blob: b9f2f018e6987d2f38a45dc32b493f14bfe32879 [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for Ameba platform.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <crypto/CHIPCryptoPAL.h>
#include <lib/support/CHIPMemString.h>
#include <platform/Ameba/DiagnosticDataProviderImpl.h>
#include <lwip_netconf.h>
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
currentHeapFree = xPortGetFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
currentHeapUsed = xPortGetTotalHeapSize() - xPortGetFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
currentHeapHighWatermark = xPortGetTotalHeapSize() - xPortGetMinimumEverFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks()
{
// If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the
// value of the CurrentHeapUsed.
xPortResetHeapMinimumEverFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut)
{
/* Obtain all available task information */
TaskStatus_t * taskStatusArray;
ThreadMetrics * head = nullptr;
unsigned long arraySize, x, dummy;
arraySize = uxTaskGetNumberOfTasks();
taskStatusArray = (TaskStatus_t *) pvPortMalloc(arraySize * sizeof(TaskStatus_t));
if (taskStatusArray != NULL)
{
/* Generate raw status information about each task. */
arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy);
/* For each populated position in the taskStatusArray array,
format the raw data as human readable ASCII data. */
for (x = 0; x < arraySize; x++)
{
ThreadMetrics * thread = (ThreadMetrics *) pvPortMalloc(sizeof(ThreadMetrics));
Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName);
thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf));
thread->id = taskStatusArray[x].xTaskNumber;
thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark);
thread->stackSize.Emplace(uxTaskGetStackSize(taskStatusArray[x].xHandle));
thread->stackFreeCurrent.Emplace(uxTaskGetFreeStackSize(taskStatusArray[x].xHandle));
thread->Next = head;
head = thread;
}
*threadMetricsOut = head;
/* The array is no longer needed, free the memory it consumes. */
vPortFree(taskStatusArray);
}
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics)
{
while (threadMetrics)
{
ThreadMetrics * del = threadMetrics;
threadMetrics = threadMetrics->Next;
vPortFree(del);
}
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = 0;
CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
bootReason = static_cast<BootReasonType>(reason);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
CHIP_ERROR err = CHIP_ERROR_READ_FAILED;
NetworkInterface * head = NULL;
struct ifaddrs * ifaddr = nullptr;
// xnetif is never null, no need to check. If we do check with -Werror=address, we get compiler error.
for (struct netif * ifa = xnetif; ifa != NULL; ifa = ifa->next)
{
NetworkInterface * ifp = new NetworkInterface();
Platform::CopyString(ifp->Name, ifa->name);
ifp->name = CharSpan::fromCharString(ifp->Name);
ifp->isOperational = true;
if ((ifa->flags) & NETIF_FLAG_ETHERNET)
ifp->type = EMBER_ZCL_INTERFACE_TYPE_ENUM_ETHERNET;
else
ifp->type = EMBER_ZCL_INTERFACE_TYPE_ENUM_WI_FI;
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
memcpy(ifp->MacAddress, ifa->hwaddr, sizeof(ifa->hwaddr));
if (0)
{
ChipLogError(DeviceLayer, "Failed to get network hardware address");
}
else
{
// Set 48-bit IEEE MAC Address
ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 6);
}
if (ifa->ip_addr.u_addr.ip4.addr != 0)
{
memcpy(ifp->Ipv4AddressesBuffer[0], &(ifa->ip_addr.u_addr.ip4.addr), kMaxIPv4AddrSize);
ifp->Ipv4AddressSpans[0] = ByteSpan(ifp->Ipv4AddressesBuffer[0], kMaxIPv4AddrSize);
ifp->IPv4Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv4AddressSpans, 1);
}
// ifa->ip6_addr->u_addr.ip6.addr is never null, no need to check. If we do check with -Werror=address, we get compiler
// error.
memcpy(ifp->Ipv6AddressesBuffer[0], &(ifa->ip6_addr->u_addr.ip6.addr), kMaxIPv6AddrSize);
ifp->Ipv6AddressSpans[0] = ByteSpan(ifp->Ipv6AddressesBuffer[0], kMaxIPv6AddrSize);
ifp->IPv6Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv6AddressSpans, 1);
ifp->Next = head;
head = ifp;
}
*netifpp = head;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & BssId)
{
constexpr size_t bssIdSize = 6;
VerifyOrReturnError(BssId.size() >= bssIdSize, CHIP_ERROR_BUFFER_TOO_SMALL);
if (wifi_get_ap_bssid(BssId.data()) != 0)
{
return CHIP_ERROR_READ_FAILED;
}
BssId.reduce_size(bssIdSize);
ChipLogProgress(DeviceLayer, "%02x,%02x,%02x,%02x,%02x,%02x\n", BssId.data()[0], BssId.data()[1], BssId.data()[2],
BssId.data()[3], BssId.data()[4], BssId.data()[5]);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wifiVersion)
{
// Support 802.11a/n Wi-Fi in AmebaD chipset
// TODO: https://github.com/project-chip/connectedhomeip/issues/25542
wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kN;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType)
{
using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum;
unsigned int _auth_type;
unsigned short _security = 0;
rtw_wifi_setting_t setting;
#ifdef CONFIG_PLATFORM_8721D
if (wext_get_enc_ext("wlan0", &_security, &setting.key_idx, setting.password) < 0)
{
securityType = SecurityTypeEnum::kUnspecified;
}
else
{
switch (_security)
{
case IW_ENCODE_ALG_NONE:
securityType = SecurityTypeEnum::kNone;
break;
case IW_ENCODE_ALG_WEP:
securityType = SecurityTypeEnum::kWep;
break;
case IW_ENCODE_ALG_TKIP:
securityType = SecurityTypeEnum::kWpa;
break;
case IW_ENCODE_ALG_CCMP:
securityType = SecurityTypeEnum::kWpa2;
break;
default:
securityType = SecurityTypeEnum::kUnspecified;
break;
}
}
#else
wext_get_enc_ext("wlan0", &_security, &setting.key_idx, setting.password);
if (wext_get_auth_type("wlan0", &_auth_type) < 0)
{
securityType = SecurityTypeEnum::kUnspecified;
}
else
{
switch (_security)
{
case IW_ENCODE_ALG_NONE:
securityType = SecurityTypeEnum::kNone;
break;
case IW_ENCODE_ALG_WEP:
securityType = SecurityTypeEnum::kWep;
break;
case IW_ENCODE_ALG_TKIP:
if (_auth_type == WPA_SECURITY)
securityType = SecurityTypeEnum::kWpa;
else if (_auth_type == WPA2_SECURITY)
securityType = SecurityTypeEnum::kWpa2;
break;
case IW_ENCODE_ALG_CCMP:
if (_auth_type == WPA_SECURITY)
securityType = SecurityTypeEnum::kWpa;
else if (_auth_type == WPA2_SECURITY)
securityType = SecurityTypeEnum::kWpa2;
else if (_auth_type == WPA3_SECURITY)
securityType = SecurityTypeEnum::kWpa3;
break;
default:
securityType = SecurityTypeEnum::kUnspecified;
break;
}
}
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber)
{
unsigned char channel;
if (wext_get_channel("wlan0", &channel) < 0)
channelNumber = 0;
else
channelNumber = (uint16_t) channel;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi)
{
int _rssi = 0;
if (wifi_get_rssi(&_rssi) < 0)
rssi = 0;
else
rssi = _rssi;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount)
{
beaconLostCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate)
{
currentMaxRate = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount)
{
packetMulticastRxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount)
{
packetMulticastTxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount)
{
packetUnicastRxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount)
{
packetUnicastTxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount)
{
overrunCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts()
{
return CHIP_NO_ERROR;
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip