blob: 88005bda31a6d4c8d546e14c0682ece1cbfe4031 [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* Copyright (c) 2018 Nest Labs, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides the implementation of the Device Layer ConfigurationManager object
* for the ESP32.
*/
/* this file behaves like a config.h, comes first */
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <lib/core/CHIPKeyIds.h>
#include <lib/support/CodeUtils.h>
#include <platform/ConfigurationManager.h>
#include <platform/ESP32/ESP32Config.h>
#include <platform/internal/GenericConfigurationManagerImpl.ipp>
#include "esp_ota_ops.h"
#include "esp_wifi.h"
#include "nvs.h"
#include "nvs_flash.h"
namespace chip {
namespace DeviceLayer {
using namespace ::chip::DeviceLayer::Internal;
namespace {
enum
{
kChipProduct_Connect = 0x0016
};
} // unnamed namespace
// TODO: Define a Singleton instance of CHIP Group Key Store here (#1266)
ConfigurationManagerImpl & ConfigurationManagerImpl::GetDefaultInstance()
{
static ConfigurationManagerImpl sInstance;
return sInstance;
}
CHIP_ERROR ConfigurationManagerImpl::Init()
{
CHIP_ERROR err;
uint32_t rebootCount;
#ifdef CONFIG_NVS_ENCRYPTION
nvs_sec_cfg_t cfg = {};
esp_err_t esp_err = ESP_FAIL;
const esp_partition_t * key_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_NVS_KEYS, NULL);
if (key_part == NULL)
{
ChipLogError(DeviceLayer,
"CONFIG_NVS_ENCRYPTION is enabled, but no partition with subtype nvs_keys found in the partition table.");
SuccessOrExit(MapConfigError(esp_err));
}
esp_err = nvs_flash_read_security_cfg(key_part, &cfg);
if (esp_err == ESP_ERR_NVS_KEYS_NOT_INITIALIZED)
{
ChipLogError(DeviceLayer, "NVS key partition empty");
SuccessOrExit(MapConfigError(esp_err));
}
else if (esp_err != ESP_OK)
{
ChipLogError(DeviceLayer, "Failed to read NVS security cfg, err:0x%02x", esp_err);
SuccessOrExit(MapConfigError(esp_err));
}
// Securely initialize the nvs partitions,
// nvs_flash_secure_init_partition() will initialize the partition only if it is not already initialized.
esp_err = nvs_flash_secure_init_partition(CHIP_DEVICE_CONFIG_CHIP_FACTORY_NAMESPACE_PARTITION, &cfg);
if (esp_err == ESP_ERR_NVS_NO_FREE_PAGES || esp_err == ESP_ERR_NVS_NEW_VERSION_FOUND)
{
ChipLogError(DeviceLayer, "Failed to initialize NVS partition %s err:0x%02x",
CHIP_DEVICE_CONFIG_CHIP_FACTORY_NAMESPACE_PARTITION, esp_err);
SuccessOrExit(MapConfigError(esp_err));
}
esp_err = nvs_flash_secure_init_partition(CHIP_DEVICE_CONFIG_CHIP_CONFIG_NAMESPACE_PARTITION, &cfg);
if (esp_err == ESP_ERR_NVS_NO_FREE_PAGES || esp_err == ESP_ERR_NVS_NEW_VERSION_FOUND)
{
ChipLogError(DeviceLayer, "Failed to initialize NVS partition %s err:0x%02x",
CHIP_DEVICE_CONFIG_CHIP_CONFIG_NAMESPACE_PARTITION, esp_err);
SuccessOrExit(MapConfigError(esp_err));
}
esp_err = nvs_flash_secure_init_partition(CHIP_DEVICE_CONFIG_CHIP_COUNTERS_NAMESPACE_PARTITION, &cfg);
if (esp_err == ESP_ERR_NVS_NO_FREE_PAGES || esp_err == ESP_ERR_NVS_NEW_VERSION_FOUND)
{
ChipLogError(DeviceLayer, "Failed to initialize NVS partition %s err:0x%02x",
CHIP_DEVICE_CONFIG_CHIP_COUNTERS_NAMESPACE_PARTITION, esp_err);
SuccessOrExit(MapConfigError(esp_err));
}
#else
// Initialize the nvs partitions,
// nvs_flash_init_partition() will initialize the partition only if it is not already initialized.
esp_err_t esp_err = nvs_flash_init_partition(CHIP_DEVICE_CONFIG_CHIP_FACTORY_NAMESPACE_PARTITION);
SuccessOrExit(MapConfigError(esp_err));
esp_err = nvs_flash_init_partition(CHIP_DEVICE_CONFIG_CHIP_CONFIG_NAMESPACE_PARTITION);
SuccessOrExit(MapConfigError(esp_err));
esp_err = nvs_flash_init_partition(CHIP_DEVICE_CONFIG_CHIP_COUNTERS_NAMESPACE_PARTITION);
SuccessOrExit(MapConfigError(esp_err));
esp_err = nvs_flash_init_partition(CHIP_DEVICE_CONFIG_CHIP_KVS_NAMESPACE_PARTITION);
SuccessOrExit(MapConfigError(esp_err));
#endif
// Force initialization of NVS namespaces if they doesn't already exist.
err = ESP32Config::EnsureNamespace(ESP32Config::kConfigNamespace_ChipFactory);
SuccessOrExit(err);
err = ESP32Config::EnsureNamespace(ESP32Config::kConfigNamespace_ChipConfig);
SuccessOrExit(err);
err = ESP32Config::EnsureNamespace(ESP32Config::kConfigNamespace_ChipCounters);
SuccessOrExit(err);
if (ESP32Config::ConfigValueExists(ESP32Config::kCounterKey_RebootCount))
{
err = GetRebootCount(rebootCount);
SuccessOrExit(err);
err = StoreRebootCount(rebootCount + 1);
SuccessOrExit(err);
}
else
{
// The first boot after factory reset of the Node.
err = StoreRebootCount(1);
SuccessOrExit(err);
}
if (!ESP32Config::ConfigValueExists(ESP32Config::kCounterKey_TotalOperationalHours))
{
err = StoreTotalOperationalHours(0);
SuccessOrExit(err);
}
// Initialize the generic implementation base class.
err = Internal::GenericConfigurationManagerImpl<ESP32Config>::Init();
SuccessOrExit(err);
// TODO: Initialize the global GroupKeyStore object here (#1266)
err = CHIP_NO_ERROR;
exit:
return err;
}
CHIP_ERROR ConfigurationManagerImpl::GetRebootCount(uint32_t & rebootCount)
{
return ReadConfigValue(ESP32Config::kCounterKey_RebootCount, rebootCount);
}
CHIP_ERROR ConfigurationManagerImpl::StoreRebootCount(uint32_t rebootCount)
{
return WriteConfigValue(ESP32Config::kCounterKey_RebootCount, rebootCount);
}
CHIP_ERROR ConfigurationManagerImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
return ReadConfigValue(ESP32Config::kCounterKey_TotalOperationalHours, totalOperationalHours);
}
CHIP_ERROR ConfigurationManagerImpl::StoreTotalOperationalHours(uint32_t totalOperationalHours)
{
return WriteConfigValue(ESP32Config::kCounterKey_TotalOperationalHours, totalOperationalHours);
}
CHIP_ERROR ConfigurationManagerImpl::GetSoftwareVersionString(char * buf, size_t bufSize)
{
memset(buf, 0, bufSize);
const esp_app_desc_t * appDescription = esp_ota_get_app_description();
ReturnErrorCodeIf(bufSize < sizeof(appDescription->version), CHIP_ERROR_BUFFER_TOO_SMALL);
ReturnErrorCodeIf(sizeof(appDescription->version) > ConfigurationManager::kMaxSoftwareVersionStringLength, CHIP_ERROR_INTERNAL);
strcpy(buf, appDescription->version);
return CHIP_NO_ERROR;
}
CHIP_ERROR ConfigurationManagerImpl::GetSoftwareVersion(uint32_t & softwareVer)
{
softwareVer = CHIP_CONFIG_SOFTWARE_VERSION_NUMBER;
return CHIP_NO_ERROR;
}
CHIP_ERROR ConfigurationManagerImpl::GetLocationCapability(uint8_t & location)
{
#if CONFIG_ENABLE_ESP32_LOCATIONCAPABILITY
uint32_t value = 0;
CHIP_ERROR err = ReadConfigValue(ESP32Config::kConfigKey_LocationCapability, value);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(value <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
location = static_cast<uint8_t>(value);
}
return err;
#else
location = static_cast<uint8_t>(chip::app::Clusters::GeneralCommissioning::RegulatoryLocationType::kIndoor);
return CHIP_NO_ERROR;
#endif
}
CHIP_ERROR ConfigurationManagerImpl::GetPrimaryWiFiMACAddress(uint8_t * buf)
{
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
wifi_mode_t mode;
esp_wifi_get_mode(&mode);
if ((mode == WIFI_MODE_AP) || (mode == WIFI_MODE_APSTA))
return MapConfigError(esp_wifi_get_mac(WIFI_IF_AP, buf));
else
return MapConfigError(esp_wifi_get_mac(WIFI_IF_STA, buf));
#else
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
#endif
}
CHIP_ERROR ConfigurationManagerImpl::MapConfigError(esp_err_t error)
{
switch (error)
{
case ESP_OK:
return CHIP_NO_ERROR;
case ESP_ERR_WIFI_NOT_INIT:
return CHIP_ERROR_WELL_UNINITIALIZED;
case ESP_ERR_INVALID_ARG:
case ESP_ERR_WIFI_IF:
return CHIP_ERROR_INVALID_ARGUMENT;
default:
return CHIP_ERROR_INTERNAL;
}
}
bool ConfigurationManagerImpl::CanFactoryReset()
{
// TODO: query the application to determine if factory reset is allowed.
