleError);
// Post a callback to the HandleConnectionReceived() function, passing it the new end point.
if (lSystemLayer->PostEvent(*listenEP, kInetEvent_TCPConnectionReceived, (uintptr_t) conEP) != CHIP_NO_ERROR)
{
err = CHIP_ERROR_CONNECTION_ABORTED;
conEP->Release(); // for the Retain() above
conEP->Release(); // for the Retain() in NewTCPEndPoint()
}
}
// Otherwise, there was an error accepting the connection, so post a callback to the HandleError function.
else
lSystemLayer->PostEvent(*listenEP, kInetEvent_TCPError, static_cast<uintptr_t>(err.AsInteger()));
}
else
err = CHIP_ERROR_CONNECTION_ABORTED;
if (err != CHIP_NO_ERROR && tpcb != NULL)
{
tcp_abort(tpcb);
return ERR_ABRT;
}
else
{
return ERR_OK;
}
}
err_t TCPEndPoint::LwIPHandleDataReceived(void * arg, struct tcp_pcb * tpcb, struct pbuf * p, err_t err)
{
err_t res = ERR_OK;
if (arg != NULL)
{
TCPEndPoint * ep = static_cast<TCPEndPoint *>(arg);
System::LayerLwIP * lSystemLayer = static_cast<System::LayerLwIP *>(ep->Layer().SystemLayer());
// Post callback to HandleDataReceived.
if (lSystemLayer->PostEvent(*ep, kInetEvent_TCPDataReceived, (uintptr_t) p) != CHIP_NO_ERROR)
res = ERR_ABRT;
}
else
res = ERR_ABRT;
if (res != ERR_OK)
tcp_abort(tpcb);
return res;
}
err_t TCPEndPoint::LwIPHandleDataSent(void * arg, struct tcp_pcb * tpcb, u16_t len)
{
err_t res = ERR_OK;
if (arg != NULL)
{
TCPEndPoint * ep = static_cast<TCPEndPoint *>(arg);
System::LayerLwIP * lSystemLayer = static_cast<System::LayerLwIP *>(ep->Layer().SystemLayer());
// Post callback to HandleDataReceived.
if (lSystemLayer->PostEvent(*ep, kInetEvent_TCPDataSent, (uintptr_t) len) != CHIP_NO_ERROR)
res = ERR_ABRT;
}
else
res = ERR_ABRT;
if (res != ERR_OK)
tcp_abort(tpcb);
return res;
}
void TCPEndPoint::LwIPHandleError(void * arg, err_t lwipErr)
{
if (arg != NULL)
{
TCPEndPoint * ep = static_cast<TCPEndPoint *>(arg);
System::LayerLwIP * lSystemLayer = static_cast<System::LayerLwIP *>(ep->Layer().SystemLayer());
// At this point LwIP has already freed the PCB. Since the thread that owns the TCPEndPoint may
// try to use the PCB before it receives the TCPError event posted below, we set the PCB to NULL
// as a means to signal the other thread that the connection has been aborted. The implication
// of this is that the mTCP field is shared state between the two threads and thus must only be
// accessed with the LwIP lock held.
ep->mTCP = NULL;
ep->mLwIPEndPointType = LwIPEndPointType::Unknown;
// Post callback to HandleError.
CHIP_ERROR err = chip::System::MapErrorLwIP(lwipErr);
lSystemLayer->PostEvent(*ep, kInetEvent_TCPError, static_cast<uintptr_t>(err.AsInteger()));
}
}
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
CHIP_ERROR TCPEndPoint::BindImpl(IPAddressType addrType, const IPAddress & addr, uint16_t port, bool reuseAddr)
{
CHIP_ERROR res = GetSocket(addrType);
if (res == CHIP_NO_ERROR && reuseAddr)
{
int n = 1;
setsockopt(mSocket, SOL_SOCKET, SO_REUSEADDR, &n, sizeof(n));
#ifdef SO_REUSEPORT
// Enable SO_REUSEPORT. This permits coexistence between an
// untargetted CHIP client and other services that listen on
// a CHIP port on a specific address (such as a CHIP client
// with TARGETTED_LISTEN or TCP proxying services). Note that
// one of the costs of this implementation is the
// non-deterministic connection dispatch when multple clients
// listen on the address wih the same degreee of selectivity,
// e.g. two untargetted-listen CHIP clients, or two
// targetted-listen CHIP clients with the same node id.
if (setsockopt(mSocket, SOL_SOCKET, SO_REUSEPORT, &n, sizeof(n)) != 0)
{
ChipLogError(Inet, "SO_REUSEPORT: %d", errno);
}
#endif // defined(SO_REUSEPORT)
}
if (res == CHIP_NO_ERROR)
{
if (addrType == IPAddressType::kIPv6)
{
struct sockaddr_in6 sa;
memset(&sa, 0, sizeof(sa));
sa.sin6_family = AF_INET6;
sa.sin6_port = htons(port);
sa.sin6_flowinfo = 0;
sa.sin6_addr = addr.ToIPv6();
sa.sin6_scope_id = 0;
if (bind(mSocket, reinterpret_cast<const sockaddr *>(&sa), static_cast<unsigned>(sizeof(sa))) != 0)
{
res = CHIP_ERROR_POSIX(errno);
}
}
#if INET_CONFIG_ENABLE_IPV4
else if (addrType == IPAddressType::kIPv4)
{
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET;
sa.sin_port = htons(port);
sa.sin_addr = addr.ToIPv4();
if (bind(mSocket, reinterpret_cast<const sockaddr *>(&sa), static_cast<unsigned>(sizeof(sa))) != 0)
{
res = CHIP_ERROR_POSIX(errno);
}
}
#endif // INET_CONFIG_ENABLE_IPV4
else
{
res = INET_ERROR_WRONG_ADDRESS_TYPE;
}
}
#if CHIP_SYSTEM_CONFIG_USE_DISPATCH
dispatch_queue_t dispatchQueue = static_cast<System::LayerSocketsLoop *>(Layer().SystemLayer())->GetDispatchQueue();
if (dispatchQueue != nullptr)
{
unsigned long fd = static_cast<unsigned long>(mSocket);
mReadableSource = dispatch_source_create(DISPATCH_SOURCE_TYPE_READ, fd, 0, dispatchQueue);
ReturnErrorCodeIf(mReadableSource == nullptr, CHIP_ERROR_NO_MEMORY);
mWriteableSource = dispatch_source_create(DISPATCH_SOURCE_TYPE_WRITE, fd, 0, dispatchQueue);
ReturnErrorCodeIf(mWriteableSource == nullptr, CHIP_ERROR_NO_MEMORY);
dispatch_source_set_event_handler(mReadableSource, ^{
this->HandlePendingIO(System::SocketEventFlags::kRead);
});
dispatch_source_set_event_handler(mWriteableSource, ^{
this->HandlePendingIO(System::SocketEventFlags::kWrite);
});
dispatch_resume(mReadableSource);
dispatch_resume(mWriteableSource);
}
#endif // CHIP_SYSTEM_CONFIG_USE_DISPATCH
return res;
}
CHIP_ERROR TCPEndPoint::ListenImpl(uint16_t backlog)
{
if (listen(mSocket, backlog) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
// Enable non-blocking mode for the socket.
int flags = fcntl(mSocket, F_GETFL, 0);
fcntl(mSocket, F_SETFL, flags | O_NONBLOCK);
// Wait for ability to read on this endpoint.
CHIP_ERROR res = static_cast<System::LayerSockets *>(Layer().SystemLayer())
->SetCallback(mWatch, HandlePendingIO, reinterpret_cast<intptr_t>(this));
if (res == CHIP_NO_ERROR)
{
res = static_cast<System::LayerSockets *>(Layer().SystemLayer())->RequestCallbackOnPendingRead(mWatch);
}
return res;
}
CHIP_ERROR TCPEndPoint::ConnectImpl(const IPAddress & addr, uint16_t port, InterfaceId intfId)
{
IPAddressType addrType = addr.Type();
ReturnErrorOnFailure(GetSocket(addrType));
if (!intfId.IsPresent())
{
// The behavior when connecting to an IPv6 link-local address without specifying an outbound
// interface is ambiguous. So prevent it in all cases.
if (addr.IsIPv6LinkLocal())
{
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
}
else
{
// Try binding to the interface
// If destination is link-local then there is no need to bind to
// interface or address on the interface.
if (!addr.IsIPv6LinkLocal())
{
#ifdef SO_BINDTODEVICE
struct ::ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
ReturnErrorOnFailure(intfId.GetInterfaceName(ifr.ifr_name, sizeof(ifr.ifr_name)));
// Attempt to bind to the interface using SO_BINDTODEVICE which requires privileged access.
// If the permission is denied(EACCES) because CHIP is running in a context
// that does not have privileged access, choose a source address on the
// interface to bind the connetion to.
int r = setsockopt(mSocket, SOL_SOCKET, SO_BINDTODEVICE, &ifr, sizeof(ifr));
if (r < 0 && errno != EACCES)
{
return CHIP_ERROR_POSIX(errno);
}
if (r < 0)
#endif // SO_BINDTODEVICE
{
// Attempting to initiate a connection via a specific interface is not allowed.
// The only way to do this is to bind the local to an address on the desired
// interface.
ReturnErrorOnFailure(BindSrcAddrFromIntf(addrType, intfId));
}
}
}
// Disable generation of SIGPIPE.
#ifdef SO_NOSIGPIPE
int n = 1;
setsockopt(mSocket, SOL_SOCKET, SO_NOSIGPIPE, &n, sizeof(n));
#endif // defined(SO_NOSIGPIPE)
// Enable non-blocking mode for the socket.
int flags = fcntl(mSocket, F_GETFL, 0);
fcntl(mSocket, F_SETFL, flags | O_NONBLOCK);
socklen_t sockaddrsize = 0;
const sockaddr * sockaddrptr = nullptr;
SockAddr sa;
memset(&sa, 0, sizeof(sa));
if (addrType == IPAddressType::kIPv6)
{
sa.in6.sin6_family = AF_INET6;
sa.in6.sin6_port = htons(port);
sa.in6.sin6_flowinfo = 0;
sa.in6.sin6_addr = addr.ToIPv6();
sa.in6.sin6_scope_id = intfId.GetPlatformInterface();
sockaddrsize = sizeof(sockaddr_in6);
sockaddrptr = reinterpret_cast<const sockaddr *>(&sa.in6);
}
#if INET_CONFIG_ENABLE_IPV4
else if (addrType == IPAddressType::kIPv4)
{
sa.in.sin_family = AF_INET;
sa.in.sin_port = htons(port);
sa.in.sin_addr = addr.ToIPv4();
sockaddrsize = sizeof(sockaddr_in);
sockaddrptr = reinterpret_cast<const sockaddr *>(&sa.in);
}
#endif // INET_CONFIG_ENABLE_IPV4
else
{
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
int conRes = connect(mSocket, sockaddrptr, sockaddrsize);
if (conRes == -1 && errno != EINPROGRESS)
{
CHIP_ERROR res = CHIP_ERROR_POSIX(errno);
DoClose(res, true);
return res;
}
ReturnErrorOnFailure(static_cast<System::LayerSockets *>(Layer().SystemLayer())
->SetCallback(mWatch, HandlePendingIO, reinterpret_cast<intptr_t>(this)));
// Once Connecting or Connected, bump the reference count. The corresponding Release()
// [or on LwIP, DeferredRelease()] will happen in DoClose().
Retain();
if (conRes == 0)
{
mState = State::kConnected;
// Wait for ability to read on this endpoint.
ReturnErrorOnFailure(static_cast<System::LayerSockets *>(Layer().SystemLayer())->RequestCallbackOnPendingRead(mWatch));
if (OnConnectComplete != nullptr)
{
OnConnectComplete(this, CHIP_NO_ERROR);
}
}
else
{
mState = State::kConnecting;
// Wait for ability to write on this endpoint.
ReturnErrorOnFailure(static_cast<System::LayerSockets *>(Layer().SystemLayer())->RequestCallbackOnPendingWrite(mWatch));
}
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::GetPeerInfo(IPAddress * retAddr, uint16_t * retPort) const
{
return GetSocketInfo(getpeername, retAddr, retPort);
}
CHIP_ERROR TCPEndPoint::GetLocalInfo(IPAddress * retAddr, uint16_t * retPort) const
{
return GetSocketInfo(getsockname, retAddr, retPort);
}
CHIP_ERROR TCPEndPoint::GetSocketInfo(int getname(int, sockaddr *, socklen_t *), IPAddress * retAddr, uint16_t * retPort) const
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
SockAddr sa;
memset(&sa, 0, sizeof(sa));
socklen_t saLen = sizeof(sa);
if (getname(mSocket, &sa.any, &saLen) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
if (sa.any.sa_family == AF_INET6)
{
*retAddr = IPAddress(sa.in6.sin6_addr);
*retPort = ntohs(sa.in6.sin6_port);
return CHIP_NO_ERROR;
}
#if INET_CONFIG_ENABLE_IPV4
if (sa.any.sa_family == AF_INET)
{
*retAddr = IPAddress(sa.in.sin_addr);
*retPort = ntohs(sa.in.sin_port);
return CHIP_NO_ERROR;
}
#endif // INET_CONFIG_ENABLE_IPV4
return CHIP_ERROR_INCORRECT_STATE;
}
CHIP_ERROR TCPEndPoint::GetInterfaceId(InterfaceId * retInterface)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
SockAddr sa;
memset(&sa, 0, sizeof(sa));
socklen_t saLen = sizeof(sa);
if (getpeername(mSocket, &sa.any, &saLen) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
if (sa.any.sa_family == AF_INET6)
{
if (IPAddress(sa.in6.sin6_addr).IsIPv6LinkLocal())
{
*retInterface = InterfaceId(sa.in6.sin6_scope_id);
}
else
{
// TODO: Is there still a meaningful interface id in this case?
*retInterface = InterfaceId::Null();
}
return CHIP_NO_ERROR;
}
#if INET_CONFIG_ENABLE_IPV4
if (sa.any.sa_family == AF_INET)
{
// No interface id available for IPv4 sockets.
*retInterface = InterfaceId::Null();
return CHIP_NO_ERROR;
}
#endif // INET_CONFIG_ENABLE_IPV4
*retInterface = InterfaceId::Null();
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
CHIP_ERROR TCPEndPoint::SendQueuedImpl(bool queueWasEmpty)
{
if (queueWasEmpty)
{
// Wait for ability to write on this endpoint.
return static_cast<System::LayerSockets *>(Layer().SystemLayer())->RequestCallbackOnPendingWrite(mWatch);
}
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::EnableNoDelay()
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
#ifdef TCP_NODELAY
// Disable TCP Nagle buffering by setting TCP_NODELAY socket option to true
int val = 1;
if (setsockopt(mSocket, TCP_SOCKOPT_LEVEL, TCP_NODELAY, &val, sizeof(val)) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
#endif // defined(TCP_NODELAY)
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::EnableKeepAlive(uint16_t interval, uint16_t timeoutCount)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
// Set the idle interval
int val = interval;
if (setsockopt(mSocket, TCP_SOCKOPT_LEVEL, TCP_IDLE_INTERVAL_OPT_NAME, &val, sizeof(val)) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
// Set the probe retransmission interval.
val = interval;
if (setsockopt(mSocket, TCP_SOCKOPT_LEVEL, TCP_KEEPINTVL, &val, sizeof(val)) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
// Set the probe timeout count
val = timeoutCount;
if (setsockopt(mSocket, TCP_SOCKOPT_LEVEL, TCP_KEEPCNT, &val, sizeof(val)) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
// Enable keepalives for the connection.
val = 1; // enable
if (setsockopt(mSocket, SOL_SOCKET, SO_KEEPALIVE, &val, sizeof(val)) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::DisableKeepAlive()
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
// Disable keepalives on the connection.
int val = 0; // disable
if (setsockopt(mSocket, SOL_SOCKET, SO_KEEPALIVE, &val, sizeof(val)) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::AckReceive(uint16_t len)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
// nothing to do for sockets case
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::SetUserTimeoutImpl(uint32_t userTimeoutMillis)
{
#if defined(TCP_USER_TIMEOUT)
// Set the user timeout
uint32_t val = userTimeoutMillis;
if (setsockopt(mSocket, TCP_SOCKOPT_LEVEL, TCP_USER_TIMEOUT, &val, sizeof(val)) != 0)
{
return CHIP_ERROR_POSIX(errno);
}
return CHIP_NO_ERROR;
#else // TCP_USER_TIMEOUT
return CHIP_ERROR_NOT_IMPLEMENTED;
#endif // defined(TCP_USER_TIMEOUT)
}
void TCPEndPoint::InitImpl()
{
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
mBytesWrittenSinceLastProbe = 0;
mLastTCPKernelSendQueueLen = 0;
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
}
CHIP_ERROR TCPEndPoint::DriveSendingImpl()
{
CHIP_ERROR err = CHIP_NO_ERROR;
#ifdef MSG_NOSIGNAL
const int sendFlags = MSG_NOSIGNAL;
#else
const int sendFlags = 0;
#endif
// Pretend send() fails in the while loop below
INET_FAULT_INJECT(FaultInjection::kFault_Send, {
err = CHIP_ERROR_POSIX(EIO);
DoClose(err, false);
return err;
});
while (!mSendQueue.IsNull())
{
uint16_t bufLen = mSendQueue->DataLength();
ssize_t lenSentRaw = send(mSocket, mSendQueue->Start(), bufLen, sendFlags);
if (lenSentRaw == -1)
{
if (errno != EAGAIN && errno != EWOULDBLOCK)
{
err = (errno == EPIPE) ? INET_ERROR_PEER_DISCONNECTED : CHIP_ERROR_POSIX(errno);
}
break;
}
if (lenSentRaw < 0 || lenSentRaw > bufLen)
{
err = CHIP_ERROR_INCORRECT_STATE;
break;
}
// Cast is safe because bufLen is uint16_t.
uint16_t lenSent = static_cast<uint16_t>(lenSentRaw);
// Mark the connection as being active.
MarkActive();
if (lenSent < bufLen)
{
mSendQueue->ConsumeHead(lenSent);
}
else
{
mSendQueue.FreeHead();
if (mSendQueue.IsNull())
{
// Do not wait for ability to write on this endpoint.
err = static_cast<System::LayerSockets *>(Layer().SystemLayer())->ClearCallbackOnPendingWrite(mWatch);
if (err != CHIP_NO_ERROR)
{
break;
}
}
}
if (OnDataSent != nullptr)
{
OnDataSent(this, lenSent);
}
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
// TCP Send is not Idle; Set state and notify if needed
SetTCPSendIdleAndNotifyChange(false);
#endif // INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
mBytesWrittenSinceLastProbe += lenSent;
bool isProgressing = false;
err = CheckConnectionProgress(isProgressing);
if (err != CHIP_NO_ERROR)
{
break;
}
if (!mUserTimeoutTimerRunning)
{
// Timer was not running before this write. So, start
// the timer.
StartTCPUserTimeoutTimer();
}
else if (isProgressing)
{
// Progress is being made. So, shift the timer
// forward if it was started.
RestartTCPUserTimeoutTimer();
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
if (lenSent < bufLen)
{
break;
}
}
if (err == CHIP_NO_ERROR)
{
// If we're in the SendShutdown state and the send queue is now empty, shutdown writing on the socket.
if (mState == State::kSendShutdown && mSendQueue.IsNull())
{
if (shutdown(mSocket, SHUT_WR) != 0)
{
err = CHIP_ERROR_POSIX(errno);
}
}
}
return err;
}
void TCPEndPoint::HandleConnectCompleteImpl()
{
// Wait for ability to read or write on this endpoint.
CHIP_ERROR err = static_cast<System::LayerSockets *>(Layer().SystemLayer())->RequestCallbackOnPendingRead(mWatch);
if (err == CHIP_NO_ERROR)
{
err = static_cast<System::LayerSockets *>(Layer().SystemLayer())->RequestCallbackOnPendingWrite(mWatch);
}
if (err != CHIP_NO_ERROR)
{
DoClose(err, false);
return;
}
}
void TCPEndPoint::DoCloseImpl(CHIP_ERROR err, State oldState)
{
struct linger lingerStruct;
// If the socket hasn't been closed already...
if (mSocket != kInvalidSocketFd)
{
// If entering the Closed state
// OR if entering the Closing state, and there's no unsent data in the send queue
// THEN close the socket.
if (mState == State::kClosed || (mState == State::kClosing && mSendQueue.IsNull()))
{
// If aborting the connection, ensure we send a TCP RST.
if (IsConnected(oldState) && err != CHIP_NO_ERROR)
{
lingerStruct.l_onoff = 1;
lingerStruct.l_linger = 0;
if (setsockopt(mSocket, SOL_SOCKET, SO_LINGER, &lingerStruct, sizeof(lingerStruct)) != 0)
{
ChipLogError(Inet, "SO_LINGER: %d", errno);
}
}
static_cast<System::LayerSockets *>(Layer().SystemLayer())->StopWatchingSocket(&mWatch);
close(mSocket);
mSocket = kInvalidSocketFd;
}
}
#if CHIP_SYSTEM_CONFIG_USE_DISPATCH
if (mReadableSource)
{
dispatch_source_cancel(mReadableSource);
dispatch_release(mReadableSource);
}
if (mWriteableSource)
{
dispatch_source_cancel(mWriteableSource);
dispatch_release(mWriteableSource);
}
#endif // CHIP_SYSTEM_CONFIG_USE_DISPATCH
}
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
void TCPEndPoint::TCPUserTimeoutHandler(chip::System::Layer * aSystemLayer, void * aAppState)
{
TCPEndPoint * tcpEndPoint = reinterpret_cast<TCPEndPoint *>(aAppState);
VerifyOrDie((aSystemLayer != nullptr) && (tcpEndPoint != nullptr));
// Set the timer running flag to false
tcpEndPoint->mUserTimeoutTimerRunning = false;
CHIP_ERROR err = CHIP_NO_ERROR;
bool isProgressing = false;
err = tcpEndPoint->CheckConnectionProgress(isProgressing);
SuccessOrExit(err);
if (tcpEndPoint->mLastTCPKernelSendQueueLen == 0)
{
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
// If the kernel TCP send queue as well as the TCPEndPoint
// send queue have been flushed then notify application
// that all data has been acknowledged.
if (tcpEndPoint->mSendQueue.IsNull())
{
tcpEndPoint->SetTCPSendIdleAndNotifyChange(true);
}
#endif // INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
}
else
// There is data in the TCP Send Queue
{
if (isProgressing)
{
// Data is flowing, so restart the UserTimeout timer
// to shift it forward while also resetting the max
// poll count.
tcpEndPoint->StartTCPUserTimeoutTimer();
}
else
{
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
// Data flow is not progressing.
// Decrement the remaining max TCP send queue polls.
tcpEndPoint->mTCPSendQueueRemainingPollCount--;
VerifyOrExit(tcpEndPoint->mTCPSendQueueRemainingPollCount != 0, err = INET_ERROR_TCP_USER_TIMEOUT);
// Restart timer to poll again
tcpEndPoint->ScheduleNextTCPUserTimeoutPoll(tcpEndPoint->mTCPSendQueuePollPeriodMillis);
#else
// Close the connection as the TCP UserTimeout has expired
ExitNow(err = INET_ERROR_TCP_USER_TIMEOUT);
#endif // !INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
}
}
exit:
if (err != CHIP_NO_ERROR)
{
// Close the connection as the TCP UserTimeout has expired
tcpEndPoint->DoClose(err, false);
}
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
CHIP_ERROR TCPEndPoint::BindSrcAddrFromIntf(IPAddressType addrType, InterfaceId intfId)
{
// If we are trying to make a TCP connection over a 'specified target interface',
// then we bind the TCPEndPoint to an IP address on that target interface
// and use that address as the source address for that connection. This is
// done in the event that directly binding the connection to the target
// interface is not allowed due to insufficient privileges.
VerifyOrReturnError(mState != State::kBound, CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE);
bool ipAddrFound = false;
for (InterfaceAddressIterator addrIter; addrIter.HasCurrent(); addrIter.Next())
{
const IPAddress curAddr = addrIter.GetAddress();
const InterfaceId curIntfId = addrIter.GetInterfaceId();
if (curIntfId == intfId)
{
// Search for an IPv4 address on the TargetInterface
#if INET_CONFIG_ENABLE_IPV4
if (addrType == IPAddressType::kIPv4)
{
if (curAddr.IsIPv4())
{
// Bind to the IPv4 address of the TargetInterface
ipAddrFound = true;
ReturnErrorOnFailure(Bind(IPAddressType::kIPv4, curAddr, 0, true));
break;
}
}
#endif // INET_CONFIG_ENABLE_IPV4
if (addrType == IPAddressType::kIPv6)
{
// Select an IPv6 address on the interface that is not
// a link local or a multicast address.
// TODO: Define a proper IPv6GlobalUnicast address checker.
if (!curAddr.IsIPv4() && !curAddr.IsIPv6LinkLocal() && !curAddr.IsMulticast())
{
// Bind to the IPv6 address of the TargetInterface
ipAddrFound = true;
ReturnErrorOnFailure(Bind(IPAddressType::kIPv6, curAddr, 0, true));
break;
}
}
}
}
VerifyOrReturnError(ipAddrFound, CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE);
return CHIP_NO_ERROR;
}
CHIP_ERROR TCPEndPoint::GetSocket(IPAddressType addrType)
{
if (mSocket == kInvalidSocketFd)
{
int family;
if (addrType == IPAddressType::kIPv6)
{
family = PF_INET6;
#if INET_CONFIG_ENABLE_IPV4
}
else if (addrType == IPAddressType::kIPv4)
{
family = PF_INET;
#endif // INET_CONFIG_ENABLE_IPV4
}
else
{
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
mSocket = ::socket(family, SOCK_STREAM | SOCK_CLOEXEC, 0);
if (mSocket == -1)
{
return CHIP_ERROR_POSIX(errno);
}
ReturnErrorOnFailure(static_cast<System::LayerSockets *>(Layer().SystemLayer())->StartWatchingSocket(mSocket, &mWatch));
mAddrType = addrType;
// If creating an IPv6 socket, tell the kernel that it will be IPv6 only. This makes it
// posible to bind two sockets to the same port, one for IPv4 and one for IPv6.
#ifdef IPV6_V6ONLY
if (family == PF_INET6)
{
int one = 1;
setsockopt(mSocket, IPPROTO_IPV6, IPV6_V6ONLY, &one, sizeof(one));
}
#endif // defined(IPV6_V6ONLY)
// On systems that support it, disable the delivery of SIGPIPE signals when writing to a closed
// socket.
#ifdef SO_NOSIGPIPE
{
int one = 1;
int res = setsockopt(mSocket, SOL_SOCKET, SO_NOSIGPIPE, &one, sizeof(one));
if (res != 0)
{
ChipLogError(Inet, "SO_NOSIGPIPE: %d", errno);
}
}
#endif // defined(SO_NOSIGPIPE)
}
else if (mAddrType != addrType)
{
return CHIP_ERROR_INCORRECT_STATE;
}
return CHIP_NO_ERROR;
}
// static
void TCPEndPoint::HandlePendingIO(System::SocketEvents events, intptr_t data)
{
reinterpret_cast<TCPEndPoint *>(data)->HandlePendingIO(events);
}
void TCPEndPoint::HandlePendingIO(System::SocketEvents events)
{
// Prevent the end point from being freed while in the middle of a callback.
Retain();
// If in the Listening state, and the app is ready to receive a connection, and there is a connection
// ready to be received on the socket, process the incoming connection.
if (mState == State::kListening)
{
if (OnConnectionReceived != nullptr && events.Has(System::SocketEventFlags::kRead))
{
HandleIncomingConnection();
}
}
// If in the processes of initiating a connection...
else if (mState == State::kConnecting)
{
// The socket being writable indicates the connection has completed (successfully or otherwise).
if (events.Has(System::SocketEventFlags::kWrite))
{
#if !__MBED__
// Get the connection result from the socket.
int osConRes;
socklen_t optLen = sizeof(osConRes);
if (getsockopt(mSocket, SOL_SOCKET, SO_ERROR, &osConRes, &optLen) != 0)
{
osConRes = errno;
}
#else
// On Mbed OS, connect blocks and never returns EINPROGRESS
// The socket option SO_ERROR is not available.
int osConRes = 0;
#endif
CHIP_ERROR conRes = CHIP_ERROR_POSIX(osConRes);
// Process the connection result.
HandleConnectComplete(conRes);
}
}
else
{
// If in a state where sending is allowed, and there is data to be sent, and the socket is ready for
// writing, drive outbound data into the connection.
if (IsConnected() && !mSendQueue.IsNull() && events.Has(System::SocketEventFlags::kWrite))
{
DriveSending();
}
// If in a state were receiving is allowed, and the app is ready to receive data, and data is ready
// on the socket, receive inbound data from the connection.
if ((mState == State::kConnected || mState == State::kSendShutdown) && mReceiveEnabled && OnDataReceived != nullptr &&
events.Has(System::SocketEventFlags::kRead))
{
ReceiveData();
}
}
Release();
}
void TCPEndPoint::ReceiveData()
{
System::PacketBufferHandle rcvBuf;
bool isNewBuf = true;
if (mRcvQueue.IsNull())
{
rcvBuf = System::PacketBufferHandle::New(kMaxReceiveMessageSize, 0);
}
else
{
rcvBuf = mRcvQueue->Last();
if (rcvBuf->AvailableDataLength() == 0)
{
rcvBuf = System::PacketBufferHandle::New(kMaxReceiveMessageSize, 0);
}
else
{
isNewBuf = false;
rcvBuf->CompactHead();
}
}
if (rcvBuf.IsNull())
{
DoClose(CHIP_ERROR_NO_MEMORY, false);
return;
}
// Attempt to receive data from the socket.
ssize_t rcvLen = recv(mSocket, rcvBuf->Start() + rcvBuf->DataLength(), rcvBuf->AvailableDataLength(), 0);
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
CHIP_ERROR err;
bool isProgressing = false;
err = CheckConnectionProgress(isProgressing);
if (err != CHIP_NO_ERROR)
{
DoClose(err, false);
return;
}
if (mLastTCPKernelSendQueueLen == 0)
{
// If the output queue has been flushed then stop the timer.
StopTCPUserTimeoutTimer();
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
// Notify up if all outstanding data has been acknowledged
if (mSendQueue.IsNull())
{
SetTCPSendIdleAndNotifyChange(true);
}
#endif // INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
}
else if (isProgressing && mUserTimeoutTimerRunning)
{
// Progress is being made. So, shift the timer
// forward if it was started.
RestartTCPUserTimeoutTimer();
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
// If an error occurred, abort the connection.
if (rcvLen < 0)
{
int systemErrno = errno;
if (systemErrno == EAGAIN)
{
// Note: in this case, we opt to not retry the recv call,
// and instead we expect that the read flags will get
// reset correctly upon a subsequent return from the
// select call.
ChipLogError(Inet, "recv: EAGAIN, will retry");
return;
}
DoClose(CHIP_ERROR_POSIX(systemErrno), false);
}
else
{
// Mark the connection as being active.
MarkActive();
// If the peer closed their end of the connection...
if (rcvLen == 0)
{
// If in the Connected state and the app has provided an OnPeerClose callback,
// enter the ReceiveShutdown state. Providing an OnPeerClose callback allows
// the app to decide whether to keep the send side of the connection open after
// the peer has closed. If no OnPeerClose is provided, we assume that the app
// wants to close both directions and automatically enter the Closing state.
if (mState == State::kConnected && OnPeerClose != nullptr)
{
mState = State::kReceiveShutdown;
}
else
{
mState = State::kClosing;
}
// Do not wait for ability to read on this endpoint.
(void) static_cast<System::LayerSockets *>(Layer().SystemLayer())->ClearCallbackOnPendingRead(mWatch);
// Call the app's OnPeerClose.
if (OnPeerClose != nullptr)
{
OnPeerClose(this);
}
}
// Otherwise, add the new data onto the receive queue.
else
{
VerifyOrDie(rcvLen > 0);
size_t newDataLength = rcvBuf->DataLength() + static_cast<size_t>(rcvLen);
VerifyOrDie(CanCastTo<uint16_t>(newDataLength));
if (isNewBuf)
{
rcvBuf->SetDataLength(static_cast<uint16_t>(newDataLength));
rcvBuf.RightSize();
if (mRcvQueue.IsNull())
{
mRcvQueue = std::move(rcvBuf);
}
else
{
mRcvQueue->AddToEnd(std::move(rcvBuf));
}
}
else
{
rcvBuf->SetDataLength(static_cast<uint16_t>(newDataLength), mRcvQueue);
}
}
}
// Drive any received data into the app.
DriveReceiving();
}
void TCPEndPoint::HandleIncomingConnection()
{
CHIP_ERROR err = CHIP_NO_ERROR;
TCPEndPoint * conEP = nullptr;
IPAddress peerAddr;
uint16_t peerPort;
SockAddr sa;
memset(&sa, 0, sizeof(sa));
socklen_t saLen = sizeof(sa);
// Accept the new connection.
int conSocket = accept(mSocket, &sa.any, &saLen);
if (conSocket == -1)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
return;
}
else
{
err = CHIP_ERROR_POSIX(errno);
}
}
// If there's no callback available, fail with an error.
if (err == CHIP_NO_ERROR && OnConnectionReceived == nullptr)
{
err = CHIP_ERROR_NO_CONNECTION_HANDLER;
}
// Extract the peer's address information.
if (err == CHIP_NO_ERROR)
{
if (sa.any.sa_family == AF_INET6)
{
peerAddr = IPAddress(sa.in6.sin6_addr);
peerPort = ntohs(sa.in6.sin6_port);
}
#if INET_CONFIG_ENABLE_IPV4
else if (sa.any.sa_family == AF_INET)
{
peerAddr = IPAddress(sa.in.sin_addr);
peerPort = ntohs(sa.in.sin_port);
}
#endif // INET_CONFIG_ENABLE_IPV4
else
{
err = CHIP_ERROR_INCORRECT_STATE;
}
}
// Attempt to allocate an end point object.
if (err == CHIP_NO_ERROR)
{
InetLayer & lInetLayer = Layer();
err = lInetLayer.NewTCPEndPoint(&conEP);
}
// If all went well...
if (err == CHIP_NO_ERROR)
{
// Put the new end point into the Connected state.
conEP->mSocket = conSocket;
err = static_cast<System::LayerSockets *>(Layer().SystemLayer())->StartWatchingSocket(conSocket, &conEP->mWatch);
if (err == CHIP_NO_ERROR)
{
conEP->mState = State::kConnected;
#if INET_CONFIG_ENABLE_IPV4
conEP->mAddrType = (sa.any.sa_family == AF_INET6) ? IPAddressType::kIPv6 : IPAddressType::kIPv4;
#else // !INET_CONFIG_ENABLE_IPV4
conEP->mAddrType = IPAddressType::kIPv6;
#endif // !INET_CONFIG_ENABLE_IPV4
conEP->Retain();
// Wait for ability to read on this endpoint.
auto conEPLayer = static_cast<System::LayerSockets *>(conEP->Layer().SystemLayer());
err = conEPLayer->SetCallback(conEP->mWatch, HandlePendingIO, reinterpret_cast<intptr_t>(conEP));
if (err == CHIP_NO_ERROR)
{
err = conEPLayer->RequestCallbackOnPendingRead(conEP->mWatch);
}
if (err == CHIP_NO_ERROR)
{
// Call the app's callback function.
OnConnectionReceived(this, conEP, peerAddr, peerPort);
return;
}
}
}
// Otherwise immediately close the connection, clean up and call the app's error callback.
if (conSocket != -1)
{
close(conSocket);
}
if (conEP != nullptr)
{
if (conEP->mState == State::kConnected)
{
conEP->Release();
}
conEP->Release();
}
if (OnAcceptError != nullptr)
{
OnAcceptError(this, err);
}
}
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
/**
* This function probes the TCP output queue and checks if data is successfully
* being transferred to the other end.
*/
CHIP_ERROR TCPEndPoint::CheckConnectionProgress(bool & isProgressing)
{
int currPendingBytesRaw = 0;
uint32_t currPendingBytes; // Will be initialized once we know it's safe.
// Fetch the bytes pending successful transmission in the TCP out queue.
if (ioctl(mSocket, TIOCOUTQ, &currPendingBytesRaw) < 0)
{
return CHIP_ERROR_POSIX(errno);
}
if (!CanCastTo<uint32_t>(currPendingBytesRaw))
{
return CHIP_ERROR_INCORRECT_STATE;
}
currPendingBytes = static_cast<uint32_t>(currPendingBytesRaw);
if ((currPendingBytes != 0) && (mBytesWrittenSinceLastProbe + mLastTCPKernelSendQueueLen == currPendingBytes))
{
// No progress has been made
isProgressing = false;
}
else
{
// Data is flowing successfully
isProgressing = true;
}
// Reset the value of the bytes written since the last probe into the tcp
// outqueue was made and update the last tcp outqueue sample.
mBytesWrittenSinceLastProbe = 0;
mLastTCPKernelSendQueueLen = currPendingBytes;
return CHIP_NO_ERROR;
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
CHIP_ERROR TCPEndPoint::Bind(IPAddressType addrType, const IPAddress & addr, uint16_t port, bool reuseAddr)
{
VerifyOrReturnError(mState == State::kReady, CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_NO_ERROR;
if (addr != IPAddress::Any && addr.Type() != IPAddressType::kAny && addr.Type() != addrType)
{
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
res = BindImpl(addrType, addr, port, reuseAddr);
if (res == CHIP_NO_ERROR)
{
mState = State::kBound;
}
return res;
}
CHIP_ERROR TCPEndPoint::Listen(uint16_t backlog)
{
VerifyOrReturnError(mState == State::kBound, CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_NO_ERROR;
res = ListenImpl(backlog);
if (res == CHIP_NO_ERROR)
{
// Once Listening, bump the reference count. The corresponding call to Release()
// [or on LwIP, DeferredRelease()] will happen in DoClose().
Retain();
mState = State::kListening;
}
return res;
}
CHIP_ERROR TCPEndPoint::Connect(const IPAddress & addr, uint16_t port, InterfaceId intfId)
{
VerifyOrReturnError(mState == State::kReady || mState == State::kBound, CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_NO_ERROR;
ReturnErrorOnFailure(ConnectImpl(addr, port, intfId));
StartConnectTimerIfSet();
return res;
}
CHIP_ERROR TCPEndPoint::Send(System::PacketBufferHandle && data, bool push)
{
VerifyOrReturnError(mState == State::kConnected || mState == State::kReceiveShutdown, CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_NO_ERROR;
bool queueWasEmpty = mSendQueue.IsNull();
if (queueWasEmpty)
{
mSendQueue = std::move(data);
}
else
{
mSendQueue->AddToEnd(std::move(data));
}
ReturnErrorOnFailure(SendQueuedImpl(queueWasEmpty));
if (push)
{
res = DriveSending();
}
return res;
}
CHIP_ERROR TCPEndPoint::SetReceivedDataForTesting(System::PacketBufferHandle && data)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
mRcvQueue = std::move(data);
return CHIP_NO_ERROR;
}
uint32_t TCPEndPoint::PendingSendLength()
{
if (!mSendQueue.IsNull())
{
return mSendQueue->TotalLength();
}
return 0;
}
uint32_t TCPEndPoint::PendingReceiveLength()
{
if (!mRcvQueue.IsNull())
{
return mRcvQueue->TotalLength();
}
return 0;
}
CHIP_ERROR TCPEndPoint::Shutdown()
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR err = CHIP_NO_ERROR;
// If fully connected, enter the SendShutdown state.
if (mState == State::kConnected)
{
mState = State::kSendShutdown;
DriveSending();
}
// Otherwise, if the peer has already closed their end of the connection,
else if (mState == State::kReceiveShutdown)
{
err = DoClose(err, false);
}
return err;
}
CHIP_ERROR TCPEndPoint::Close()
{
// Clear the receive queue.
mRcvQueue = nullptr;
// Suppress closing callbacks, since the application explicitly called Close().
OnConnectionClosed = nullptr;
OnPeerClose = nullptr;
OnConnectComplete = nullptr;
// Perform a graceful close.
return DoClose(CHIP_NO_ERROR, true);
}
void TCPEndPoint::Abort()
{
// Suppress closing callbacks, since the application explicitly called Abort().
OnConnectionClosed = nullptr;
OnPeerClose = nullptr;
OnConnectComplete = nullptr;
DoClose(CHIP_ERROR_CONNECTION_ABORTED, true);
}
void TCPEndPoint::Free()
{
CHIP_ERROR err;
// Ensure no callbacks to the app after this point.
OnAcceptError = nullptr;
OnConnectComplete = nullptr;
OnConnectionReceived = nullptr;
OnConnectionClosed = nullptr;
OnPeerClose = nullptr;
OnDataReceived = nullptr;
OnDataSent = nullptr;
// Ensure the end point is Closed or Closing.
err = Close();
if (err != CHIP_NO_ERROR)
{
Abort();
}
// Release the Retain() that happened when the end point was allocated
// [on LwIP, the object may still be alive if DoClose() used the
// EndPointBasis::DeferredFree() method.]
Release();
}
#if INET_TCP_IDLE_CHECK_INTERVAL > 0
void TCPEndPoint::SetIdleTimeout(uint32_t timeoutMS)
{
uint32_t newIdleTimeout = (timeoutMS + (INET_TCP_IDLE_CHECK_INTERVAL - 1)) / INET_TCP_IDLE_CHECK_INTERVAL;
InetLayer & lInetLayer = Layer();
bool isIdleTimerRunning = lInetLayer.IsIdleTimerRunning();
if (newIdleTimeout > UINT16_MAX)
{
newIdleTimeout = UINT16_MAX;
}
mIdleTimeout = mRemainingIdleTime = static_cast<uint16_t>(newIdleTimeout);
if (!isIdleTimerRunning && mIdleTimeout)
{
Layer().SystemLayer()->StartTimer(System::Clock::Milliseconds32(INET_TCP_IDLE_CHECK_INTERVAL),
InetLayer::HandleTCPInactivityTimer, &lInetLayer);
}
}
#endif // INET_TCP_IDLE_CHECK_INTERVAL > 0
CHIP_ERROR TCPEndPoint::SetUserTimeout(uint32_t userTimeoutMillis)
{
VerifyOrReturnError(IsConnected(), CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR res = CHIP_NO_ERROR;
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
// Store the User timeout configuration if it is being overridden.
mUserTimeoutMillis = userTimeoutMillis;
#else // !INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
res = SetUserTimeoutImpl(userTimeoutMillis);
#endif // !INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
return res;
}
void TCPEndPoint::StartConnectTimerIfSet()
{
if (mConnectTimeoutMsecs > 0)
{
Layer().SystemLayer()->StartTimer(System::Clock::Milliseconds32(mConnectTimeoutMsecs), TCPConnectTimeoutHandler, this);
}
}
void TCPEndPoint::StopConnectTimer()
{
Layer().SystemLayer()->CancelTimer(TCPConnectTimeoutHandler, this);
}
void TCPEndPoint::TCPConnectTimeoutHandler(chip::System::Layer * aSystemLayer, void * aAppState)
{
TCPEndPoint * tcpEndPoint = reinterpret_cast<TCPEndPoint *>(aAppState);
VerifyOrDie((aSystemLayer != nullptr) && (tcpEndPoint != nullptr));
// Close Connection as we have timed out and Connect has not returned to
// stop this timer.
tcpEndPoint->DoClose(INET_ERROR_TCP_CONNECT_TIMEOUT, false);
}
bool TCPEndPoint::IsConnected(State state)
{
return state == State::kConnected || state == State::kSendShutdown || state == State::kReceiveShutdown ||
state == State::kClosing;
}
void TCPEndPoint::Init(InetLayer * inetLayer)
{
InitEndPointBasis(*inetLayer);
mReceiveEnabled = true;
// Initialize to zero for using system defaults.
mConnectTimeoutMsecs = 0;
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
mUserTimeoutMillis = INET_CONFIG_DEFAULT_TCP_USER_TIMEOUT_MSEC;
mUserTimeoutTimerRunning = false;
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
mIsTCPSendIdle = true;
mTCPSendQueuePollPeriodMillis = INET_CONFIG_TCP_SEND_QUEUE_POLL_INTERVAL_MSEC;
mTCPSendQueueRemainingPollCount = MaxTCPSendQueuePolls();
OnTCPSendIdleChanged = NULL;
#endif // INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
InitImpl();
}
CHIP_ERROR TCPEndPoint::DriveSending()
{
CHIP_ERROR err = DriveSendingImpl();
if (err != CHIP_NO_ERROR)
{
DoClose(err, false);
}
CHIP_SYSTEM_FAULT_INJECT_ASYNC_EVENT();
return err;
}
void TCPEndPoint::DriveReceiving()
{
// If there's data in the receive queue and the app is ready to receive it then call the app's callback
// with the entire receive queue.
if (!mRcvQueue.IsNull() && mReceiveEnabled && OnDataReceived != nullptr)
{
// Acknowledgement is done after handling the buffers to allow the
// application processing to throttle flow.
uint16_t ackLength = mRcvQueue->TotalLength();
CHIP_ERROR err = OnDataReceived(this, std::move(mRcvQueue));
if (err != CHIP_NO_ERROR)
{
DoClose(err, false);
return;
}
AckReceive(ackLength);
}
// If the connection is closing, and the receive queue is now empty, call DoClose() to complete
// the process of closing the connection.
if (mState == State::kClosing && mRcvQueue.IsNull())
{
DoClose(CHIP_NO_ERROR, false);
}
}
void TCPEndPoint::HandleConnectComplete(CHIP_ERROR err)
{
// If the connect succeeded enter the Connected state and call the app's callback.
if (err == CHIP_NO_ERROR)
{
// Stop the TCP Connect timer in case it is still running.
StopConnectTimer();
// Mark the connection as being active.
MarkActive();
mState = State::kConnected;
HandleConnectCompleteImpl();
if (OnConnectComplete != nullptr)
{
OnConnectComplete(this, CHIP_NO_ERROR);
}
}
// Otherwise, close the connection with an error.
else
{
DoClose(err, false);
}
}
CHIP_ERROR TCPEndPoint::DoClose(CHIP_ERROR err, bool suppressCallback)
{
State oldState = mState;
// If in one of the connected states (Connected, LocalShutdown, PeerShutdown or Closing)
// AND this is a graceful close (i.e. not prompted by an error)
// AND there is data waiting to be processed on either the send or receive queues
// ... THEN enter the Closing state, allowing the queued data to drain,
// ... OTHERWISE go straight to the Closed state.
if (IsConnected() && err == CHIP_NO_ERROR && (!mSendQueue.IsNull() || !mRcvQueue.IsNull()))
{
mState = State::kClosing;
}
else
{
mState = State::kClosed;
}
if (oldState != State::kClosed)
{
// Stop the Connect timer in case it is still running.
StopConnectTimer();
}
// If not making a state transition, return immediately.
if (mState == oldState)
{
return CHIP_NO_ERROR;
}
DoCloseImpl(err, oldState);
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
// Stop the TCP UserTimeout timer if it is running.
StopTCPUserTimeoutTimer();
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
// If entering the Closed state...
if (mState == State::kClosed)
{
// Clear clear the send and receive queues.
mSendQueue = nullptr;
mRcvQueue = nullptr;
// Call the appropriate app callback if allowed.
if (!suppressCallback)
{
if (oldState == State::kConnecting)
{
if (OnConnectComplete != nullptr)
{
OnConnectComplete(this, err);
}
}
else if ((oldState == State::kConnected || oldState == State::kSendShutdown || oldState == State::kReceiveShutdown ||
oldState == State::kClosing) &&
OnConnectionClosed != nullptr)
{
OnConnectionClosed(this, err);
}
}
// Decrement the ref count that was added when the connection started (in Connect()) or listening started (in Listen()).
//
// When using LwIP, post a callback to Release() rather than calling it directly. Since up-calls
// from LwIP are delivered as events (via the LwIP* methods), we must ensure that all events have been
// cleared from the queue before the end point gets freed, otherwise we'll end up accessing freed memory.
// We achieve this by first preventing further up-calls from LwIP (via the call to tcp_abort() above)
// and then queuing the Release() call to happen after all existing events have been processed.
//
if (oldState != State::kReady && oldState != State::kBound)
{
DeferredFree(kReleaseDeferralErrorTactic_Ignore);
}
}
return err;
}
#if INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
void TCPEndPoint::ScheduleNextTCPUserTimeoutPoll(uint32_t aTimeOut)
{
Layer().SystemLayer()->StartTimer(System::Clock::Milliseconds32(aTimeOut), TCPUserTimeoutHandler, this);
}
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
void TCPEndPoint::SetTCPSendIdleAndNotifyChange(bool aIsTCPSendIdle)
{
if (mIsTCPSendIdle != aIsTCPSendIdle)
{
ChipLogDetail(Inet, "TCP con send channel idle state changed : %s", aIsTCPSendIdle ? "false->true" : "true->false");
// Set the current Idle state
mIsTCPSendIdle = aIsTCPSendIdle;
if (OnTCPSendIdleChanged)
{
OnTCPSendIdleChanged(this, mIsTCPSendIdle);
}
}
}
#endif // INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
void TCPEndPoint::StartTCPUserTimeoutTimer()
{
uint32_t timeOut = mUserTimeoutMillis;
#if INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
// Set timeout to the poll interval
timeOut = mTCPSendQueuePollPeriodMillis;
// Reset the poll count
mTCPSendQueueRemainingPollCount = MaxTCPSendQueuePolls();
#endif // INET_CONFIG_ENABLE_TCP_SEND_IDLE_CALLBACKS
ScheduleNextTCPUserTimeoutPoll(timeOut);
mUserTimeoutTimerRunning = true;
}
void TCPEndPoint::StopTCPUserTimeoutTimer()
{
Layer().SystemLayer()->CancelTimer(TCPUserTimeoutHandler, this);
mUserTimeoutTimerRunning = false;
}
void TCPEndPoint::RestartTCPUserTimeoutTimer()
{
StopTCPUserTimeoutTimer();
StartTCPUserTimeoutTimer();
}
#endif // INET_CONFIG_OVERRIDE_SYSTEM_TCP_USER_TIMEOUT
} // namespace Inet
} // namespace chip