blob: ef1d3148bb09e642a30aaf7f485da3b9af6fe186 [file] [log] [blame]
/*
*
* Copyright (c) 2023 Project CHIP Authors
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <app/reporting/ReportScheduler.h>
namespace chip {
namespace app {
namespace reporting {
/**
* @class ReportSchedulerImpl
*
* @brief This class extends ReportScheduler and provides a scheduling logic for the CHIP Interaction Model Reporting Engine.
*
* It is reponsible for implementing the ReadHandler and ICD observers callbacks to the Scheduler can take actions whenever a
* ReadHandler event occurs or the ICD changes modes.
*
* All ReadHandlers Observers callbacks rely on the node pool to create or find the node associated to the ReadHandler that
* triggered the callback and will use the FindReadHandlerNode() method to do so.
*
* ## Scheduling Logic
*
* This class implements a scheduling logic that calculates the next report timeout based on the current system timestamp, the state
* of the ReadHandlers associated with the scheduler nodes and the min and max intervals of the ReadHandlers.
*
* @note This class mimics the original scheduling in which the ReadHandlers would schedule themselves. The key difference is that
* this implementation only relies on a single timer from the scheduling moment rather than having a timer expiring on the min
* interval that would trigger the start of a second timer expiring on the max interval.
*/
class ReportSchedulerImpl : public ReportScheduler
{
public:
using Timeout = System::Clock::Timeout;
ReportSchedulerImpl(TimerDelegate * aTimerDelegate);
~ReportSchedulerImpl() override { UnregisterAllHandlers(); }
// ICDStateObserver
/**
* @brief When the ICD changes to Idle, no action is taken in this implementation.
*/
void OnTransitionToIdle() override{};
/**
* @brief When the ICD changes to Active, this implementation will trigger a report emission on each ReadHandler that is not
* blocked on its min interval.
*
* @note Most action triggering a change to the Active mode already trigger a report emission, so this method is optionnal as it
* might be redundant.
*/
void OnEnterActiveMode() override;
/**
* @brief When the ICD changes operation mode, no action is taken in this implementation.
*/
void OnICDModeChange() override{};
// ReadHandlerObserver
/**
* @brief When a ReadHandler is added, adds a node and register it in the scheduler node pool. Scheduling the report here is
* un-necessary since the ReadHandler will call MoveToState(HandlerState::CanStartReporting);, which will call
* OnBecameReportable() and schedule the report.
*
* @note This method sets a now Timestamp that is used to calculate the next report timeout.
*/
void OnSubscriptionEstablished(ReadHandler * aReadHandler) final;
/**
* @brief When a ReadHandler becomes reportable, recalculate and reschedule the report.
*
* @note This method sets a now Timestamp that is used to calculate the next report timeout.
*/
void OnBecameReportable(ReadHandler * aReadHandler) final;
/**
* @brief When a ReadHandler report is sent, recalculate and reschedule the report.
*
* @note This method is called after the report is sent, so the ReadHandler is no longer reportable, and thus CanBeSynced and
* EngineRunScheduled of the node associated to the ReadHandler are set to false in this method.
*
* @note This method sets a now Timestamp that is used to calculate the next report timeout.
*/
void OnSubscriptionReportSent(ReadHandler * aReadHandler) final;
/**
* @brief When a ReadHandler is destroyed, remove the node from the scheduler node pool and cancel the timer associated to it.
*/
void OnReadHandlerDestroyed(ReadHandler * aReadHandler) override;
virtual bool IsReportScheduled(ReadHandler * aReadHandler);
void ReportTimerCallback() override;
protected:
/**
* @brief Schedule a report for the ReadHandler associated to the node.
*
* If a report is already scheduled for the ReadHandler, cancel it and schedule a new one.
* If the timeout is 0, directly calls the TimerFired() method of the node instead of scheduling a report.
*
* @param[in] timeout The timeout to schedule the report.
* @param[in] node The node associated to the ReadHandler.
* @param[in] now The current system timestamp.
*
* @return CHIP_ERROR CHIP_NO_ERROR on success, timer related error code otherwise (This can only fail on starting the timer)
*/
virtual CHIP_ERROR ScheduleReport(Timeout timeout, ReadHandlerNode * node, const Timestamp & now);
void CancelReport(ReadHandler * aReadHandler);
virtual void UnregisterAllHandlers();
private:
friend class chip::app::reporting::TestReportScheduler;
/**
* @brief Find the next timer when a report should be scheduled for a ReadHandler.
*
* @param[out] timeout The timeout to calculate.
* @param[in] aNode The node associated to the ReadHandler.
* @param[in] now The current system timestamp.
*
* @return CHIP_ERROR CHIP_NO_ERROR on success or CHIP_ERROR_INVALID_ARGUMENT if aNode is not in the pool.
*
* The logic is as follows:
* - If the ReadHandler is reportable now, the timeout is 0.
* - If the ReadHandler is reportable, but the current timestamp is earlier thant the next min interval's timestamp, the timeout
* is the delta between the next min interval and now.
* - If the ReadHandler is not reportable, the timeout is the difference between the next max interval and now.
*/
virtual CHIP_ERROR CalculateNextReportTimeout(Timeout & timeout, ReadHandlerNode * aNode, const Timestamp & now);
};
} // namespace reporting
} // namespace app
} // namespace chip