blob: 90d0e7817e46a3df5e0028cd26ed636eba762ade [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* Copyright (c) 2018 Nest Labs, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides the implementation of the Device Layer ConfigurationManager object
* for Linux platforms.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <app-common/zap-generated/cluster-objects.h>
#include <ifaddrs.h>
#include <lib/core/CHIPVendorIdentifiers.hpp>
#include <lib/support/CodeUtils.h>
#include <lib/support/logging/CHIPLogging.h>
#include <netpacket/packet.h>
#include <platform/CHIPDeviceConfig.h>
#include <platform/ConfigurationManager.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/Linux/PosixConfig.h>
#include <platform/internal/GenericConfigurationManagerImpl.ipp>
#include <algorithm>
namespace chip {
namespace DeviceLayer {
using namespace ::chip::DeviceLayer::Internal;
ConfigurationManagerImpl & ConfigurationManagerImpl::GetDefaultInstance()
{
static ConfigurationManagerImpl sInstance;
return sInstance;
}
CHIP_ERROR ConfigurationManagerImpl::Init()
{
CHIP_ERROR err;
uint32_t rebootCount;
// Force initialization of NVS namespaces if they doesn't already exist.
err = PosixConfig::EnsureNamespace(PosixConfig::kConfigNamespace_ChipFactory);
SuccessOrExit(err);
err = PosixConfig::EnsureNamespace(PosixConfig::kConfigNamespace_ChipConfig);
SuccessOrExit(err);
err = PosixConfig::EnsureNamespace(PosixConfig::kConfigNamespace_ChipCounters);
SuccessOrExit(err);
// Initialize the generic implementation base class.
err = Internal::GenericConfigurationManagerImpl<PosixConfig>::Init();
SuccessOrExit(err);
if (!PosixConfig::ConfigValueExists(PosixConfig::kConfigKey_VendorId))
{
err = StoreVendorId(CHIP_DEVICE_CONFIG_DEVICE_VENDOR_ID);
SuccessOrExit(err);
}
if (!PosixConfig::ConfigValueExists(PosixConfig::kConfigKey_ProductId))
{
err = StoreProductId(CHIP_DEVICE_CONFIG_DEVICE_PRODUCT_ID);
SuccessOrExit(err);
}
if (PosixConfig::ConfigValueExists(PosixConfig::kCounterKey_RebootCount))
{
err = GetRebootCount(rebootCount);
SuccessOrExit(err);
err = StoreRebootCount(rebootCount + 1);
SuccessOrExit(err);
}
else
{
// The first boot after factory reset of the Node.
err = StoreRebootCount(1);
SuccessOrExit(err);
}
if (!PosixConfig::ConfigValueExists(PosixConfig::kCounterKey_TotalOperationalHours))
{
err = StoreTotalOperationalHours(0);
SuccessOrExit(err);
}
if (!PosixConfig::ConfigValueExists(PosixConfig::kCounterKey_BootReason))
{
err = StoreBootReason(to_underlying(BootReasonType::kUnspecified));
SuccessOrExit(err);
}
if (!PosixConfig::ConfigValueExists(PosixConfig::kConfigKey_RegulatoryLocation))
{
uint32_t location = to_underlying(chip::app::Clusters::GeneralCommissioning::RegulatoryLocationType::kIndoor);
err = WriteConfigValue(PosixConfig::kConfigKey_RegulatoryLocation, location);
SuccessOrExit(err);
}
if (!PosixConfig::ConfigValueExists(PosixConfig::kConfigKey_LocationCapability))
{
uint32_t location = to_underlying(chip::app::Clusters::GeneralCommissioning::RegulatoryLocationType::kIndoorOutdoor);
err = WriteConfigValue(PosixConfig::kConfigKey_LocationCapability, location);
SuccessOrExit(err);
}
err = CHIP_NO_ERROR;
exit:
return err;
}
CHIP_ERROR ConfigurationManagerImpl::GetPrimaryWiFiMACAddress(uint8_t * buf)
{
struct ifaddrs * addresses = nullptr;
CHIP_ERROR error = CHIP_NO_ERROR;
bool found = false;
// TODO: ideally the buffer size should have been passed as a span, however
// for now use the size that is validated in GenericConfigurationManagerImpl.ipp
constexpr size_t kExpectedBufMinSize = ConfigurationManager::kPrimaryMACAddressLength;
memset(buf, 0, kExpectedBufMinSize);
VerifyOrExit(getifaddrs(&addresses) == 0, error = CHIP_ERROR_INTERNAL);
for (auto addr = addresses; addr != nullptr; addr = addr->ifa_next)
{
if ((addr->ifa_addr) && (addr->ifa_addr->sa_family == AF_PACKET) && strncmp(addr->ifa_name, "lo", IFNAMSIZ) != 0)
{
struct sockaddr_ll * mac = (struct sockaddr_ll *) addr->ifa_addr;
memcpy(buf, mac->sll_addr, std::min<size_t>(mac->sll_halen, kExpectedBufMinSize));
found = true;
break;
}
}
freeifaddrs(addresses);
if (!found)
{
error = CHIP_ERROR_NO_ENDPOINT;
}
exit:
return error;
}
bool ConfigurationManagerImpl::CanFactoryReset()
{
// TODO(#742): query the application to determine if factory reset is allowed.
return true;
}
void ConfigurationManagerImpl::InitiateFactoryReset()
{
PlatformMgr().ScheduleWork(DoFactoryReset);
}
CHIP_ERROR ConfigurationManagerImpl::ReadPersistedStorageValue(::chip::Platform::PersistedStorage::Key key, uint32_t & value)
{
PosixConfig::Key configKey{ PosixConfig::kConfigNamespace_ChipCounters, key };
CHIP_ERROR err = ReadConfigValue(configKey, value);
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
err = CHIP_ERROR_PERSISTED_STORAGE_VALUE_NOT_FOUND;
}
return err;
}
CHIP_ERROR ConfigurationManagerImpl::WritePersistedStorageValue(::chip::Platform::PersistedStorage::Key key, uint32_t value)
{
PosixConfig::Key configKey{ PosixConfig::kConfigNamespace_ChipCounters, key };
return WriteConfigValue(configKey, value);
}
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI_STATION
CHIP_ERROR ConfigurationManagerImpl::GetWiFiStationSecurityType(WiFiAuthSecurityType & secType)
{
CHIP_ERROR err;
uint32_t secTypeInt;
err = ReadConfigValue(PosixConfig::kConfigKey_WiFiStationSecType, secTypeInt);
if (err == CHIP_NO_ERROR)
{
secType = static_cast<WiFiAuthSecurityType>(secTypeInt);
}
return err;
}
CHIP_ERROR ConfigurationManagerImpl::UpdateWiFiStationSecurityType(WiFiAuthSecurityType secType)
{
CHIP_ERROR err;
WiFiAuthSecurityType curSecType;
if (secType != kWiFiSecurityType_NotSpecified)
{
err = GetWiFiStationSecurityType(curSecType);
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND || (err == CHIP_NO_ERROR && secType != curSecType))
{
uint32_t secTypeInt = static_cast<uint32_t>(secType);
err = WriteConfigValue(PosixConfig::kConfigKey_WiFiStationSecType, secTypeInt);
}
SuccessOrExit(err);
}
else
{
err = PosixConfig::ClearConfigValue(PosixConfig::kConfigKey_WiFiStationSecType);
SuccessOrExit(err);
}
exit:
return err;
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI_STATION
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, bool & val)
{
return PosixConfig::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, uint16_t & val)
{
return PosixConfig::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, uint32_t & val)
{
return PosixConfig::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, uint64_t & val)
{
return PosixConfig::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValueStr(Key key, char * buf, size_t bufSize, size_t & outLen)
{
return PosixConfig::ReadConfigValueStr(key, buf, bufSize, outLen);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValueBin(Key key, uint8_t * buf, size_t bufSize, size_t & outLen)
{
return PosixConfig::ReadConfigValueBin(key, buf, bufSize, outLen);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, bool val)
{
return PosixConfig::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, uint16_t val)
{
return PosixConfig::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, uint32_t val)
{
return PosixConfig::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, uint64_t val)
{
return PosixConfig::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueStr(Key key, const char * str)
{
return PosixConfig::WriteConfigValueStr(key, str);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueStr(Key key, const char * str, size_t strLen)
{
return PosixConfig::WriteConfigValueStr(key, str, strLen);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueBin(Key key, const uint8_t * data, size_t dataLen)
{
return PosixConfig::WriteConfigValueBin(key, data, dataLen);
}
void ConfigurationManagerImpl::RunConfigUnitTest()
{
PosixConfig::RunConfigUnitTest();
}
void ConfigurationManagerImpl::DoFactoryReset(intptr_t arg)
{
CHIP_ERROR err;
ChipLogProgress(DeviceLayer, "Performing factory reset");
err = PosixConfig::FactoryResetConfig();
if (err != CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "Failed to factory reset configurations: %s", ErrorStr(err));
}
err = PosixConfig::FactoryResetCounters();
if (err != CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "Failed to factory reset counters: %s", ErrorStr(err));
}
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
ChipLogProgress(DeviceLayer, "Clearing Thread provision");
ThreadStackMgr().ErasePersistentInfo();
#endif // CHIP_DEVICE_CONFIG_ENABLE_THREAD
// Restart the system.
ChipLogProgress(DeviceLayer, "System restarting (not implemented)");
// TODO(#742): restart CHIP exe
}
CHIP_ERROR ConfigurationManagerImpl::StoreVendorId(uint16_t vendorId)
{
return WriteConfigValue(PosixConfig::kConfigKey_VendorId, vendorId);
}
CHIP_ERROR ConfigurationManagerImpl::StoreProductId(uint16_t productId)
{
return WriteConfigValue(PosixConfig::kConfigKey_ProductId, productId);
}
CHIP_ERROR ConfigurationManagerImpl::GetRebootCount(uint32_t & rebootCount)
{
return ReadConfigValue(PosixConfig::kCounterKey_RebootCount, rebootCount);
}
CHIP_ERROR ConfigurationManagerImpl::StoreRebootCount(uint32_t rebootCount)
{
return WriteConfigValue(PosixConfig::kCounterKey_RebootCount, rebootCount);
}
CHIP_ERROR ConfigurationManagerImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
return ReadConfigValue(PosixConfig::kCounterKey_TotalOperationalHours, totalOperationalHours);
}
CHIP_ERROR ConfigurationManagerImpl::StoreTotalOperationalHours(uint32_t totalOperationalHours)
{
return WriteConfigValue(PosixConfig::kCounterKey_TotalOperationalHours, totalOperationalHours);
}
CHIP_ERROR ConfigurationManagerImpl::GetBootReason(uint32_t & bootReason)
{
return ReadConfigValue(PosixConfig::kCounterKey_BootReason, bootReason);
}
CHIP_ERROR ConfigurationManagerImpl::StoreBootReason(uint32_t bootReason)
{
return WriteConfigValue(PosixConfig::kCounterKey_BootReason, bootReason);
}
CHIP_ERROR ConfigurationManagerImpl::GetRegulatoryLocation(uint8_t & location)
{
uint32_t value;
if (CHIP_NO_ERROR != ReadConfigValue(PosixConfig::kConfigKey_RegulatoryLocation, value))
{
ReturnErrorOnFailure(GetLocationCapability(location));
if (CHIP_NO_ERROR != StoreRegulatoryLocation(location))
{
ChipLogError(DeviceLayer, "Failed to store RegulatoryLocation");
}
}
else
{
location = static_cast<uint8_t>(value);
}
return CHIP_NO_ERROR;
}
CHIP_ERROR ConfigurationManagerImpl::GetLocationCapability(uint8_t & location)
{
uint32_t value = 0;
CHIP_ERROR err = ReadConfigValue(PosixConfig::kConfigKey_LocationCapability, value);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(value <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
location = static_cast<uint8_t>(value);
}
return err;
}
ConfigurationManager & ConfigurationMgrImpl()
{
return ConfigurationManagerImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip