blob: d16ba43ff4dad242bbaa2c5566825da0af334f9f [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* Copyright (c) 2013-2017 Nest Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This file defines classes for abstracting access to and
* interactions with a platform- and system-specific Internet
* Protocol stack which, as of this implementation, may be either
* BSD/POSIX Sockets or LwIP.
*
* Major abstractions provided are:
*
* * Timers
* * Domain Name System (DNS) resolution
* * TCP network transport
* * UDP network transport
* * Raw network transport
*
* For BSD/POSIX Sockets, event readiness notification is handled
* via file descriptors and a traditional poll / select
* implementation on the platform adaptation.
*
* For LwIP, event readiness notification is handle via events /
* messages and platform- and system-specific hooks for the event
* / message system.
*
*/
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include "InetLayer.h"
#include "InetFaultInjection.h"
#include <system/SystemTimer.h>
#include <support/CodeUtils.h>
#include <support/logging/CHIPLogging.h>
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#include <lwip/netif.h>
#include <lwip/sys.h>
#else // !CHIP_SYSTEM_CONFIG_USE_LWIP
#include <fcntl.h>
#include <net/if.h>
#include <unistd.h>
#ifdef __ANDROID__
#include <ifaddrs-android.h>
#elif CHIP_SYSTEM_CONFIG_USE_BSD_IFADDRS
#include <ifaddrs.h>
#endif
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_ZEPHYR_NET_IF
#include <net/net_if.h>
#endif // CHIP_SYSTEM_CONFIG_USE_ZEPHYR_NET_IF
namespace chip {
namespace Inet {
void InetLayer::UpdateSnapshot(chip::System::Stats::Snapshot & aSnapshot)
{
#if INET_CONFIG_ENABLE_DNS_RESOLVER
DNSResolver::sPool.GetStatistics(aSnapshot.mResourcesInUse[chip::System::Stats::kInetLayer_NumDNSResolvers],
aSnapshot.mHighWatermarks[chip::System::Stats::kInetLayer_NumDNSResolvers]);
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
TCPEndPoint::sPool.GetStatistics(aSnapshot.mResourcesInUse[chip::System::Stats::kInetLayer_NumTCPEps],
aSnapshot.mHighWatermarks[chip::System::Stats::kInetLayer_NumTCPEps]);
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
UDPEndPoint::sPool.GetStatistics(aSnapshot.mResourcesInUse[chip::System::Stats::kInetLayer_NumUDPEps],
aSnapshot.mHighWatermarks[chip::System::Stats::kInetLayer_NumUDPEps]);
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
RawEndPoint::sPool.GetStatistics(aSnapshot.mResourcesInUse[chip::System::Stats::kInetLayer_NumRawEps],
aSnapshot.mHighWatermarks[chip::System::Stats::kInetLayer_NumRawEps]);
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
}
/**
* This is the InetLayer default constructor.
*
* It performs some basic data member initialization; however, since
* InetLayer follows an explicit initializer design pattern, the InetLayer::Init
* method must be called successfully prior to using the object.
*
*/
InetLayer::InetLayer()
{
State = kState_NotInitialized;
#if CHIP_SYSTEM_CONFIG_USE_LWIP
if (!sInetEventHandlerDelegate.IsInitialized())
sInetEventHandlerDelegate.Init(HandleInetLayerEvent);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
}
#if CHIP_SYSTEM_CONFIG_USE_LWIP
chip::System::LwIPEventHandlerDelegate InetLayer::sInetEventHandlerDelegate;
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if INET_CONFIG_MAX_DROPPABLE_EVENTS && CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_NO_LOCKING
INET_ERROR InetLayer::InitQueueLimiter(void)
{
mDroppableEvents = 0;
return INET_NO_ERROR;
}
bool InetLayer::CanEnqueueDroppableEvent(void)
{
if (__sync_add_and_fetch(&mDroppableEvents, 1) <= INET_CONFIG_MAX_DROPPABLE_EVENTS)
{
return true;
}
else
{
__sync_add_and_fetch(&mDroppableEvents, -1);
return false;
}
}
void InetLayer::DroppableEventDequeued(void)
{
__sync_add_and_fetch(&mDroppableEvents, -1);
}
#elif CHIP_SYSTEM_CONFIG_FREERTOS_LOCKING
INET_ERROR InetLayer::InitQueueLimiter(void)
{
const unsigned portBASE_TYPE maximum = INET_CONFIG_MAX_DROPPABLE_EVENTS;
const unsigned portBASE_TYPE initial = INET_CONFIG_MAX_DROPPABLE_EVENTS;
#if (configSUPPORT_STATIC_ALLOCATION == 1)
mDroppableEvents = xSemaphoreCreateCountingStatic(maximum, initial, &mDroppableEventsObj);
#else
mDroppableEvents = xSemaphoreCreateCounting(maximum, initial);
#endif
if (mDroppableEvents != NULL)
return INET_NO_ERROR;
else
return INET_ERROR_NO_MEMORY;
}
bool InetLayer::CanEnqueueDroppableEvent(void)
{
if (xSemaphoreTake(mDroppableEvents, 0) != pdTRUE)
{
return false;
}
return true;
}
void InetLayer::DroppableEventDequeued(void)
{
xSemaphoreGive(mDroppableEvents);
}
#else // !CHIP_SYSTEM_CONFIG_FREERTOS_LOCKING
INET_ERROR InetLayer::InitQueueLimiter(void)
{
if (sem_init(&mDroppableEvents, 0, INET_CONFIG_MAX_DROPPABLE_EVENTS) != 0)
{
return chip::System::MapErrorPOSIX(errno);
}
return INET_NO_ERROR;
}
bool InetLayer::CanEnqueueDroppableEvent(void)
{
// Striclty speaking, we should check for EAGAIN. But, other
// errno values probably should signal that that we should drop
// the packet: EINVAL means that the semaphore is not valid (we
// failed initialization), and EINTR should probably also lead to
// dropping a packet.
if (sem_trywait(&mDroppableEvents) != 0)
{
return false;
}
return true;
}
void InetLayer::DroppableEventDequeued(void)
{
sem_post(&mDroppableEvents);
}
#endif // !CHIP_SYSTEM_CONFIG_FREERTOS_LOCKING
#endif // INET_CONFIG_MAX_DROPPABLE_EVENTS && CHIP_SYSTEM_CONFIG_USE_LWIP
/**
* This is the InetLayer explicit initializer. This must be called
* and complete successfully before the InetLayer may be used.
*
* The caller may provide an optional context argument which will be
* passed back via any platform-specific hook functions. For
* LwIP-based adaptations, this will typically be a pointer to the
* event queue associated with the InetLayer instance.
*
* Platforms may choose to assert
* #INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS in their
* platform-specific configuration header and enable the
* Platform::InetLayer::WillInit and Platform::InetLayer::DidInit
* hooks to effect platform-specific customizations or data extensions
* to InetLayer.
*
* @param[in] aSystemLayer A required instance of the chip System Layer
* already successfully initialized.
*
* @param[in] aContext An optional context argument which will be passed
* back to the caller via any platform-specific hook
* functions.
*
* @retval #INET_ERROR_INCORRECT_STATE If the InetLayer is in an
* incorrect state.
* @retval #INET_ERROR_NO_MEMORY If the InetLayer runs out
* of resource for this
* request for a new timer.
* @retval other Platform-specific errors indicating the reason for
* initialization failure.
* @retval #INET_NO_ERROR On success.
*
*/
INET_ERROR InetLayer::Init(chip::System::Layer & aSystemLayer, void * aContext)
{
INET_ERROR err = INET_NO_ERROR;
Inet::RegisterLayerErrorFormatter();
if (State != kState_NotInitialized)
return INET_ERROR_INCORRECT_STATE;
// Platform-specific initialization may elect to set this data
// member. Ensure it is set to a sane default value before
// invoking platform-specific initialization.
mPlatformData = nullptr;
err = Platform::InetLayer::WillInit(this, aContext);
SuccessOrExit(err);
mSystemLayer = &aSystemLayer;
mContext = aContext;
#if CHIP_SYSTEM_CONFIG_USE_LWIP
err = InitQueueLimiter();
SuccessOrExit(err);
mSystemLayer->AddEventHandlerDelegate(sInetEventHandlerDelegate);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
State = kState_Initialized;
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
#if INET_CONFIG_ENABLE_DNS_RESOLVER && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
err = mAsyncDNSResolver.Init(this);
SuccessOrExit(err);
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
exit:
Platform::InetLayer::DidInit(this, mContext, err);
return err;
}
/**
* This is the InetLayer explicit deinitializer and should be called
* prior to disposing of an instantiated InetLayer instance.
*
* Platforms may choose to assert
* #INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS in their
* platform-specific configuration header and enable the
* Platform::InetLayer::WillShutdown and
* Platform::InetLayer::DidShutdown hooks to effect clean-up of
* platform-specific customizations or data extensions to InetLayer.
*
* @return #INET_NO_ERROR on success; otherwise, a specific error indicating
* the reason for shutdown failure.
*
*/
INET_ERROR InetLayer::Shutdown()
{
INET_ERROR err;
err = Platform::InetLayer::WillShutdown(this, mContext);
SuccessOrExit(err);
if (State == kState_Initialized)
{
#if INET_CONFIG_ENABLE_DNS_RESOLVER
// Cancel all DNS resolution requests owned by this instance.
for (size_t i = 0; i < DNSResolver::sPool.Size(); i++)
{
DNSResolver * lResolver = DNSResolver::sPool.Get(*mSystemLayer, i);
if ((lResolver != nullptr) && lResolver->IsCreatedByInetLayer(*this))
{
lResolver->Cancel();
}
}
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
err = mAsyncDNSResolver.Shutdown();
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
// Close all raw endpoints owned by this Inet layer instance.
for (size_t i = 0; i < RawEndPoint::sPool.Size(); i++)
{
RawEndPoint * lEndPoint = RawEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->Close();
}
}
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
// Abort all TCP endpoints owned by this instance.
for (size_t i = 0; i < TCPEndPoint::sPool.Size(); i++)
{
TCPEndPoint * lEndPoint = TCPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->Abort();
}
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
// Close all UDP endpoints owned by this instance.
for (size_t i = 0; i < UDPEndPoint::sPool.Size(); i++)
{
UDPEndPoint * lEndPoint = UDPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->Close();
}
}
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
}
State = kState_NotInitialized;
exit:
Platform::InetLayer::DidShutdown(this, mContext, err);
return err;
}
/**
* This returns any client-specific platform data assigned to the
* instance, if it has been previously set.
*
* @return Client-specific platform data, if is has been previously set;
* otherwise, NULL.
*
*/
void * InetLayer::GetPlatformData()
{
return mPlatformData;
}
/**
* This sets the specified client-specific platform data to the
* instance for later retrieval by the client platform.
