| /* |
| * |
| * Copyright (c) 2022-2023 Project CHIP Authors |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** |
| * @file |
| * PSA Crypto API based implementation of CHIP crypto primitives |
| */ |
| |
| #include "CHIPCryptoPALPSA.h" |
| #include "CHIPCryptoPALmbedTLS.h" |
| |
| #include <lib/core/CHIPEncoding.h> |
| #include <lib/core/CHIPSafeCasts.h> |
| #include <lib/support/BufferWriter.h> |
| #include <lib/support/BytesToHex.h> |
| #include <lib/support/CHIPArgParser.hpp> |
| #include <lib/support/CodeUtils.h> |
| #include <lib/support/SafeInt.h> |
| #include <lib/support/SafePointerCast.h> |
| #include <lib/support/logging/CHIPLogging.h> |
| |
| #include <psa/crypto.h> |
| |
| #include <mbedtls/bignum.h> |
| #include <mbedtls/ecp.h> |
| #include <mbedtls/error.h> |
| #include <mbedtls/x509_csr.h> |
| |
| #include <string.h> |
| #include <type_traits> |
| |
| namespace chip { |
| namespace Crypto { |
| |
| namespace { |
| |
| bool isBufferNonEmpty(const uint8_t * data, size_t data_length) |
| { |
| return data != nullptr && data_length > 0; |
| } |
| |
| bool isValidTag(const uint8_t * tag, size_t tag_length) |
| { |
| return tag != nullptr && (tag_length == 8 || tag_length == 12 || tag_length == 16); |
| } |
| |
| } // namespace |
| |
| CHIP_ERROR AES_CCM_encrypt(const uint8_t * plaintext, size_t plaintext_length, const uint8_t * aad, size_t aad_length, |
| const Aes128KeyHandle & key, const uint8_t * nonce, size_t nonce_length, uint8_t * ciphertext, |
| uint8_t * tag, size_t tag_length) |
| { |
| VerifyOrReturnError(isBufferNonEmpty(nonce, nonce_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(isValidTag(tag, tag_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError((ciphertext != nullptr && plaintext != nullptr) || plaintext_length == 0, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(aad != nullptr || aad_length == 0, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| const psa_algorithm_t algorithm = PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length); |
| psa_status_t status = PSA_SUCCESS; |
| psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT; |
| size_t out_length; |
| size_t tag_out_length; |
| |
| status = psa_aead_encrypt_setup(&operation, key.As<psa_key_id_t>(), algorithm); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| status = psa_aead_set_lengths(&operation, aad_length, plaintext_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| status = psa_aead_set_nonce(&operation, nonce, nonce_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| if (aad_length != 0) |
| { |
| status = psa_aead_update_ad(&operation, aad, aad_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| } |
| else |
| { |
| ChipLogDetail(Crypto, "AES_CCM_encrypt: Using aad == null path"); |
| } |
| |
| if (plaintext_length != 0) |
| { |
| status = psa_aead_update(&operation, plaintext, plaintext_length, ciphertext, |
| PSA_AEAD_UPDATE_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm, plaintext_length), &out_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| ciphertext += out_length; |
| |
| status = psa_aead_finish(&operation, ciphertext, PSA_AEAD_FINISH_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm), &out_length, tag, |
| tag_length, &tag_out_length); |
| } |
| else |
| { |
| status = psa_aead_finish(&operation, nullptr, 0, &out_length, tag, tag_length, &tag_out_length); |
| } |
| VerifyOrReturnError(status == PSA_SUCCESS && tag_length == tag_out_length, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR AES_CCM_decrypt(const uint8_t * ciphertext, size_t ciphertext_length, const uint8_t * aad, size_t aad_length, |
| const uint8_t * tag, size_t tag_length, const Aes128KeyHandle & key, const uint8_t * nonce, |
| size_t nonce_length, uint8_t * plaintext) |
| { |
| VerifyOrReturnError(isBufferNonEmpty(nonce, nonce_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(isValidTag(tag, tag_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError((ciphertext != nullptr && plaintext != nullptr) || ciphertext_length == 0, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(aad != nullptr || aad_length == 0, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| const psa_algorithm_t algorithm = PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length); |
| psa_status_t status = PSA_SUCCESS; |
| psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT; |
| size_t outLength; |
| |
| status = psa_aead_decrypt_setup(&operation, key.As<psa_key_id_t>(), algorithm); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| status = psa_aead_set_lengths(&operation, aad_length, ciphertext_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| status = psa_aead_set_nonce(&operation, nonce, nonce_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| if (aad_length != 0) |
| { |
| status = psa_aead_update_ad(&operation, aad, aad_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| } |
| else |
| { |
| ChipLogDetail(Crypto, "AES_CCM_decrypt: Using aad == null path"); |
| } |
| |
| if (ciphertext_length != 0) |
| { |
| status = psa_aead_update(&operation, ciphertext, ciphertext_length, plaintext, |
| PSA_AEAD_UPDATE_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm, ciphertext_length), &outLength); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| plaintext += outLength; |
| |
| status = psa_aead_verify(&operation, plaintext, PSA_AEAD_VERIFY_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm), &outLength, tag, |
| tag_length); |
| } |
| else |
| { |
| status = psa_aead_verify(&operation, nullptr, 0, &outLength, tag, tag_length); |
| } |
| |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Hash_SHA256(const uint8_t * data, const size_t data_length, uint8_t * out_buffer) |
| { |
| size_t outLength = 0; |
| |
| const psa_status_t status = |
| psa_hash_compute(PSA_ALG_SHA_256, data, data_length, out_buffer, PSA_HASH_LENGTH(PSA_ALG_SHA_256), &outLength); |
| |
| return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL; |
| } |
| |
| CHIP_ERROR Hash_SHA1(const uint8_t * data, const size_t data_length, uint8_t * out_buffer) |
| { |
| size_t outLength = 0; |
| |
| const psa_status_t status = |
| psa_hash_compute(PSA_ALG_SHA_1, data, data_length, out_buffer, PSA_HASH_LENGTH(PSA_ALG_SHA_1), &outLength); |
| |
| return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL; |
| } |
| |
| static inline psa_hash_operation_t * toHashOperation(HashSHA256OpaqueContext * context) |
| { |
| return SafePointerCast<psa_hash_operation_t *>(context); |
| } |
| |
| static inline psa_hash_operation_t & toHashOperation(HashSHA256OpaqueContext & context) |
| { |
| return *SafePointerCast<psa_hash_operation_t *>(&context); |
| } |
| |
| Hash_SHA256_stream::Hash_SHA256_stream() |
| { |
| toHashOperation(mContext) = PSA_HASH_OPERATION_INIT; |
| } |
| |
| Hash_SHA256_stream::~Hash_SHA256_stream() |
| { |
| Clear(); |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::Begin() |
| { |
| toHashOperation(mContext) = PSA_HASH_OPERATION_INIT; |
| const psa_status_t status = psa_hash_setup(toHashOperation(&mContext), PSA_ALG_SHA_256); |
| |
| return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL; |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::AddData(const ByteSpan data) |
| { |
| const psa_status_t status = psa_hash_update(toHashOperation(&mContext), data.data(), data.size()); |
| |
| return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL; |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::GetDigest(MutableByteSpan & out_buffer) |
| { |
| VerifyOrReturnError(out_buffer.size() >= PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_BUFFER_TOO_SMALL); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT; |
| size_t outLength; |
| |
| status = psa_hash_clone(toHashOperation(&mContext), &operation); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_hash_finish(&operation, out_buffer.data(), out_buffer.size(), &outLength); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| out_buffer.reduce_size(outLength); |
| |
| exit: |
| psa_hash_abort(&operation); |
| |
| return error; |
| } |
| |
| CHIP_ERROR Hash_SHA256_stream::Finish(MutableByteSpan & out_buffer) |
| { |
| VerifyOrReturnError(out_buffer.size() >= PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_BUFFER_TOO_SMALL); |
| |
| size_t outLength; |
| |
| const psa_status_t status = psa_hash_finish(toHashOperation(&mContext), out_buffer.data(), out_buffer.size(), &outLength); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| out_buffer.reduce_size(outLength); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| void Hash_SHA256_stream::Clear() |
| { |
| psa_hash_abort(toHashOperation(&mContext)); |
| } |
| |
| CHIP_ERROR FindFreeKeySlotInRange(psa_key_id_t & keyId, psa_key_id_t start, uint32_t range) |
| { |
| psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; |
| psa_key_id_t end = start + range; |
| |
| VerifyOrReturnError(start >= PSA_KEY_ID_USER_MIN && end - 1 <= PSA_KEY_ID_USER_MAX, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| for (keyId = start; keyId < end; keyId++) |
| { |
| psa_status_t status = psa_get_key_attributes(keyId, &attributes); |
| if (status == PSA_ERROR_INVALID_HANDLE) |
| { |
| return CHIP_NO_ERROR; |
| } |
| else if (status != PSA_SUCCESS) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| } |
| return CHIP_ERROR_NOT_FOUND; |
| } |
| |
| CHIP_ERROR PsaKdf::Init(const ByteSpan & secret, const ByteSpan & salt, const ByteSpan & info) |
| { |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_attributes_t attrs = PSA_KEY_ATTRIBUTES_INIT; |
| |
| psa_set_key_type(&attrs, PSA_KEY_TYPE_DERIVE); |
| psa_set_key_algorithm(&attrs, PSA_ALG_HKDF(PSA_ALG_SHA_256)); |
| psa_set_key_usage_flags(&attrs, PSA_KEY_USAGE_DERIVE); |
| |
| status = psa_import_key(&attrs, secret.data(), secret.size(), &mSecretKeyId); |
| LogPsaError(status); |
| psa_reset_key_attributes(&attrs); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| return InitOperation(mSecretKeyId, salt, info); |
| } |
| |
| CHIP_ERROR PsaKdf::Init(const HkdfKeyHandle & hkdfKey, const ByteSpan & salt, const ByteSpan & info) |
| { |
| return InitOperation(hkdfKey.As<psa_key_id_t>(), salt, info); |
| } |
| |
| CHIP_ERROR PsaKdf::InitOperation(psa_key_id_t hkdfKey, const ByteSpan & salt, const ByteSpan & info) |
| { |
| psa_status_t status = psa_key_derivation_setup(&mOperation, PSA_ALG_HKDF(PSA_ALG_SHA_256)); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| if (salt.size() > 0) |
| { |
| status = psa_key_derivation_input_bytes(&mOperation, PSA_KEY_DERIVATION_INPUT_SALT, salt.data(), salt.size()); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| } |
| |
| status = psa_key_derivation_input_key(&mOperation, PSA_KEY_DERIVATION_INPUT_SECRET, hkdfKey); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| status = psa_key_derivation_input_bytes(&mOperation, PSA_KEY_DERIVATION_INPUT_INFO, info.data(), info.size()); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| void LogPsaError(psa_status_t status) |
| { |
| if (status != PSA_SUCCESS) |
| { |
| ChipLogError(Crypto, "PSA error: %d", static_cast<int>(status)); |
| } |
| } |
| |
| CHIP_ERROR PsaKdf::DeriveBytes(const MutableByteSpan & output) |
| { |
| psa_status_t status = psa_key_derivation_output_bytes(&mOperation, output.data(), output.size()); |
| LogPsaError(status); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR PsaKdf::DeriveKey(const psa_key_attributes_t & attributes, psa_key_id_t & keyId) |
| { |
| psa_status_t status = psa_key_derivation_output_key(&attributes, &mOperation, &keyId); |
| LogPsaError(status); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR HKDF_sha::HKDF_SHA256(const uint8_t * secret, const size_t secret_length, const uint8_t * salt, const size_t salt_length, |
| const uint8_t * info, const size_t info_length, uint8_t * out_buffer, size_t out_length) |
| { |
| VerifyOrReturnError(isBufferNonEmpty(secret, secret_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(isBufferNonEmpty(info, info_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(isBufferNonEmpty(out_buffer, out_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(salt != nullptr || salt_length == 0, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| PsaKdf kdf; |
| |
| ReturnErrorOnFailure(kdf.Init(ByteSpan(secret, secret_length), ByteSpan(salt, salt_length), ByteSpan(info, info_length))); |
| |
| return kdf.DeriveBytes(MutableByteSpan(out_buffer, out_length)); |
| } |
| |
| CHIP_ERROR HMAC_sha::HMAC_SHA256(const uint8_t * key, size_t key_length, const uint8_t * message, size_t message_length, |
| uint8_t * out_buffer, size_t out_length) |
| { |
| VerifyOrReturnError(isBufferNonEmpty(key, key_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(isBufferNonEmpty(message, message_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_buffer != nullptr && out_length == PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| const psa_algorithm_t algorithm = PSA_ALG_HMAC(PSA_ALG_SHA_256); |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_attributes_t attrs = PSA_KEY_ATTRIBUTES_INIT; |
| psa_key_id_t keyId = 0; |
| |
| psa_set_key_type(&attrs, PSA_KEY_TYPE_HMAC); |
| psa_set_key_algorithm(&attrs, algorithm); |
| psa_set_key_usage_flags(&attrs, PSA_KEY_USAGE_SIGN_HASH); |
| |
| status = psa_import_key(&attrs, key, key_length, &keyId); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_mac_compute(keyId, algorithm, message, message_length, out_buffer, out_length, &out_length); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| LogPsaError(status); |
| psa_destroy_key(keyId); |
| psa_reset_key_attributes(&attrs); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR HMAC_sha::HMAC_SHA256(const Hmac128KeyHandle & key, const uint8_t * message, size_t message_length, uint8_t * out_buffer, |
| size_t out_length) |
| { |
| VerifyOrReturnError(isBufferNonEmpty(message, message_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(out_buffer != nullptr && out_length == PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| const psa_algorithm_t algorithm = PSA_ALG_HMAC(PSA_ALG_SHA_256); |
| psa_status_t status = PSA_SUCCESS; |
| |
| status = psa_mac_compute(key.As<psa_key_id_t>(), algorithm, message, message_length, out_buffer, out_length, &out_length); |
| VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR PBKDF2_sha256::pbkdf2_sha256(const uint8_t * pass, size_t pass_length, const uint8_t * salt, size_t salt_length, |
| unsigned int iteration_count, uint32_t key_length, uint8_t * key) |
| { |
| /* |
| TODO: Switch to the following implementation once mbedTLS gets support for PBKDF2 |
| |
| VerifyOrReturnError(isBufferNonEmpty(pass, pass_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(key != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(salt_length >= kSpake2p_Min_PBKDF_Salt_Length && salt_length <= kSpake2p_Max_PBKDF_Salt_Length, |
| CHIP_ERROR_INVALID_ARGUMENT); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT; |
| |
| status = psa_key_derivation_setup(&operation, PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_key_derivation_input_bytes(&operation, PSA_KEY_DERIVATION_INPUT_SALT, salt, salt_length); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_key_derivation_input_integer(&operation, PSA_KEY_DERIVATION_INPUT_COST, iteration_count); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_key_derivation_input_bytes(&operation, PSA_KEY_DERIVATION_INPUT_PASSWORD, pass, pass_length); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_key_derivation_output_bytes(&operation, key, key_length); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| psa_key_derivation_abort(&operation); |
| |
| return error; |
| */ |
| |
| VerifyOrReturnError(isBufferNonEmpty(pass, pass_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(salt != nullptr && salt_length >= kSpake2p_Min_PBKDF_Salt_Length && |
| salt_length <= kSpake2p_Max_PBKDF_Salt_Length, |
| CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(isBufferNonEmpty(key, key_length), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| constexpr size_t kMacLength = PSA_MAC_LENGTH(PSA_KEY_TYPE_HMAC, pass_length * 8, PSA_ALG_HMAC(PSA_ALG_SHA_256)); |
| const psa_algorithm_t algorithm = PSA_ALG_HMAC(PSA_ALG_SHA_256); |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_attributes_t attrs = PSA_KEY_ATTRIBUTES_INIT; |
| psa_key_id_t keyId = 0; |
| |
| psa_set_key_type(&attrs, PSA_KEY_TYPE_HMAC); |
| psa_set_key_algorithm(&attrs, algorithm); |
| psa_set_key_usage_flags(&attrs, PSA_KEY_USAGE_SIGN_HASH); |
| |
| status = psa_import_key(&attrs, pass, pass_length, &keyId); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| for (uint32_t blockNo = 1; key_length != 0; ++blockNo) |
| { |
| uint8_t in[std::max(kMacLength, kSpake2p_Max_PBKDF_Salt_Length + 4)]; |
| size_t inLength = salt_length + 4; |
| uint8_t out[kMacLength]; |
| size_t outLength; |
| uint8_t result[kMacLength] = {}; |
| |
| memcpy(in, salt, salt_length); |
| Encoding::BigEndian::Put32(&in[salt_length], blockNo); |
| |
| for (size_t iteration = 0; iteration < iteration_count; ++iteration) |
| { |
| status = psa_mac_compute(keyId, algorithm, in, inLength, out, sizeof(out), &outLength); |
| VerifyOrExit(status == PSA_SUCCESS && outLength == kMacLength, error = CHIP_ERROR_INTERNAL); |
| |
| for (size_t byteNo = 0; byteNo < kMacLength; ++byteNo) |
| { |
| result[byteNo] ^= out[byteNo]; |
| in[byteNo] = out[byteNo]; |
| } |
| |
| inLength = outLength; |
| } |
| |
| const size_t usedKeyLength = std::min<size_t>(key_length, kMacLength); |
| memcpy(key, result, usedKeyLength); |
| key += usedKeyLength; |
| key_length -= usedKeyLength; |
| } |
| |
| exit: |
| LogPsaError(status); |
| psa_destroy_key(keyId); |
| psa_reset_key_attributes(&attrs); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR add_entropy_source(entropy_source /* fn_source */, void * /* p_source */, size_t /* threshold */) |
| { |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DRBG_get_bytes(uint8_t * out_buffer, const size_t out_length) |
| { |
| VerifyOrReturnError(isBufferNonEmpty(out_buffer, out_length), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| const psa_status_t status = psa_generate_random(out_buffer, out_length); |
| |
| return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL; |
| } |
| |
| static int CryptoRNG(void * ctxt, uint8_t * out_buffer, size_t out_length) |
| { |
| return (chip::Crypto::DRBG_get_bytes(out_buffer, out_length) == CHIP_NO_ERROR) ? 0 : 1; |
| } |
| |
| CHIP_ERROR P256Keypair::ECDSA_sign_msg(const uint8_t * msg, const size_t msg_length, P256ECDSASignature & out_signature) const |
| { |
| VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED); |
| VerifyOrReturnError(isBufferNonEmpty(msg, msg_length), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| size_t outputLen = 0; |
| const PsaP256KeypairContext & context = ToConstPsaContext(mKeypair); |
| |
| status = psa_sign_message(context.key_id, PSA_ALG_ECDSA(PSA_ALG_SHA_256), msg, msg_length, out_signature.Bytes(), |
| out_signature.Capacity(), &outputLen); |
| |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(outputLen == kP256_ECDSA_Signature_Length_Raw, error = CHIP_ERROR_INTERNAL); |
| error = out_signature.SetLength(outputLen); |
| |
| exit: |
| LogPsaError(status); |
| return error; |
| } |
| |
| CHIP_ERROR P256PublicKey::ECDSA_validate_msg_signature(const uint8_t * msg, const size_t msg_length, |
| const P256ECDSASignature & signature) const |
| { |
| VerifyOrReturnError(isBufferNonEmpty(msg, msg_length), CHIP_ERROR_INVALID_ARGUMENT); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_id_t keyId = 0; |
| psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; |
| |
| psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_SECP_R1)); |
| psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256)); |
| psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_MESSAGE); |
| |
| status = psa_import_key(&attributes, ConstBytes(), Length(), &keyId); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_verify_message(keyId, PSA_ALG_ECDSA(PSA_ALG_SHA_256), msg, msg_length, signature.ConstBytes(), signature.Length()); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INVALID_SIGNATURE); |
| |
| exit: |
| LogPsaError(status); |
| psa_destroy_key(keyId); |
| psa_reset_key_attributes(&attributes); |
| |
| return error; |
| } |
| |
| CHIP_ERROR P256PublicKey::ECDSA_validate_hash_signature(const uint8_t * hash, const size_t hash_length, |
| const P256ECDSASignature & signature) const |
| { |
| VerifyOrReturnError(hash != nullptr && hash_length == kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(signature.Length() == kP256_ECDSA_Signature_Length_Raw, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_id_t keyId = 0; |
| psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; |
| |
| psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_SECP_R1)); |
| psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH); |
| psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256)); |
| |
| status = psa_import_key(&attributes, ConstBytes(), Length(), &keyId); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_verify_hash(keyId, PSA_ALG_ECDSA(PSA_ALG_SHA_256), hash, hash_length, signature.ConstBytes(), signature.Length()); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INVALID_SIGNATURE); |
| |
| exit: |
| LogPsaError(status); |
| psa_destroy_key(keyId); |
| psa_reset_key_attributes(&attributes); |
| |
| return error; |
| } |
| |
| CHIP_ERROR P256Keypair::ECDH_derive_secret(const P256PublicKey & remote_public_key, P256ECDHDerivedSecret & out_secret) const |
| { |
| VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| const PsaP256KeypairContext & context = ToConstPsaContext(mKeypair); |
| const size_t outputSize = (out_secret.Length() == 0) ? out_secret.Capacity() : out_secret.Length(); |
| size_t outputLength; |
| |
| status = psa_raw_key_agreement(PSA_ALG_ECDH, context.key_id, remote_public_key.ConstBytes(), remote_public_key.Length(), |
| out_secret.Bytes(), outputSize, &outputLength); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| SuccessOrExit(error = out_secret.SetLength(outputLength)); |
| |
| exit: |
| LogPsaError(status); |
| |
| return error; |
| } |
| |
| void ClearSecretData(uint8_t * buf, size_t len) |
| { |
| mbedtls_platform_zeroize(buf, len); |
| } |
| |
| // THE BELOW IS FROM `third_party/openthread/repo/third_party/mbedtls/repo/library/constant_time.c` since |
| // mbedtls_ct_memcmp is not available on Linux somehow :( |
| int mbedtls_ct_memcmp_copy(const void * a, const void * b, size_t n) |
| { |
| size_t i; |
| volatile const unsigned char * A = (volatile const unsigned char *) a; |
| volatile const unsigned char * B = (volatile const unsigned char *) b; |
| volatile unsigned char diff = 0; |
| |
| for (i = 0; i < n; i++) |
| { |
| /* Read volatile data in order before computing diff. |
| * This avoids IAR compiler warning: |
| * 'the order of volatile accesses is undefined ..' */ |
| unsigned char x = A[i], y = B[i]; |
| diff |= x ^ y; |
| } |
| |
| return ((int) diff); |
| } |
| |
| bool IsBufferContentEqualConstantTime(const void * a, const void * b, size_t n) |
| { |
| return mbedtls_ct_memcmp_copy(a, b, n) == 0; |
| } |
| |
| CHIP_ERROR P256Keypair::Initialize(ECPKeyTarget key_target) |
| { |
| VerifyOrReturnError(!mInitialized, CHIP_ERROR_INCORRECT_STATE); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; |
| PsaP256KeypairContext & context = ToPsaContext(mKeypair); |
| size_t publicKeyLength = 0; |
| |
| // Type based on ECC with the elliptic curve SECP256r1 -> PSA_ECC_FAMILY_SECP_R1 |
| psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)); |
| psa_set_key_bits(&attributes, kP256_PrivateKey_Length * 8); |
| |
| if (key_target == ECPKeyTarget::ECDH) |
| { |
| psa_set_key_algorithm(&attributes, PSA_ALG_ECDH); |
| psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE); |
| } |
| else if (key_target == ECPKeyTarget::ECDSA) |
| { |
| psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256)); |
| psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT | PSA_KEY_USAGE_SIGN_MESSAGE); |
| } |
| else |
| { |
| ExitNow(error = CHIP_ERROR_UNKNOWN_KEY_TYPE); |
| } |
| |
| status = psa_generate_key(&attributes, &context.key_id); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| status = psa_export_public_key(context.key_id, mPublicKey.Bytes(), mPublicKey.Length(), &publicKeyLength); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(publicKeyLength == kP256_PublicKey_Length, error = CHIP_ERROR_INTERNAL); |
| |
| mInitialized = true; |
| |
| exit: |
| LogPsaError(status); |
| psa_reset_key_attributes(&attributes); |
| |
| return error; |
| } |
| |
| CHIP_ERROR P256Keypair::Serialize(P256SerializedKeypair & output) const |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| const PsaP256KeypairContext & context = ToConstPsaContext(mKeypair); |
| const size_t outputSize = output.Length() == 0 ? output.Capacity() : output.Length(); |
| Encoding::BufferWriter bbuf(output.Bytes(), outputSize); |
| uint8_t privateKey[kP256_PrivateKey_Length]; |
| size_t privateKeyLength = 0; |
| |
| status = psa_export_key(context.key_id, privateKey, sizeof(privateKey), &privateKeyLength); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(privateKeyLength == kP256_PrivateKey_Length, error = CHIP_ERROR_INTERNAL); |
| |
| bbuf.Put(mPublicKey, mPublicKey.Length()); |
| bbuf.Put(privateKey, privateKeyLength); |
| VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_BUFFER_TOO_SMALL); |
| error = output.SetLength(bbuf.Needed()); |
| |
| exit: |
| LogPsaError(status); |
| |
| return error; |
| } |
| |
| CHIP_ERROR P256Keypair::Deserialize(P256SerializedKeypair & input) |
| { |
| VerifyOrReturnError(input.Length() == mPublicKey.Length() + kP256_PrivateKey_Length, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| psa_status_t status = PSA_SUCCESS; |
| psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; |
| PsaP256KeypairContext & context = ToPsaContext(mKeypair); |
| Encoding::BufferWriter bbuf(mPublicKey, mPublicKey.Length()); |
| |
| Clear(); |
| |
| psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)); |
| psa_set_key_bits(&attributes, kP256_PrivateKey_Length * 8); |
| psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256)); |
| psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT | PSA_KEY_USAGE_SIGN_MESSAGE); |
| |
| status = psa_import_key(&attributes, input.ConstBytes() + mPublicKey.Length(), kP256_PrivateKey_Length, &context.key_id); |
| VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL); |
| |
| bbuf.Put(input.ConstBytes(), mPublicKey.Length()); |
| VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_NO_MEMORY); |
| |
| mInitialized = true; |
| |
| exit: |
| LogPsaError(status); |
| |
| return error; |
| } |
| |
| void P256Keypair::Clear() |
| { |
| if (mInitialized) |
| { |
| PsaP256KeypairContext & context = ToPsaContext(mKeypair); |
| psa_destroy_key(context.key_id); |
| memset(&context, 0, sizeof(context)); |
| mInitialized = false; |
| } |
| } |
| |
| P256Keypair::~P256Keypair() |
| { |
| Clear(); |
| } |
| |
| CHIP_ERROR P256Keypair::NewCertificateSigningRequest(uint8_t * out_csr, size_t & csr_length) const |
| { |
| VerifyOrReturnError(isBufferNonEmpty(out_csr, csr_length), CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED); |
| |
| MutableByteSpan csr(out_csr, csr_length); |
| ReturnErrorOnFailure(GenerateCertificateSigningRequest(this, csr)); |
| csr_length = csr.size(); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| typedef struct Spake2p_Context |
| { |
| mbedtls_ecp_group curve; |
| mbedtls_ecp_point M; |
| mbedtls_ecp_point N; |
| mbedtls_ecp_point X; |
| mbedtls_ecp_point Y; |
| mbedtls_ecp_point L; |
| mbedtls_ecp_point Z; |
| mbedtls_ecp_point V; |
| |
| mbedtls_mpi w0; |
| mbedtls_mpi w1; |
| mbedtls_mpi xy; |
| mbedtls_mpi tempbn; |
| } Spake2p_Context; |
| |
| static inline Spake2p_Context * to_inner_spake2p_context(Spake2pOpaqueContext * context) |
| { |
| return SafePointerCast<Spake2p_Context *>(context); |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::InitInternal(void) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| memset(context, 0, sizeof(Spake2p_Context)); |
| |
| mbedtls_ecp_group_init(&context->curve); |
| result = mbedtls_ecp_group_load(&context->curve, MBEDTLS_ECP_DP_SECP256R1); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| VerifyOrExit(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256) != nullptr, error = CHIP_ERROR_INTERNAL); |
| |
| mbedtls_ecp_point_init(&context->M); |
| mbedtls_ecp_point_init(&context->N); |
| mbedtls_ecp_point_init(&context->X); |
| mbedtls_ecp_point_init(&context->Y); |
| mbedtls_ecp_point_init(&context->L); |
| mbedtls_ecp_point_init(&context->V); |
| mbedtls_ecp_point_init(&context->Z); |
| M = &context->M; |
| N = &context->N; |
| X = &context->X; |
| Y = &context->Y; |
| L = &context->L; |
| V = &context->V; |
| Z = &context->Z; |
| |
| mbedtls_mpi_init(&context->w0); |
| mbedtls_mpi_init(&context->w1); |
| mbedtls_mpi_init(&context->xy); |
| mbedtls_mpi_init(&context->tempbn); |
| w0 = &context->w0; |
| w1 = &context->w1; |
| xy = &context->xy; |
| tempbn = &context->tempbn; |
| |
| G = &context->curve.G; |
| order = &context->curve.N; |
| |
| return error; |
| |
| exit: |
| _log_mbedTLS_error(result); |
| Clear(); |
| return error; |
| } |
| |
| void Spake2p_P256_SHA256_HKDF_HMAC::Clear() |
| { |
| VerifyOrReturn(state != CHIP_SPAKE2P_STATE::PREINIT); |
| |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| mbedtls_ecp_point_free(&context->M); |
| mbedtls_ecp_point_free(&context->N); |
| mbedtls_ecp_point_free(&context->X); |
| mbedtls_ecp_point_free(&context->Y); |
| mbedtls_ecp_point_free(&context->L); |
| mbedtls_ecp_point_free(&context->Z); |
| mbedtls_ecp_point_free(&context->V); |
| |
| mbedtls_mpi_free(&context->w0); |
| mbedtls_mpi_free(&context->w1); |
| mbedtls_mpi_free(&context->xy); |
| mbedtls_mpi_free(&context->tempbn); |
| |
| mbedtls_ecp_group_free(&context->curve); |
| state = CHIP_SPAKE2P_STATE::PREINIT; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::Mac(const uint8_t * key, size_t key_len, const uint8_t * in, size_t in_len, |
| MutableByteSpan & out_span) |
| { |
| HMAC_sha hmac; |
| VerifyOrReturnError(out_span.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL); |
| ReturnErrorOnFailure(hmac.HMAC_SHA256(key, key_len, in, in_len, out_span.data(), kSHA256_Hash_Length)); |
| out_span = out_span.SubSpan(0, kSHA256_Hash_Length); |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::MacVerify(const uint8_t * key, size_t key_len, const uint8_t * mac, size_t mac_len, |
| const uint8_t * in, size_t in_len) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| uint8_t computed_mac[kSHA256_Hash_Length]; |
| MutableByteSpan computed_mac_span{ computed_mac }; |
| VerifyOrExit(mac_len == kSHA256_Hash_Length, error = CHIP_ERROR_INVALID_ARGUMENT); |
| |
| SuccessOrExit(error = Mac(key, key_len, in, in_len, computed_mac_span)); |
| VerifyOrExit(computed_mac_span.size() == mac_len, error = CHIP_ERROR_INTERNAL); |
| |
| VerifyOrExit(IsBufferContentEqualConstantTime(mac, computed_mac, kSHA256_Hash_Length), error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FELoad(const uint8_t * in, size_t in_len, void * fe) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| result = mbedtls_mpi_read_binary((mbedtls_mpi *) fe, Uint8::to_const_uchar(in), in_len); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fe, (mbedtls_mpi *) fe, (const mbedtls_mpi *) order); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEWrite(const void * fe, uint8_t * out, size_t out_len) |
| { |
| if (mbedtls_mpi_write_binary((const mbedtls_mpi *) fe, Uint8::to_uchar(out), out_len) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEGenerate(void * fe) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| result = mbedtls_ecp_gen_privkey(&context->curve, (mbedtls_mpi *) fe, CryptoRNG, nullptr); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEMul(void * fer, const void * fe1, const void * fe2) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| result = mbedtls_mpi_mul_mpi((mbedtls_mpi *) fer, (const mbedtls_mpi *) fe1, (const mbedtls_mpi *) fe2); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fer, (mbedtls_mpi *) fer, (const mbedtls_mpi *) order); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointLoad(const uint8_t * in, size_t in_len, void * R) |
| { |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| if (mbedtls_ecp_point_read_binary(&context->curve, (mbedtls_ecp_point *) R, Uint8::to_const_uchar(in), in_len) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointWrite(const void * R, uint8_t * out, size_t out_len) |
| { |
| memset(out, 0, out_len); |
| |
| size_t mbedtls_out_len = out_len; |
| |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| if (mbedtls_ecp_point_write_binary(&context->curve, (const mbedtls_ecp_point *) R, MBEDTLS_ECP_PF_UNCOMPRESSED, |
| &mbedtls_out_len, Uint8::to_uchar(out), out_len) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointMul(void * R, const void * P1, const void * fe1) |
| { |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| if (mbedtls_ecp_mul(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1, |
| CryptoRNG, nullptr) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointAddMul(void * R, const void * P1, const void * fe1, const void * P2, |
| const void * fe2) |
| { |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| if (mbedtls_ecp_muladd(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1, |
| (const mbedtls_mpi *) fe2, (const mbedtls_ecp_point *) P2) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointInvert(void * R) |
| { |
| mbedtls_ecp_point * Rp = (mbedtls_ecp_point *) R; |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| if (mbedtls_mpi_sub_mpi(&Rp->CHIP_CRYPTO_PAL_PRIVATE(Y), &context->curve.P, &Rp->CHIP_CRYPTO_PAL_PRIVATE(Y)) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointCofactorMul(void * R) |
| { |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::ComputeL(uint8_t * Lout, size_t * L_len, const uint8_t * w1in, size_t w1in_len) |
| { |
| CHIP_ERROR error = CHIP_NO_ERROR; |
| int result = 0; |
| |
| mbedtls_ecp_group curve; |
| mbedtls_mpi w1_bn; |
| mbedtls_ecp_point Ltemp; |
| |
| mbedtls_ecp_group_init(&curve); |
| mbedtls_mpi_init(&w1_bn); |
| mbedtls_ecp_point_init(&Ltemp); |
| |
| result = mbedtls_ecp_group_load(&curve, MBEDTLS_ECP_DP_SECP256R1); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = mbedtls_mpi_read_binary(&w1_bn, Uint8::to_const_uchar(w1in), w1in_len); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = mbedtls_mpi_mod_mpi(&w1_bn, &w1_bn, &curve.N); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| result = mbedtls_ecp_mul(&curve, &Ltemp, &w1_bn, &curve.G, CryptoRNG, nullptr); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| memset(Lout, 0, *L_len); |
| |
| result = mbedtls_ecp_point_write_binary(&curve, &Ltemp, MBEDTLS_ECP_PF_UNCOMPRESSED, L_len, Uint8::to_uchar(Lout), *L_len); |
| VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); |
| |
| exit: |
| _log_mbedTLS_error(result); |
| mbedtls_ecp_point_free(&Ltemp); |
| mbedtls_mpi_free(&w1_bn); |
| mbedtls_ecp_group_free(&curve); |
| |
| return error; |
| } |
| |
| CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointIsValid(void * R) |
| { |
| Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); |
| |
| if (mbedtls_ecp_check_pubkey(&context->curve, (mbedtls_ecp_point *) R) != 0) |
| { |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| } // namespace Crypto |
| } // namespace chip |