return true;
}
void ConfigurationManagerImpl::InitiateFactoryReset()
{
PlatformMgr().ScheduleWork(DoFactoryReset);
}
CHIP_ERROR ConfigurationManagerImpl::ReadPersistedStorageValue(::chip::Platform::PersistedStorage::Key key, uint32_t & value)
{
ESP32Config::Key configKey{ ESP32Config::kConfigNamespace_ChipCounters, key };
CHIP_ERROR err = ReadConfigValue(configKey, value);
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
err = CHIP_ERROR_PERSISTED_STORAGE_VALUE_NOT_FOUND;
}
return err;
}
CHIP_ERROR ConfigurationManagerImpl::WritePersistedStorageValue(::chip::Platform::PersistedStorage::Key key, uint32_t value)
{
ESP32Config::Key configKey{ ESP32Config::kConfigNamespace_ChipCounters, key };
return WriteConfigValue(configKey, value);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, bool & val)
{
return ESP32Config::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, uint32_t & val)
{
return ESP32Config::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, uint64_t & val)
{
return ESP32Config::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValueStr(Key key, char * buf, size_t bufSize, size_t & outLen)
{
return ESP32Config::ReadConfigValueStr(key, buf, bufSize, outLen);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValueBin(Key key, uint8_t * buf, size_t bufSize, size_t & outLen)
{
return ESP32Config::ReadConfigValueBin(key, buf, bufSize, outLen);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, bool val)
{
return ESP32Config::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, uint32_t val)
{
return ESP32Config::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, uint64_t val)
{
return ESP32Config::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueStr(Key key, const char * str)
{
return ESP32Config::WriteConfigValueStr(key, str);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueStr(Key key, const char * str, size_t strLen)
{
return ESP32Config::WriteConfigValueStr(key, str, strLen);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueBin(Key key, const uint8_t * data, size_t dataLen)
{
return ESP32Config::WriteConfigValueBin(key, data, dataLen);
}
void ConfigurationManagerImpl::RunConfigUnitTest(void)
{
ESP32Config::RunConfigUnitTest();
}
void ConfigurationManagerImpl::DoFactoryReset(intptr_t arg)
{
CHIP_ERROR err;
ChipLogProgress(DeviceLayer, "Performing factory reset");
// Erase all values in the chip-config NVS namespace.
err = ESP32Config::ClearNamespace(ESP32Config::kConfigNamespace_ChipConfig);
if (err != CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "ClearNamespace(ChipConfig) failed: %s", chip::ErrorStr(err));
}
// Erase all values in the chip-counters NVS namespace.
err = ESP32Config::ClearNamespace(ESP32Config::kConfigNamespace_ChipCounters);
if (err != CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "ClearNamespace(ChipCounters) failed: %s", chip::ErrorStr(err));
}
// Restore WiFi persistent settings to default values.
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
esp_err_t error = esp_wifi_restore();
if (error != ESP_OK)
{
ChipLogError(DeviceLayer, "esp_wifi_restore() failed: %s", esp_err_to_name(error));
}
#elif CHIP_DEVICE_CONFIG_ENABLE_THREAD
ThreadStackMgr().ErasePersistentInfo();
#endif
// Erase all key-values including fabric info.
err = PersistedStorage::KeyValueStoreMgrImpl().EraseAll();
if (err != CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "Clear Key-Value Storage failed");
}
// Restart the system.
ChipLogProgress(DeviceLayer, "System restarting");
esp_restart();
}
ConfigurationManager & ConfigurationMgrImpl()
{
return ConfigurationManagerImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip