blob: ee996282edab680dd0e6c502e7edde037b8e8765 [file] [log] [blame]
/*
*
* Copyright (c) 2020-2022 Project CHIP Authors
* Copyright (c) 2019-2020 Google LLC.
* Copyright (c) 2018 Nest Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Contains non-inline method definitions for the
* GenericConfigurationManagerImpl<> template.
*/
#ifndef GENERIC_CONFIGURATION_MANAGER_IMPL_CPP
#define GENERIC_CONFIGURATION_MANAGER_IMPL_CPP
#include <ble/CHIPBleServiceData.h>
#include <crypto/CHIPCryptoPAL.h>
#include <crypto/RandUtils.h>
#include <inttypes.h>
#include <lib/core/CHIPConfig.h>
#include <lib/support/Base64.h>
#include <lib/support/BytesToHex.h>
#include <lib/support/CHIPMem.h>
#include <lib/support/CodeUtils.h>
#include <lib/support/SafeInt.h>
#include <lib/support/ScopedBuffer.h>
#include <platform/BuildTime.h>
#include <platform/CommissionableDataProvider.h>
#include <platform/DeviceControlServer.h>
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <platform/internal/GenericConfigurationManagerImpl.h>
#include <platform/internal/GenericDeviceInstanceInfoProvider.ipp>
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
#include <platform/ThreadStackManager.h>
#endif
// TODO : may be we can make it configurable
#define BLE_ADVERTISEMENT_VERSION 0
namespace chip {
namespace DeviceLayer {
namespace Internal {
static Optional<System::Clock::Seconds32> sFirmwareBuildChipEpochTime;
#if CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER
// Legacy version of CommissionableDataProvider used for a grace period
// to a transition where all ConfigurationManager customers move to
// provide their own impl of CommissionableDataProvider interface.
template <class ConfigClass>
class LegacyTemporaryCommissionableDataProvider : public CommissionableDataProvider
{
public:
// GenericConfigurationManagerImpl will own a LegacyTemporaryCommissionableDataProvider which
// *refers back to that GenericConfigurationManagerImpl*, due to how CRTP-based
// storage APIs are defined. This is a bit unclean, but only applicable to the
// transition path when `CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER` is true.
// This circular dependency is NOT needed by CommissionableDataProvider, but required
// to keep legacy code running.
LegacyTemporaryCommissionableDataProvider(GenericConfigurationManagerImpl<ConfigClass> & configManager) :
mGenericConfigManager(configManager)
{}
CHIP_ERROR GetSetupDiscriminator(uint16_t & setupDiscriminator) override;
CHIP_ERROR SetSetupDiscriminator(uint16_t setupDiscriminator) override;
CHIP_ERROR GetSpake2pIterationCount(uint32_t & iterationCount) override;
CHIP_ERROR GetSpake2pSalt(MutableByteSpan & saltBuf) override;
CHIP_ERROR GetSpake2pVerifier(MutableByteSpan & verifierBuf, size_t & outVerifierLen) override;
CHIP_ERROR GetSetupPasscode(uint32_t & setupPasscode) override;
CHIP_ERROR SetSetupPasscode(uint32_t setupPasscode) override;
private:
GenericConfigurationManagerImpl<ConfigClass> & mGenericConfigManager;
};
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSetupPasscode(uint32_t & setupPasscode)
{
CHIP_ERROR err;
err = mGenericConfigManager.ReadConfigValue(ConfigClass::kConfigKey_SetupPinCode, setupPasscode);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
setupPasscode = CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE;
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE
SuccessOrExit(err);
exit:
return err;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::SetSetupPasscode(uint32_t setupPasscode)
{
return mGenericConfigManager.WriteConfigValue(ConfigClass::kConfigKey_SetupPinCode, setupPasscode);
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSetupDiscriminator(uint16_t & setupDiscriminator)
{
CHIP_ERROR err;
uint32_t val;
err = mGenericConfigManager.ReadConfigValue(ConfigClass::kConfigKey_SetupDiscriminator, val);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
val = CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR;
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR
SuccessOrExit(err);
setupDiscriminator = static_cast<uint16_t>(val);
exit:
return err;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::SetSetupDiscriminator(uint16_t setupDiscriminator)