*
* @param[in] aPlatformData The client-specific platform data to set.
*
*/
void InetLayer::SetPlatformData(void * aPlatformData)
{
mPlatformData = aPlatformData;
}
#if INET_CONFIG_ENABLE_TCP_ENDPOINT && INET_TCP_IDLE_CHECK_INTERVAL > 0
bool InetLayer::IsIdleTimerRunning()
{
bool timerRunning = false;
// see if there are any TCP connections with the idle timer check in use.
for (size_t i = 0; i < TCPEndPoint::sPool.Size(); i++)
{
TCPEndPoint * lEndPoint = TCPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && (lEndPoint->mIdleTimeout != 0))
{
timerRunning = true;
break;
}
}
return timerRunning;
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT && INET_TCP_IDLE_CHECK_INTERVAL > 0
/**
* Get the link local IPv6 address for a specified link or interface.
*
* @param[in] link The interface for which the link local IPv6
* address is being sought.
*
* @param[out] llAddr The link local IPv6 address for the link.
*
* @retval #INET_ERROR_NOT_IMPLEMENTED If IPv6 is not supported.
* @retval #INET_ERROR_BAD_ARGS If the link local address
* is NULL.
* @retval #INET_ERROR_ADDRESS_NOT_FOUND If the link does not have
* any address configured.
* @retval #INET_NO_ERROR On success.
*
*/
INET_ERROR InetLayer::GetLinkLocalAddr(InterfaceId link, IPAddress * llAddr)
{
INET_ERROR err = INET_NO_ERROR;
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if !LWIP_IPV6
err = INET_ERROR_NOT_IMPLEMENTED;
goto exit;
#endif //! LWIP_IPV6
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
if (llAddr == nullptr)
{
err = INET_ERROR_BAD_ARGS;
goto exit;
}
#if CHIP_SYSTEM_CONFIG_USE_LWIP
for (struct netif * intf = netif_list; intf != NULL; intf = intf->next)
{
if ((link != NULL) && (link != intf))
continue;
int j;
for (j = 0; j < LWIP_IPV6_NUM_ADDRESSES; ++j)
{
if (ip6_addr_isvalid(netif_ip6_addr_state(intf, j)) && ip6_addr_islinklocal(netif_ip6_addr(intf, j)))
{
(*llAddr) = IPAddress::FromIPv6(*netif_ip6_addr(intf, j));
goto exit;
}
}
if (link != NULL)
{
err = INET_ERROR_ADDRESS_NOT_FOUND;
break;
}
}
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS && CHIP_SYSTEM_CONFIG_USE_BSD_IFADDRS
struct ifaddrs * ifaddr;
int rv;
rv = getifaddrs(&ifaddr);
if (rv != -1)
{
struct ifaddrs * ifaddr_iter = ifaddr;
while (ifaddr_iter != nullptr)
{
if (ifaddr_iter->ifa_addr != nullptr)
{
if ((ifaddr_iter->ifa_addr->sa_family == AF_INET6) &&
((link == INET_NULL_INTERFACEID) || (if_nametoindex(ifaddr_iter->ifa_name) == link)))
{
struct in6_addr * sin6_addr = &(reinterpret_cast<struct sockaddr_in6 *>(ifaddr_iter->ifa_addr))->sin6_addr;
if (sin6_addr->s6_addr[0] == 0xfe && (sin6_addr->s6_addr[1] & 0xc0) == 0x80) // Link Local Address
{
(*llAddr) =
IPAddress::FromIPv6((reinterpret_cast<struct sockaddr_in6 *>(ifaddr_iter->ifa_addr))->sin6_addr);
break;
}
}
}
ifaddr_iter = ifaddr_iter->ifa_next;
}
freeifaddrs(ifaddr);
}
else
{
err = INET_ERROR_ADDRESS_NOT_FOUND;
}
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS && CHIP_SYSTEM_CONFIG_USE_BSD_IFADDRS
#if CHIP_SYSTEM_CONFIG_USE_ZEPHYR_NET_IF
net_if * iface;
in6_addr * ip6_addr;
iface = (link == INET_NULL_INTERFACEID) ? net_if_get_default() : net_if_get_by_index(link);
VerifyOrExit(iface != nullptr, err = INET_ERROR_ADDRESS_NOT_FOUND);
ip6_addr = net_if_ipv6_get_ll(iface, NET_ADDR_PREFERRED);
VerifyOrExit(ip6_addr != nullptr, err = INET_ERROR_ADDRESS_NOT_FOUND);
*llAddr = IPAddress::FromIPv6(*ip6_addr);
#endif // CHIP_SYSTEM_CONFIG_USE_ZEPHYR_NET_IF
exit:
return err;
}
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
/**
* Creates a new RawEndPoint object for a specific IP version and protocol.
*
* @note
* This function gets a free RawEndPoint object from a pre-allocated pool
* and also calls the explicit initializer on the new object.
*
* @param[in] ipVer IPv4 or IPv6.
*
* @param[in] ipProto A protocol within the IP family (e.g., ICMPv4 or ICMPv6).
*
* @param[in,out] retEndPoint A pointer to a pointer of the RawEndPoint object that is
* a return parameter upon completion of the object creation.
* *retEndPoint is NULL if creation fails.
*
* @retval #INET_ERROR_INCORRECT_STATE If the InetLayer object is not initialized.
* @retval #INET_ERROR_NO_ENDPOINTS If the InetLayer RawEndPoint pool is full and no new
* endpoints can be created.
* @retval #INET_NO_ERROR On success.
*
*/
INET_ERROR InetLayer::NewRawEndPoint(IPVersion ipVer, IPProtocol ipProto, RawEndPoint ** retEndPoint)
{
INET_ERROR err = INET_NO_ERROR;
*retEndPoint = nullptr;
VerifyOrExit(State == kState_Initialized, err = INET_ERROR_INCORRECT_STATE);
*retEndPoint = RawEndPoint::sPool.TryCreate(*mSystemLayer);
if (*retEndPoint != nullptr)
{
(*retEndPoint)->Inet::RawEndPoint::Init(this, ipVer, ipProto);
SYSTEM_STATS_INCREMENT(chip::System::Stats::kInetLayer_NumRawEps);
}
else
{
ChipLogError(Inet, "%s endpoint pool FULL", "Raw");
err = INET_ERROR_NO_ENDPOINTS;
}
exit:
return err;
}
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
/**
* Creates a new TCPEndPoint object.
*
* @note
* This function gets a free TCPEndPoint object from a pre-allocated pool
* and also calls the explicit initializer on the new object.
*
* @param[in,out] retEndPoint A pointer to a pointer of the TCPEndPoint object that is
* a return parameter upon completion of the object creation.
* *retEndPoint is NULL if creation fails.
*
* @retval #INET_ERROR_INCORRECT_STATE If the InetLayer object is not initialized.
* @retval #INET_ERROR_NO_ENDPOINTS If the InetLayer TCPEndPoint pool is full and no new
* endpoints can be created.
* @retval #INET_NO_ERROR On success.
*
*/
INET_ERROR InetLayer::NewTCPEndPoint(TCPEndPoint ** retEndPoint)
{
INET_ERROR err = INET_NO_ERROR;
*retEndPoint = nullptr;
VerifyOrExit(State == kState_Initialized, err = INET_ERROR_INCORRECT_STATE);
*retEndPoint = TCPEndPoint::sPool.TryCreate(*mSystemLayer);
if (*retEndPoint != nullptr)
{
(*retEndPoint)->Init(this);
SYSTEM_STATS_INCREMENT(chip::System::Stats::kInetLayer_NumTCPEps);
}
else
{
ChipLogError(Inet, "%s endpoint pool FULL", "TCP");
err = INET_ERROR_NO_ENDPOINTS;
}
exit:
return err;
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
/**
* Creates a new UDPEndPoint object.
*
* @note
* This function gets a free UDPEndPoint object from a pre-allocated pool
* and also calls the explicit initializer on the new object.
*
* @param[in,out] retEndPoint A pointer to a pointer of the UDPEndPoint object that is
* a return parameter upon completion of the object creation.
* *retEndPoint is NULL if creation fails.
*
* @retval #INET_ERROR_INCORRECT_STATE If the InetLayer object is not initialized.
* @retval #INET_ERROR_NO_ENDPOINTS If the InetLayer UDPEndPoint pool is full and no new
* endpoints can be created.
* @retval #INET_NO_ERROR On success.
*
*/
INET_ERROR InetLayer::NewUDPEndPoint(UDPEndPoint ** retEndPoint)
{
INET_ERROR err = INET_NO_ERROR;
*retEndPoint = nullptr;
VerifyOrExit(State == kState_Initialized, err = INET_ERROR_INCORRECT_STATE);
*retEndPoint = UDPEndPoint::sPool.TryCreate(*mSystemLayer);
if (*retEndPoint != nullptr)
{
(*retEndPoint)->Init(this);
SYSTEM_STATS_INCREMENT(chip::System::Stats::kInetLayer_NumUDPEps);
}
else
{
ChipLogError(Inet, "%s endpoint pool FULL", "UDP");
err = INET_ERROR_NO_ENDPOINTS;
}
exit:
return err;
}
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
#if INET_CONFIG_ENABLE_DNS_RESOLVER
/**
* Perform an IP address resolution of a specified hostname.
*
* @note
* This is an asynchronous operation and the result will be communicated back
* via the OnComplete() callback.
*
* @param[in] hostName A pointer to a NULL-terminated C string representing
* the host name to be queried.
*
* @param[in] maxAddrs The maximum number of addresses to store in the DNS
* table.
*
* @param[in] addrArray A pointer to the DNS table.
*
* @param[in] onComplete A pointer to the callback function when a DNS
* request is complete.
*
* @param[in] appState A pointer to the application state to be passed to
* onComplete when a DNS request is complete.
*
* @retval #INET_NO_ERROR if a DNS request is handled
* successfully.
* @retval #INET_ERROR_NO_MEMORY if the Inet layer resolver pool
* is full.
* @retval #INET_ERROR_HOST_NAME_TOO_LONG if a requested host name is too
* long.
* @retval #INET_ERROR_HOST_NOT_FOUND if a request host name could not be
* resolved to an address.
* @retval #INET_ERROR_DNS_TRY_AGAIN if a name server returned a
* temporary failure indication;
* try again later.
* @retval #INET_ERROR_DNS_NO_RECOVERY if a name server returned an
* unrecoverable error.
* @retval #INET_ERROR_NOT_IMPLEMENTED if DNS resolution is not enabled on
* the underlying platform.
* @retval other POSIX network or OS error returned by the underlying DNS
* resolver implementation.
