blob: 2e8d187ae6a15d846545dd0e54da2b20088a5edb [file] [log] [blame]
/*
*
* Copyright (c) 2020-2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <lib/support/BufferWriter.h>
#include <lib/support/UnitTestRegistration.h>
#include <nlunit-test.h>
namespace {
template <class Base>
class BWTest : public Base
{
public:
static constexpr size_t kLen = 64;
static constexpr uint8_t kGuard = 0xfe;
uint8_t mBuf[kLen];
size_t mLen;
BWTest(size_t len) : Base(mBuf + 1, len), mLen(len) { memset(mBuf, kGuard, kLen); }
bool expect(const void * val, size_t needed, size_t available)
{
// check guards
for (size_t i = mLen + 1; i < sizeof(mBuf); i++)
{
if (mBuf[i] != kGuard)
{
printf("Guards failure at index %d\n", static_cast<int>(i));
return false;
}
}
if (mBuf[0] != kGuard)
{
printf("Guards failure at index 0: buffer underflow\n");
return false;
}
size_t written = 0xcafebabe;
bool fit = Base::Fit(written);
if (written == 0xcafebabe)
{
printf("Fit(written) didn't set written\n");
return false;
}
if ((fit && (mLen < needed || written != needed)) || (!fit && (mLen >= needed || written != mLen)))
{
printf("Fit(written) is wrong: mLen == %u, needed == %u, written == %u, Fit() == %s\n", static_cast<unsigned int>(mLen),
static_cast<unsigned int>(needed), static_cast<unsigned int>(written), fit ? "true" : "false");
return false;
}
// check everything else
if (memcmp(mBuf + 1, val, needed < mLen ? needed : mLen) != 0)
{
printf("Memory comparison failed.\n");
return false;
}
return Base::Available() == available && Base::Needed() == needed;
}
};
using namespace chip::Encoding;
void TestSpanVersusRegular(nlTestSuite * inSuite, void * inContext)
{
uint8_t buf_regular[5] = { 0, 0, 0, 0, 0 };
uint8_t buf_span[5] = { 0, 0, 0, 0, 0 };
uint8_t all_zeroes[5] = { 0, 0, 0, 0, 0 };
uint8_t final_expected[5] = { 1, 2, 3, 4, 0 };
BufferWriter regular_writer(buf_regular, sizeof(buf_regular));
BufferWriter span_writer(chip::MutableByteSpan{ buf_span });
NL_TEST_ASSERT(inSuite, regular_writer.Available() == sizeof(buf_regular));
NL_TEST_ASSERT(inSuite, span_writer.Available() == sizeof(buf_span));
NL_TEST_ASSERT(inSuite, 0 == memcmp(buf_regular, all_zeroes, sizeof(all_zeroes)));
NL_TEST_ASSERT(inSuite, 0 == memcmp(buf_span, all_zeroes, sizeof(all_zeroes)));
NL_TEST_ASSERT(inSuite, regular_writer.Put(1).Put(2).Put(3).Put(4).Fit());
NL_TEST_ASSERT(inSuite, span_writer.Put(1).Put(2).Put(3).Put(4).Fit());
NL_TEST_ASSERT(inSuite, 0 == memcmp(buf_regular, final_expected, sizeof(final_expected)));
NL_TEST_ASSERT(inSuite, 0 == memcmp(buf_span, final_expected, sizeof(final_expected)));
}
void TestStringWrite(nlTestSuite * inSuite, void * inContext)
{
{
BWTest<BufferWriter> bb(2);
bb.Put("hi");
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<BufferWriter> bb(1);
bb.Put("hi");
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(2);
bb.Put("hi");
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(1);
bb.Put("hi");
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(2);
bb.Put("hi");
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(1);
bb.Put("hi");
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
}
void TestBufferWrite(nlTestSuite * inSuite, void * inContext)
{
{
BWTest<BufferWriter> bb(2);
bb.Put("hithere", 2);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<BufferWriter> bb(1);
bb.Put("hithere", 2);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(2);
bb.Put("hithere", 2);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(1);
bb.Put("hithere", 2);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(2);
bb.Put("hithere", 2);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(1);
bb.Put("hithere", 2);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
}
void TestPutLittleEndian(nlTestSuite * inSuite, void * inContext)
{
{
BWTest<LittleEndian::BufferWriter> bb(2);
bb.Put16('h' + 'i' * 256);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(4);
bb.Put32(0x01020304);
NL_TEST_ASSERT(inSuite, bb.expect("\x04\x03\x02\x01", 4, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(8);
bb.Put64(0x0102030405060708);
NL_TEST_ASSERT(inSuite, bb.expect("\x08\x07\x06\x05\x04\x03\x02\x01", 8, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(3);
bb.EndianPut(0x0102030405060708u, 3);
NL_TEST_ASSERT(inSuite, bb.expect("\x08\x07\x06", 3, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(4);
bb.PutSigned8(static_cast<int8_t>(-6));
NL_TEST_ASSERT(inSuite, bb.expect("\xfa", 1, 3));
}
{
BWTest<LittleEndian::BufferWriter> bb(4);
bb.PutSigned16(static_cast<int16_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xfe\xff", 2, 2));
}
{
BWTest<LittleEndian::BufferWriter> bb(4);
bb.PutSigned32(static_cast<int32_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xfe\xff\xff\xff", 4, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(8);
bb.PutSigned64(static_cast<int64_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xfe\xff\xff\xff\xff\xff\xff\xff", 8, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(7);
bb.PutSigned64(static_cast<int64_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xfe\xff\xff\xff\xff\xff\xff", 8, 0));
}
{
BWTest<LittleEndian::BufferWriter> bb(9);
bb.PutSigned64(static_cast<int64_t>(9223372036854775807LL));
NL_TEST_ASSERT(inSuite, bb.expect("\xff\xff\xff\xff\xff\xff\xff\x7f", 8, 1));
}
}
void TestPutBigEndian(nlTestSuite * inSuite, void * inContext)
{
{
BWTest<BigEndian::BufferWriter> bb(2);
bb.Put16('i' + 'h' * 256);
NL_TEST_ASSERT(inSuite, bb.expect("hi", 2, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(4);
bb.Put32(0x01020304);
NL_TEST_ASSERT(inSuite, bb.expect("\x01\x02\x03\x04", 4, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(8);
bb.Put64(0x0102030405060708);
NL_TEST_ASSERT(inSuite, bb.expect("\x01\x02\x03\x04\x05\x06\x07\x08", 8, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(3);
bb.EndianPut(0x0102030405060708u, 3);
NL_TEST_ASSERT(inSuite, bb.expect("\x06\x07\x08", 3, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(4);
bb.PutSigned8(static_cast<int8_t>(-6));
NL_TEST_ASSERT(inSuite, bb.expect("\xfa", 1, 3));
}
{
BWTest<BigEndian::BufferWriter> bb(4);
bb.PutSigned16(static_cast<int16_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xff\xfe", 2, 2));
}
{
BWTest<BigEndian::BufferWriter> bb(4);
bb.PutSigned32(static_cast<int32_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xff\xff\xff\xfe", 4, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(8);
bb.PutSigned64(static_cast<int64_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xff\xff\xff\xff\xff\xff\xff\xfe", 8, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(7);
bb.PutSigned64(static_cast<int64_t>(-2));
NL_TEST_ASSERT(inSuite, bb.expect("\xff\xff\xff\xff\xff\xff\xff", 8, 0));
}
{
BWTest<BigEndian::BufferWriter> bb(9);
bb.PutSigned64(static_cast<int64_t>(9223372036854775807LL));
NL_TEST_ASSERT(inSuite, bb.expect("\x7f\xff\xff\xff\xff\xff\xff\xff", 8, 1));
}
}
const nlTest sTests[] = {
NL_TEST_DEF("TestSpanVersusRegular", TestSpanVersusRegular), //
NL_TEST_DEF("TestStringWrite", TestStringWrite), //
NL_TEST_DEF("TestBufferWrite", TestBufferWrite), //
NL_TEST_DEF("TestPutLittleEndian", TestPutLittleEndian), //
NL_TEST_DEF("TestPutBigEndian", TestPutBigEndian), //
NL_TEST_SENTINEL() //
};
} // namespace
int TestBufferWriter()
{
nlTestSuite theSuite = { "BufferWriter", sTests, nullptr, nullptr };
nlTestRunner(&theSuite, nullptr);
return nlTestRunnerStats(&theSuite);
}
CHIP_REGISTER_TEST_SUITE(TestBufferWriter)