{
return mGenericConfigManager.WriteConfigValue(ConfigClass::kConfigKey_SetupDiscriminator,
static_cast<uint32_t>(setupDiscriminator));
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSpake2pIterationCount(uint32_t & iterationCount)
{
CHIP_ERROR err = mGenericConfigManager.ReadConfigValue(ConfigClass::kConfigKey_Spake2pIterationCount, iterationCount);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT) && CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
iterationCount = CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT;
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT) && CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT
SuccessOrExit(err);
exit:
return err;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSpake2pSalt(MutableByteSpan & saltBuf)
{
static constexpr size_t kSpake2pSalt_MaxBase64Len = BASE64_ENCODED_LEN(chip::Crypto::kSpake2p_Max_PBKDF_Salt_Length) + 1;
CHIP_ERROR err = CHIP_NO_ERROR;
char saltB64[kSpake2pSalt_MaxBase64Len] = { 0 };
size_t saltB64Len = 0;
err = mGenericConfigManager.ReadConfigValueStr(ConfigClass::kConfigKey_Spake2pSalt, saltB64, sizeof(saltB64), saltB64Len);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT)
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
saltB64Len = strlen(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT);
ReturnErrorCodeIf(saltB64Len > sizeof(saltB64), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(saltB64, CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT, saltB64Len);
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT)
ReturnErrorOnFailure(err);
VerifyOrReturnError(chip::CanCastTo<uint32_t>(saltB64Len), CHIP_ERROR_INTERNAL);
size_t saltLen = chip::Base64Decode32(saltB64, static_cast<uint32_t>(saltB64Len), reinterpret_cast<uint8_t *>(saltB64));
ReturnErrorCodeIf(saltLen > saltBuf.size(), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(saltBuf.data(), saltB64, saltLen);
saltBuf.reduce_size(saltLen);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSpake2pVerifier(MutableByteSpan & verifierBuf,
size_t & verifierLen)
{
static constexpr size_t kSpake2pSerializedVerifier_MaxBase64Len =
BASE64_ENCODED_LEN(chip::Crypto::kSpake2p_VerifierSerialized_Length) + 1;
CHIP_ERROR err = CHIP_NO_ERROR;
char verifierB64[kSpake2pSerializedVerifier_MaxBase64Len] = { 0 };
size_t verifierB64Len = 0;
err = mGenericConfigManager.ReadConfigValueStr(ConfigClass::kConfigKey_Spake2pVerifier, verifierB64, sizeof(verifierB64),
verifierB64Len);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER)
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
verifierB64Len = strlen(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER);
ReturnErrorCodeIf(verifierB64Len > sizeof(verifierB64), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(verifierB64, CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER, verifierB64Len);
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER)
ReturnErrorOnFailure(err);
VerifyOrReturnError(chip::CanCastTo<uint32_t>(verifierB64Len), CHIP_ERROR_INTERNAL);
verifierLen =
chip::Base64Decode32(verifierB64, static_cast<uint32_t>(verifierB64Len), reinterpret_cast<uint8_t *>(verifierB64));
ReturnErrorCodeIf(verifierLen > verifierBuf.size(), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(verifierBuf.data(), verifierB64, verifierLen);
verifierBuf.reduce_size(verifierLen);
return err;
}
#endif // CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::Init()
{
CHIP_ERROR err = CHIP_NO_ERROR;
#if CHIP_ENABLE_ROTATING_DEVICE_ID && defined(CHIP_DEVICE_CONFIG_ROTATING_DEVICE_ID_UNIQUE_ID)
mLifetimePersistedCounter.Init(CHIP_CONFIG_LIFETIIME_PERSISTED_COUNTER_KEY);
#endif
static GenericDeviceInstanceInfoProvider<ConfigClass> sGenericDeviceInstanceInfoProvider(*this);
SetDeviceInstanceInfoProvider(&sGenericDeviceInstanceInfoProvider);
#if CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER
// Using a temporary singleton here because the overall GenericConfigurationManagerImpl is
// a singleton. This is TEMPORARY code to set the table for clients to set their own
// implementation properly, without loss of functionality for legacy in the meantime.
static LegacyTemporaryCommissionableDataProvider<ConfigClass> sLegacyTemporaryCommissionableDataProvider(*this);
SetCommissionableDataProvider(&sLegacyTemporaryCommissionableDataProvider);
#endif
char uniqueId[kMaxUniqueIDLength + 1];
// Generate Unique ID only if it is not present in the storage.
if (GetUniqueId(uniqueId, sizeof(uniqueId)) != CHIP_NO_ERROR)
{
ReturnErrorOnFailure(GenerateUniqueId(uniqueId, sizeof(uniqueId)));
ReturnErrorOnFailure(StoreUniqueId(uniqueId, strlen(uniqueId)));
}
return err;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSoftwareVersion(uint32_t & softwareVer)
{
softwareVer = static_cast<uint32_t>(CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
inline CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreSoftwareVersion(uint32_t softwareVer)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetFirmwareBuildChipEpochTime(System::Clock::Seconds32 & chipEpochTime)
{
// If the setter was called and we have a value in memory, return this.
if (sFirmwareBuildChipEpochTime.HasValue())
{
chipEpochTime = sFirmwareBuildChipEpochTime.Value();
return CHIP_NO_ERROR;
}
// Else, attempt to read the hard-coded values.
VerifyOrReturnError(!BUILD_DATE_IS_BAD(CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_DATE), CHIP_ERROR_INTERNAL);
VerifyOrReturnError(!BUILD_TIME_IS_BAD(CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_TIME), CHIP_ERROR_INTERNAL);
const char * date = CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_DATE;
const char * time = CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_TIME;
uint32_t seconds;
auto good = CalendarToChipEpochTime(COMPUTE_BUILD_YEAR(date), COMPUTE_BUILD_MONTH(date), COMPUTE_BUILD_DAY(date),
COMPUTE_BUILD_HOUR(time), COMPUTE_BUILD_MIN(time), COMPUTE_BUILD_SEC(time), seconds);
if (good)
{
chipEpochTime = chip::System::Clock::Seconds32(seconds);
}
return good ? CHIP_NO_ERROR : CHIP_ERROR_INVALID_ARGUMENT;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::SetFirmwareBuildChipEpochTime(System::Clock::Seconds32 chipEpochTime)
{
// The setter is sticky in that once the hard-coded time is overriden, it
// will be for the lifetime of the configuration manager singleton.
// However, this is not persistent across boots.
//
// Implementations that can't use the hard-coded time for whatever reason
// should set this at each init.
sFirmwareBuildChipEpochTime.SetValue(chipEpochTime);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetDeviceTypeId(uint32_t & deviceType)
{
deviceType = static_cast<uint32_t>(CHIP_DEVICE_CONFIG_DEVICE_TYPE);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetInitialPairingHint(uint16_t & pairingHint)
{
pairingHint = static_cast<uint16_t>(CHIP_DEVICE_CONFIG_PAIRING_INITIAL_HINT);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSecondaryPairingHint(uint16_t & pairingHint)
{
pairingHint = static_cast<uint16_t>(CHIP_DEVICE_CONFIG_PAIRING_SECONDARY_HINT);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSoftwareVersionString(char * buf, size_t bufSize)
{
ReturnErrorCodeIf(bufSize < sizeof(CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION_STRING), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION_STRING);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreSerialNumber(const char * serialNum, size_t serialNumLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_SerialNum, serialNum, serialNumLen);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetPrimaryWiFiMACAddress(uint8_t * buf)
{
return CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetPrimaryMACAddress(MutableByteSpan buf)
{
if (buf.size() != ConfigurationManager::kPrimaryMACAddressLength)
return CHIP_ERROR_INVALID_ARGUMENT;
memset(buf.data(), 0, buf.size());
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
if (chip::DeviceLayer::ThreadStackMgr().GetPrimary802154MACAddress(buf.data()) == CHIP_NO_ERROR)
{
ChipLogDetail(DeviceLayer, "Using Thread extended MAC for hostname.");
return CHIP_NO_ERROR;
}
#endif
if (chip::DeviceLayer::ConfigurationMgr().GetPrimaryWiFiMACAddress(buf.data()) == CHIP_NO_ERROR)
{
ChipLogDetail(DeviceLayer, "Using wifi MAC for hostname");
return CHIP_NO_ERROR;
}
return CHIP_ERROR_NOT_FOUND;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetPrimary802154MACAddress(uint8_t * buf)
{
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
return ThreadStackManager().GetPrimary802154MACAddress(buf);
#else
return CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND;
#endif // CHIP_DEVICE_CONFIG_ENABLE_THREAD
}
template <class ConfigClass>
inline CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreHardwareVersion(uint16_t hardwareVer)
{
return WriteConfigValue(ConfigClass::kConfigKey_HardwareVersion, static_cast<uint32_t>(hardwareVer));
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreManufacturingDate(const char * mfgDate, size_t mfgDateLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_ManufacturingDate, mfgDate, mfgDateLen);
}
template <class ConfigClass>
void GenericConfigurationManagerImpl<ConfigClass>::InitiateFactoryReset()
{}
template <class ImplClass>
void GenericConfigurationManagerImpl<ImplClass>::NotifyOfAdvertisementStart()
{
#if CHIP_ENABLE_ROTATING_DEVICE_ID && defined(CHIP_DEVICE_CONFIG_ROTATING_DEVICE_ID_UNIQUE_ID)
// Increment life time counter to protect against long-term tracking of rotating device ID.
IncrementLifetimeCounter();
// Inheriting classes should call this method so the lifetime counter is updated if necessary.
#endif
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetRegulatoryLocation(uint8_t & location)
{
uint32_t value;
if (CHIP_NO_ERROR != ReadConfigValue(ConfigClass::kConfigKey_RegulatoryLocation, value))
{
ReturnErrorOnFailure(GetLocationCapability(location));
if (CHIP_NO_ERROR != StoreRegulatoryLocation(location))
{
ChipLogError(DeviceLayer, "Failed to store RegulatoryLocation");
}
}
else
{
location = static_cast<uint8_t>(value);
}
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreRegulatoryLocation(uint8_t location)
{
uint32_t value = location;
return WriteConfigValue(ConfigClass::kConfigKey_RegulatoryLocation, value);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetCountryCode(char * buf, size_t bufSize, size_t & codeLen)
{
return ReadConfigValueStr(ConfigClass::kConfigKey_CountryCode, buf, bufSize, codeLen);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreCountryCode(const char * code, size_t codeLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_CountryCode, code, codeLen);
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::GetRebootCount(uint32_t & rebootCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::StoreRebootCount(uint32_t rebootCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::StoreTotalOperationalHours(uint32_t totalOperationalHours)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::GetBootReason(uint32_t & bootReason)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::StoreBootReason(uint32_t bootReason)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetUniqueId(char * buf, size_t bufSize)
{
CHIP_ERROR err;
size_t uniqueIdLen = 0; // without counting null-terminator
err = ReadConfigValueStr(ConfigClass::kConfigKey_UniqueId, buf, bufSize, uniqueIdLen);
ReturnErrorOnFailure(err);
ReturnErrorCodeIf(uniqueIdLen >= bufSize, CHIP_ERROR_BUFFER_TOO_SMALL);
ReturnErrorCodeIf(buf[uniqueIdLen] != 0, CHIP_ERROR_INVALID_STRING_LENGTH);
return err;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreUniqueId(const char * uniqueId, size_t uniqueIdLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_UniqueId, uniqueId, uniqueIdLen);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GenerateUniqueId(char * buf, size_t bufSize)
{
uint64_t randomUniqueId = Crypto::GetRandU64();
return Encoding::BytesToUppercaseHexString(reinterpret_cast<uint8_t *>(&randomUniqueId), sizeof(uint64_t), buf, bufSize);
}
#if CHIP_ENABLE_ROTATING_DEVICE_ID && defined(CHIP_DEVICE_CONFIG_ROTATING_DEVICE_ID_UNIQUE_ID)
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetLifetimeCounter(uint16_t & lifetimeCounter)
{
lifetimeCounter = static_cast<uint16_t>(mLifetimePersistedCounter.GetValue());
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::IncrementLifetimeCounter()
{
return mLifetimePersistedCounter.Advance();
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::SetRotatingDeviceIdUniqueId(const ByteSpan & uniqueIdSpan)
{
ReturnErrorCodeIf(uniqueIdSpan.size() != kRotatingDeviceIDUniqueIDLength, CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(mRotatingDeviceIdUniqueId, uniqueIdSpan.data(), kRotatingDeviceIDUniqueIDLength);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetRotatingDeviceIdUniqueId(MutableByteSpan & uniqueIdSpan)
{
ReturnErrorCodeIf(sizeof(mRotatingDeviceIdUniqueId) > uniqueIdSpan.size(), CHIP_ERROR_BUFFER_TOO_SMALL);
ReturnErrorCodeIf(uniqueIdSpan.size() != kRotatingDeviceIDUniqueIDLength, CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(uniqueIdSpan.data(), mRotatingDeviceIdUniqueId, sizeof(mRotatingDeviceIdUniqueId));
uniqueIdSpan.reduce_size(sizeof(mRotatingDeviceIdUniqueId));
return CHIP_NO_ERROR;
}
#endif // CHIP_ENABLE_ROTATING_DEVICE_ID
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetFailSafeArmed(bool & val)
{
return ReadConfigValue(ConfigClass::kConfigKey_FailSafeArmed, val);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::SetFailSafeArmed(bool val)
{
return WriteConfigValue(ConfigClass::kConfigKey_FailSafeArmed, val);
}
template <class ConfigClass>
CHIP_ERROR
GenericConfigurationManagerImpl<ConfigClass>::GetBLEDeviceIdentificationInfo(Ble::ChipBLEDeviceIdentificationInfo & deviceIdInfo)
{
CHIP_ERROR err;
uint16_t id;
uint16_t discriminator;
deviceIdInfo.Init();
err = GetDeviceInstanceInfoProvider()->GetVendorId(id);
SuccessOrExit(err);
deviceIdInfo.SetVendorId(id);
err = GetDeviceInstanceInfoProvider()->GetProductId(id);
SuccessOrExit(err);
deviceIdInfo.SetProductId(id);
err = GetCommissionableDataProvider()->GetSetupDiscriminator(discriminator);
SuccessOrExit(err);
deviceIdInfo.SetDeviceDiscriminator(discriminator);
deviceIdInfo.SetAdvertisementVersion(BLE_ADVERTISEMENT_VERSION);
#if CHIP_ENABLE_ADDITIONAL_DATA_ADVERTISING
deviceIdInfo.SetAdditionalDataFlag(true);
#endif
exit:
return err;
}
template <class ConfigClass>
bool GenericConfigurationManagerImpl<ConfigClass>::IsFullyProvisioned()
{
return
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI_STATION
ConnectivityMgr().IsWiFiStationProvisioned() &&
#endif
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
ConnectivityMgr().IsThreadProvisioned() &&
#endif
true;
}
template <class ConfigClass>
bool GenericConfigurationManagerImpl<ConfigClass>::IsCommissionableDeviceTypeEnabled()
{
#if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONABLE_DEVICE_TYPE
return true;
#else
return false;
#endif
}
template <class ConfigClass>
bool GenericConfigurationManagerImpl<ConfigClass>::IsCommissionableDeviceNameEnabled()
{
return CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONABLE_DEVICE_NAME == 1;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetCommissionableDeviceName(char * buf, size_t bufSize)
{
ReturnErrorCodeIf(bufSize < sizeof(CHIP_DEVICE_CONFIG_DEVICE_NAME), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_DEVICE_NAME);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetInitialPairingInstruction(char * buf, size_t bufSize)
{
ReturnErrorCodeIf(bufSize < sizeof(CHIP_DEVICE_CONFIG_PAIRING_INITIAL_INSTRUCTION), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_PAIRING_INITIAL_INSTRUCTION);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSecondaryPairingInstruction(char * buf, size_t bufSize)
{
ReturnErrorCodeIf(bufSize < sizeof(CHIP_DEVICE_CONFIG_PAIRING_SECONDARY_INSTRUCTION), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_PAIRING_SECONDARY_INSTRUCTION);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::RunUnitTests()
{
#if !defined(NDEBUG)
ChipLogProgress(DeviceLayer, "Running configuration unit test");
RunConfigUnitTest();
#endif
return CHIP_NO_ERROR;
}
template <class ConfigClass>
void GenericConfigurationManagerImpl<ConfigClass>::LogDeviceConfig()
{
CHIP_ERROR err;
ChipLogProgress(DeviceLayer, "Device Configuration:");
DeviceInstanceInfoProvider * deviceInstanceInfoProvider = GetDeviceInstanceInfoProvider();
{
char serialNum[ConfigurationManager::kMaxSerialNumberLength + 1];
err = deviceInstanceInfoProvider->GetSerialNumber(serialNum, sizeof(serialNum));
ChipLogProgress(DeviceLayer, " Serial Number: %s", (err == CHIP_NO_ERROR) ? serialNum : "(not set)");
}
{
uint16_t vendorId;
if (deviceInstanceInfoProvider->GetVendorId(vendorId) != CHIP_NO_ERROR)
{
vendorId = 0;
}
ChipLogProgress(DeviceLayer, " Vendor Id: %u (0x%X)", vendorId, vendorId);
}
{
uint16_t productId;
if (deviceInstanceInfoProvider->GetProductId(productId) != CHIP_NO_ERROR)
{
productId = 0;
}
ChipLogProgress(DeviceLayer, " Product Id: %u (0x%X)", productId, productId);
}
{
uint16_t hardwareVer;
if (deviceInstanceInfoProvider->GetHardwareVersion(hardwareVer) != CHIP_NO_ERROR)
{
hardwareVer = 0;
}
ChipLogProgress(DeviceLayer, " Hardware Version: %u", hardwareVer);
}
CommissionableDataProvider * cdp = GetCommissionableDataProvider();
{
uint32_t setupPasscode;
if ((cdp == nullptr) || (cdp->GetSetupPasscode(setupPasscode) != CHIP_NO_ERROR))
{
setupPasscode = 0;
}
ChipLogProgress(DeviceLayer, " Setup Pin Code (0 for UNKNOWN/ERROR): %" PRIu32 "", setupPasscode);
}
{
uint16_t setupDiscriminator;
if ((cdp == nullptr) || (cdp->GetSetupDiscriminator(setupDiscriminator) != CHIP_NO_ERROR))
{
setupDiscriminator = 0xFFFF;
}
ChipLogProgress(DeviceLayer, " Setup Discriminator (0xFFFF for UNKNOWN/ERROR): %u (0x%X)", setupDiscriminator,
setupDiscriminator);
}
{
uint16_t year;
uint8_t month, dayOfMonth;
err = deviceInstanceInfoProvider->GetManufacturingDate(year, month, dayOfMonth);
if (err == CHIP_NO_ERROR)
{
ChipLogProgress(DeviceLayer, " Manufacturing Date: %04u-%02u-%02u", year, month, dayOfMonth);
}
else
{
ChipLogProgress(DeviceLayer, " Manufacturing Date: (not set)");
}
}
{
uint32_t deviceType;
if (GetDeviceTypeId(deviceType) != CHIP_NO_ERROR)
{
deviceType = 0;
}
ChipLogProgress(DeviceLayer, " Device Type: %" PRIu32 " (0x%" PRIX32 ")", deviceType, deviceType);
}
}
} // namespace Internal
} // namespace DeviceLayer
} // namespace chip
#endif // GENERIC_CONFIGURATION_MANAGER_IMPL_CPP