*
*/
INET_ERROR InetLayer::ResolveHostAddress(const char * hostName, uint8_t maxAddrs, IPAddress * addrArray,
DNSResolveCompleteFunct onComplete, void * appState)
{
size_t hostNameLength = strlen(hostName);
if (hostNameLength > UINT16_MAX)
{
return INET_ERROR_HOST_NAME_TOO_LONG;
}
return ResolveHostAddress(hostName, static_cast<uint16_t>(hostNameLength), maxAddrs, addrArray, onComplete, appState);
}
/**
* Perform an IP address resolution of a specified hostname.
*
* @param[in] hostName A pointer to a non NULL-terminated C string representing the host name
* to be queried.
*
* @param[in] hostNameLen The string length of host name.
*
* @param[in] maxAddrs The maximum number of addresses to store in the DNS
* table.
*
* @param[in] addrArray A pointer to the DNS table.
*
* @param[in] onComplete A pointer to the callback function when a DNS
* request is complete.
*
* @param[in] appState A pointer to the application state to be passed to
* onComplete when a DNS request is complete.
*
* @retval #INET_NO_ERROR if a DNS request is handled
* successfully.
* @retval #INET_ERROR_NO_MEMORY if the Inet layer resolver pool
* is full.
* @retval #INET_ERROR_HOST_NAME_TOO_LONG if a requested host name is too
* long.
* @retval #INET_ERROR_HOST_NOT_FOUND if a request host name could not be
* resolved to an address.
* @retval #INET_ERROR_DNS_TRY_AGAIN if a name server returned a
* temporary failure indication;
* try again later.
* @retval #INET_ERROR_DNS_NO_RECOVERY if a name server returned an
* unrecoverable error.
* @retval #INET_ERROR_NOT_IMPLEMENTED if DNS resolution is not enabled on
* the underlying platform.
* @retval other POSIX network or OS error returned by the underlying DNS
* resolver implementation.
*
*/
INET_ERROR InetLayer::ResolveHostAddress(const char * hostName, uint16_t hostNameLen, uint8_t maxAddrs, IPAddress * addrArray,
DNSResolveCompleteFunct onComplete, void * appState)
{
return ResolveHostAddress(hostName, hostNameLen, kDNSOption_Default, maxAddrs, addrArray, onComplete, appState);
}
/**
* Perform an IP address resolution of a specified hostname.
*
* @param[in] hostName A pointer to a non NULL-terminated C string representing the host name
* to be queried.
*
* @param[in] hostNameLen The string length of host name.
*
* @param[in] options An integer value controlling how host name resolution is performed.
*
* Value should be one of the address family values from the
* #DNSOptions enumeration:
*
* #kDNSOption_AddrFamily_Any
* #kDNSOption_AddrFamily_IPv4Only
* #kDNSOption_AddrFamily_IPv6Only
* #kDNSOption_AddrFamily_IPv4Preferred
* #kDNSOption_AddrFamily_IPv6Preferred
*
* @param[in] maxAddrs The maximum number of addresses to store in the DNS
* table.
*
* @param[in] addrArray A pointer to the DNS table.
*
* @param[in] onComplete A pointer to the callback function when a DNS
* request is complete.
*
* @param[in] appState A pointer to the application state to be passed to
* onComplete when a DNS request is complete.
*
* @retval #INET_NO_ERROR if a DNS request is handled
* successfully.
* @retval #INET_ERROR_NO_MEMORY if the Inet layer resolver pool
* is full.
* @retval #INET_ERROR_HOST_NAME_TOO_LONG if a requested host name is too
* long.
* @retval #INET_ERROR_HOST_NOT_FOUND if a request host name could not be
* resolved to an address.
* @retval #INET_ERROR_DNS_TRY_AGAIN if a name server returned a
* temporary failure indication;
* try again later.
* @retval #INET_ERROR_DNS_NO_RECOVERY if a name server returned an
* unrecoverable error.
* @retval #INET_ERROR_NOT_IMPLEMENTED if DNS resolution is not enabled on
* the underlying platform.
* @retval other POSIX network or OS error returned by the underlying DNS
* resolver implementation.
*
*/
INET_ERROR InetLayer::ResolveHostAddress(const char * hostName, uint16_t hostNameLen, uint8_t options, uint8_t maxAddrs,
IPAddress * addrArray, DNSResolveCompleteFunct onComplete, void * appState)
{
INET_ERROR err = INET_NO_ERROR;
DNSResolver * resolver = nullptr;
VerifyOrExit(State == kState_Initialized, err = INET_ERROR_INCORRECT_STATE);
INET_FAULT_INJECT(FaultInjection::kFault_DNSResolverNew, return INET_ERROR_NO_MEMORY);
// Store context information and set the resolver state.
VerifyOrExit(hostNameLen <= NL_DNS_HOSTNAME_MAX_LEN, err = INET_ERROR_HOST_NAME_TOO_LONG);
VerifyOrExit(maxAddrs > 0, err = INET_ERROR_NO_MEMORY);
resolver = DNSResolver::sPool.TryCreate(*mSystemLayer);
if (resolver != nullptr)
{
resolver->InitInetLayerBasis(*this);
}
else
{
ChipLogError(Inet, "%s resolver pool FULL", "DNS");
ExitNow(err = INET_ERROR_NO_MEMORY);
}
// Short-circuit full address resolution if the supplied host name is a text-form
// IP address...
if (IPAddress::FromString(hostName, hostNameLen, *addrArray))
{
uint8_t addrTypeOption = (options & kDNSOption_AddrFamily_Mask);
IPAddressType addrType = addrArray->Type();
if ((addrTypeOption == kDNSOption_AddrFamily_IPv6Only && addrType != kIPAddressType_IPv6)
#if INET_CONFIG_ENABLE_IPV4
|| (addrTypeOption == kDNSOption_AddrFamily_IPv4Only && addrType != kIPAddressType_IPv4)
#endif
)
{
err = INET_ERROR_INCOMPATIBLE_IP_ADDRESS_TYPE;
}
if (onComplete)
{
onComplete(appState, err, (err == INET_NO_ERROR) ? 1 : 0, addrArray);
}
resolver->Release();
resolver = nullptr;
ExitNow(err = INET_NO_ERROR);
}
// After this point, the resolver will be released by:
// - mAsyncDNSResolver (in case of ASYNC_DNS_SOCKETS)
// - resolver->Resolve() (in case of synchronous resolving)
// - the event handlers (in case of LwIP)
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
err =
mAsyncDNSResolver.PrepareDNSResolver(*resolver, hostName, hostNameLen, options, maxAddrs, addrArray, onComplete, appState);
SuccessOrExit(err);
mAsyncDNSResolver.EnqueueRequest(*resolver);
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
#if !INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
err = resolver->Resolve(hostName, hostNameLen, options, maxAddrs, addrArray, onComplete, appState);
#endif // !INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
exit:
return err;
}
/**
* Cancel any outstanding DNS query (for a matching completion callback and
* application state) that may still be active.
*
* @note
* This situation can arise if the application initiates a connection
* to a peer using a hostname and then aborts/closes the connection
* before the hostname resolution completes.
*
* @param[in] onComplete A pointer to the callback function when a DNS
* request is complete.
*
* @param[in] appState A pointer to an application state object to be passed
* to the callback function as argument.
*
*/
void InetLayer::CancelResolveHostAddress(DNSResolveCompleteFunct onComplete, void * appState)
{
if (State != kState_Initialized)
return;
for (size_t i = 0; i < DNSResolver::sPool.Size(); i++)
{
DNSResolver * lResolver = DNSResolver::sPool.Get(*mSystemLayer, i);
if (lResolver == nullptr)
{
continue;
}
if (!lResolver->IsCreatedByInetLayer(*this))
{
continue;
}
if (lResolver->OnComplete != onComplete)
{
continue;
}
if (lResolver->AppState != appState)
{
continue;
}
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
if (lResolver->mState == DNSResolver::kState_Canceled)
{
continue;
}
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS && INET_CONFIG_ENABLE_ASYNC_DNS_SOCKETS
lResolver->Cancel();
break;
}
}
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
/**
* Get the interface identifier for the specified IP address. If the
* interface identifier cannot be derived it is set to the
* #INET_NULL_INTERFACEID.
*
* @note
* This function fetches the first interface (from the configured list
* of interfaces) that matches the specified IP address.
*
* @param[in] addr A reference to the IPAddress object.
*
* @param[out] intfId A reference to the InterfaceId object.
*
* @return #INET_NO_ERROR unconditionally.
*
*/
INET_ERROR InetLayer::GetInterfaceFromAddr(const IPAddress & addr, InterfaceId & intfId)
{
InterfaceAddressIterator addrIter;
for (; addrIter.HasCurrent(); addrIter.Next())
{
IPAddress curAddr = addrIter.GetAddress();
if (addr == curAddr)
{
intfId = addrIter.GetInterface();
return INET_NO_ERROR;
}
}
intfId = INET_NULL_INTERFACEID;
return INET_NO_ERROR;
}
/**
* Check if there is a prefix match between the specified IPv6 address and any of
* the locally configured IPv6 addresses.
*
* @param[in] addr The IPv6 address to check for the prefix-match.
*
* @return true if a successful match is found, otherwise false.
*
*/
bool InetLayer::MatchLocalIPv6Subnet(const IPAddress & addr)
{
if (addr.IsIPv6LinkLocal())
return true;
InterfaceAddressIterator ifAddrIter;
for (; ifAddrIter.HasCurrent(); ifAddrIter.Next())
{
IPPrefix addrPrefix;
addrPrefix.IPAddr = ifAddrIter.GetAddress();
#if INET_CONFIG_ENABLE_IPV4
if (addrPrefix.IPAddr.IsIPv4())
continue;
#endif // INET_CONFIG_ENABLE_IPV4
if (addrPrefix.IPAddr.IsIPv6LinkLocal())
continue;
addrPrefix.Length = ifAddrIter.GetIPv6PrefixLength();
if (addrPrefix.MatchAddress(addr))
return true;
}
return false;
}
#if INET_CONFIG_ENABLE_TCP_ENDPOINT && INET_TCP_IDLE_CHECK_INTERVAL > 0
void InetLayer::HandleTCPInactivityTimer(chip::System::Layer * aSystemLayer, void * aAppState, chip::System::Error aError)
{
InetLayer & lInetLayer = *reinterpret_cast<InetLayer *>(aAppState);
bool lTimerRequired = lInetLayer.IsIdleTimerRunning();
for (size_t i = 0; i < INET_CONFIG_NUM_TCP_ENDPOINTS; i++)
{
TCPEndPoint * lEndPoint = TCPEndPoint::sPool.Get(*aSystemLayer, i);
if (lEndPoint == nullptr)
continue;
if (!lEndPoint->IsCreatedByInetLayer(lInetLayer))
continue;
if (!lEndPoint->IsConnected())
continue;
if (lEndPoint->mIdleTimeout == 0)
continue;
if (lEndPoint->mRemainingIdleTime == 0)
{
lEndPoint->DoClose(INET_ERROR_IDLE_TIMEOUT, false);
}
else
{
--lEndPoint->mRemainingIdleTime;
}
}
if (lTimerRequired)
{
aSystemLayer->StartTimer(INET_TCP_IDLE_CHECK_INTERVAL, HandleTCPInactivityTimer, &lInetLayer);
}
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT && INET_TCP_IDLE_CHECK_INTERVAL > 0
#if CHIP_SYSTEM_CONFIG_USE_LWIP
chip::System::Error InetLayer::HandleInetLayerEvent(chip::System::Object & aTarget, chip::System::EventType aEventType,
uintptr_t aArgument)
{
chip::System::Error lReturn = CHIP_SYSTEM_NO_ERROR;
InetLayerBasis & lBasis = static_cast<InetLayerBasis &>(aTarget);
VerifyOrExit(INET_IsInetEvent(aEventType), lReturn = CHIP_SYSTEM_ERROR_UNEXPECTED_EVENT);
// Dispatch the event according to its type.
switch (aEventType)
{
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
case kInetEvent_TCPConnectComplete:
static_cast<TCPEndPoint &>(aTarget).HandleConnectComplete(static_cast<INET_ERROR>(aArgument));
break;
case kInetEvent_TCPConnectionReceived:
static_cast<TCPEndPoint &>(aTarget).HandleIncomingConnection(reinterpret_cast<TCPEndPoint *>(aArgument));
break;
case kInetEvent_TCPDataReceived:
static_cast<TCPEndPoint &>(aTarget).HandleDataReceived(reinterpret_cast<chip::System::PacketBuffer *>(aArgument));
break;
case kInetEvent_TCPDataSent:
static_cast<TCPEndPoint &>(aTarget).HandleDataSent(static_cast<uint16_t>(aArgument));
break;
case kInetEvent_TCPError:
static_cast<TCPEndPoint &>(aTarget).HandleError(static_cast<INET_ERROR>(aArgument));
break;
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
case kInetEvent_RawDataReceived:
static_cast<RawEndPoint &>(aTarget).HandleDataReceived(reinterpret_cast<chip::System::PacketBuffer *>(aArgument));
break;
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
case kInetEvent_UDPDataReceived:
static_cast<UDPEndPoint &>(aTarget).HandleDataReceived(reinterpret_cast<chip::System::PacketBuffer *>(aArgument));
break;
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
#if INET_CONFIG_ENABLE_DNS_RESOLVER
case kInetEvent_DNSResolveComplete:
static_cast<DNSResolver &>(aTarget).HandleResolveComplete();
break;
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
default:
lReturn = CHIP_SYSTEM_ERROR_UNEXPECTED_EVENT;
ExitNow();
}
// If the event was droppable, record the fact that it has been dequeued.
if (IsDroppableEvent(aEventType))
{
InetLayer & lInetLayer = lBasis.Layer();
lInetLayer.DroppableEventDequeued();
}
exit:
return lReturn;
}
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
/**
* Prepare the sets of file descriptors for @p select() to work with.
*
* @param[out] nfds The range of file descriptors in the file
* descriptor set.
*
* @param[in] readfds A pointer to the set of readable file descriptors.
*
* @param[in] writefds A pointer to the set of writable file descriptors.
*
* @param[in] exceptfds A pointer to the set of file descriptors with errors.
*
* @param[in] sleepTimeTV A pointer to a structure specifying how long the select should sleep
*
*/
void InetLayer::PrepareSelect(int & nfds, fd_set * readfds, fd_set * writefds, fd_set * exceptfds, struct timeval & sleepTimeTV)
{
if (State != kState_Initialized)
return;
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
for (size_t i = 0; i < RawEndPoint::sPool.Size(); i++)
{
RawEndPoint * lEndPoint = RawEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
lEndPoint->PrepareIO().SetFDs(lEndPoint->mSocket, nfds, readfds, writefds, exceptfds);
}
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
for (size_t i = 0; i < TCPEndPoint::sPool.Size(); i++)
{
TCPEndPoint * lEndPoint = TCPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
lEndPoint->PrepareIO().SetFDs(lEndPoint->mSocket, nfds, readfds, writefds, exceptfds);
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
for (size_t i = 0; i < UDPEndPoint::sPool.Size(); i++)
{
UDPEndPoint * lEndPoint = UDPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
lEndPoint->PrepareIO().SetFDs(lEndPoint->mSocket, nfds, readfds, writefds, exceptfds);
}
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
}
/**
* Handle I/O from a select call. This method registers the pending I/O
* event in each active endpoint and then invokes the respective I/O
* handling functions for those endpoints.
*
* @note
* It is important to set the pending I/O fields for all endpoints
* *before* making any callbacks. This avoids the case where an
* endpoint is closed and then re-opened within the callback for
* another endpoint. When this happens the new endpoint is likely
* to be assigned the same file descriptor as the old endpoint.
* However, any pending I/O for that file descriptor number represents
* I/O related to the old incarnation of the endpoint, not the current
* one. Saving the pending I/O state in each endpoint before acting
* on it allows the endpoint code to clear the I/O flags in the event
* of a close, thus avoiding any confusion.
*
* @param[in] selectRes The return value of the select call.
*
* @param[in] readfds A pointer to the set of read file descriptors.
*
* @param[in] writefds A pointer to the set of write file descriptors.
*
* @param[in] exceptfds A pointer to the set of file descriptors with
* errors.
*
*/
void InetLayer::HandleSelectResult(int selectRes, fd_set * readfds, fd_set * writefds, fd_set * exceptfds)
{
if (State != kState_Initialized)
return;
if (selectRes < 0)
return;
if (selectRes > 0)
{
// Set the pending I/O field for each active endpoint based on the value returned by select.
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
for (size_t i = 0; i < RawEndPoint::sPool.Size(); i++)
{
RawEndPoint * lEndPoint = RawEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->mPendingIO = SocketEvents::FromFDs(lEndPoint->mSocket, readfds, writefds, exceptfds);
}
}
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
for (size_t i = 0; i < TCPEndPoint::sPool.Size(); i++)
{
TCPEndPoint * lEndPoint = TCPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->mPendingIO = SocketEvents::FromFDs(lEndPoint->mSocket, readfds, writefds, exceptfds);
}
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
for (size_t i = 0; i < UDPEndPoint::sPool.Size(); i++)
{
UDPEndPoint * lEndPoint = UDPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->mPendingIO = SocketEvents::FromFDs(lEndPoint->mSocket, readfds, writefds, exceptfds);
}
}
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
// Now call each active endpoint to handle its pending I/O.
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
for (size_t i = 0; i < RawEndPoint::sPool.Size(); i++)
{
RawEndPoint * lEndPoint = RawEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->HandlePendingIO();
}
}
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
for (size_t i = 0; i < TCPEndPoint::sPool.Size(); i++)
{
TCPEndPoint * lEndPoint = TCPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->HandlePendingIO();
}
}
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
for (size_t i = 0; i < UDPEndPoint::sPool.Size(); i++)
{
UDPEndPoint * lEndPoint = UDPEndPoint::sPool.Get(*mSystemLayer, i);
if ((lEndPoint != nullptr) && lEndPoint->IsCreatedByInetLayer(*this))
{
lEndPoint->HandlePendingIO();
}
}
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
}
}
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
/**
* Reset the members of the IPPacketInfo object.
*
*/
void IPPacketInfo::Clear()
{
SrcAddress = IPAddress::Any;
DestAddress = IPAddress::Any;
Interface = INET_NULL_INTERFACEID;
SrcPort = 0;
DestPort = 0;
}
#if !INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS
// MARK: InetLayer platform- and system-specific functions for InetLayer
// construction and destruction.
namespace Platform {
namespace InetLayer {
/**
* This is a platform-specific InetLayer pre-initialization hook. This
* may be overridden by assserting the preprocessor definition,
* #INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS.
*
* @param[in,out] aLayer A pointer to the InetLayer instance being
* initialized.
*
* @param[in,out] aContext Platform-specific context data passed to
* the layer initialization method, \::Init.
*
* @return #INET_NO_ERROR on success; otherwise, a specific error indicating
* the reason for initialization failure. Returning non-successful
* status will abort initialization.
*
*/
DLL_EXPORT INET_ERROR WillInit(Inet::InetLayer * aLayer, void * aContext)
{
(void) aLayer;
(void) aContext;
return INET_NO_ERROR;
}
/**
* This is a platform-specific InetLayer post-initialization hook. This
* may be overridden by assserting the preprocessor definition,
* #INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS.
*
* @param[in,out] aLayer A pointer to the InetLayer instance being
* initialized.
*
* @param[in,out] aContext Platform-specific context data passed to
* the layer initialization method, \::Init.
*
* @param[in] anError The overall status being returned via the
* InetLayer \::Init method.
*
*/
DLL_EXPORT void DidInit(Inet::InetLayer * aLayer, void * aContext, INET_ERROR anError)
{
(void) aLayer;
(void) aContext;
(void) anError;
}
/**
* This is a platform-specific InetLayer pre-shutdown hook. This
* may be overridden by assserting the preprocessor definition,
* #INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS.
*
* @param[in,out] aLayer A pointer to the InetLayer instance being
* shutdown.
*
* @param[in,out] aContext Platform-specific context data passed to
* the layer initialization method, \::Init.
*
* @return #INET_NO_ERROR on success; otherwise, a specific error indicating
* the reason for shutdown failure. Returning non-successful
* status will abort shutdown.
*
*/
DLL_EXPORT INET_ERROR WillShutdown(Inet::InetLayer * aLayer, void * aContext)
{
(void) aLayer;
(void) aContext;
return INET_NO_ERROR;
}
/**
* This is a platform-specific InetLayer post-shutdown hook. This
* may be overridden by assserting the preprocessor definition,
* #INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS.
*
* @param[in,out] aLayer A pointer to the InetLayer instance being
* shutdown.
*
* @param[in,out] aContext Platform-specific context data passed to
* the layer initialization method, \::Init.
*
* @param[in] anError The overall status being returned via the
* InetLayer \::Shutdown method.
*
*/
DLL_EXPORT void DidShutdown(Inet::InetLayer * aLayer, void * aContext, INET_ERROR anError)
{
(void) aLayer;
(void) aContext;
(void) anError;
}
} // namespace InetLayer
} // namespace Platform
#endif // !INET_CONFIG_WILL_OVERRIDE_PLATFORM_XTOR_FUNCS
} // namespace Inet
} // namespace chip