| /* |
| * |
| * Copyright (c) 2021-2022 Project CHIP Authors |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** |
| * @file |
| * Provides an implementation of the DiagnosticDataProvider object |
| * for Linux platform. |
| */ |
| |
| #include <platform/internal/CHIPDeviceLayerInternal.h> |
| |
| #include <app-common/zap-generated/enums.h> |
| #include <app/data-model/List.h> |
| #include <lib/support/CHIPMem.h> |
| #include <lib/support/CHIPMemString.h> |
| #include <lib/support/logging/CHIPLogging.h> |
| #include <platform/DiagnosticDataProvider.h> |
| #include <platform/Linux/ConnectivityUtils.h> |
| #include <platform/Linux/DiagnosticDataProviderImpl.h> |
| |
| #include <arpa/inet.h> |
| #include <dirent.h> |
| #include <ifaddrs.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_link.h> |
| #include <linux/netlink.h> |
| #include <linux/rtnetlink.h> |
| #include <malloc.h> |
| #include <net/if.h> |
| #include <netinet/in.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| using namespace ::chip; |
| using namespace ::chip::app; |
| using namespace ::chip::TLV; |
| using namespace ::chip::DeviceLayer; |
| using namespace ::chip::DeviceLayer::Internal; |
| using namespace ::chip::app::Clusters::GeneralDiagnostics; |
| |
| namespace { |
| |
| enum class EthernetStatsCountType |
| { |
| kEthPacketRxCount, |
| kEthPacketTxCount, |
| kEthTxErrCount, |
| kEthCollisionCount, |
| kEthOverrunCount |
| }; |
| |
| enum class WiFiStatsCountType |
| { |
| kWiFiUnicastPacketRxCount, |
| kWiFiUnicastPacketTxCount, |
| kWiFiMulticastPacketRxCount, |
| kWiFiMulticastPacketTxCount, |
| kWiFiOverrunCount |
| }; |
| |
| CHIP_ERROR GetEthernetStatsCount(EthernetStatsCountType type, uint64_t & count) |
| { |
| CHIP_ERROR err = CHIP_ERROR_READ_FAILED; |
| struct ifaddrs * ifaddr = nullptr; |
| |
| if (getifaddrs(&ifaddr) == -1) |
| { |
| ChipLogError(DeviceLayer, "Failed to get network interfaces"); |
| } |
| else |
| { |
| struct ifaddrs * ifa = nullptr; |
| |
| // Walk through linked list, maintaining head pointer so we can free list later. |
| for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next) |
| { |
| if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == |
| InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_ETHERNET) |
| { |
| ChipLogProgress(DeviceLayer, "Found the primary Ethernet interface:%s", StringOrNullMarker(ifa->ifa_name)); |
| break; |
| } |
| } |
| |
| if (ifa != nullptr) |
| { |
| if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr) |
| { |
| struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data; |
| switch (type) |
| { |
| case EthernetStatsCountType::kEthPacketRxCount: |
| count = stats->rx_packets; |
| err = CHIP_NO_ERROR; |
| break; |
| case EthernetStatsCountType::kEthPacketTxCount: |
| count = stats->tx_packets; |
| err = CHIP_NO_ERROR; |
| break; |
| case EthernetStatsCountType::kEthTxErrCount: |
| count = stats->tx_errors; |
| err = CHIP_NO_ERROR; |
| break; |
| case EthernetStatsCountType::kEthCollisionCount: |
| count = stats->collisions; |
| err = CHIP_NO_ERROR; |
| break; |
| case EthernetStatsCountType::kEthOverrunCount: |
| count = stats->rx_over_errors; |
| err = CHIP_NO_ERROR; |
| break; |
| default: |
| ChipLogError(DeviceLayer, "Unknown Ethernet statistic metric type"); |
| break; |
| } |
| } |
| } |
| |
| freeifaddrs(ifaddr); |
| } |
| |
| return err; |
| } |
| |
| #if CHIP_DEVICE_CONFIG_ENABLE_WIFI |
| CHIP_ERROR GetWiFiStatsCount(WiFiStatsCountType type, uint64_t & count) |
| { |
| CHIP_ERROR err = CHIP_ERROR_READ_FAILED; |
| struct ifaddrs * ifaddr = nullptr; |
| |
| if (getifaddrs(&ifaddr) == -1) |
| { |
| ChipLogError(DeviceLayer, "Failed to get network interfaces"); |
| } |
| else |
| { |
| struct ifaddrs * ifa = nullptr; |
| |
| // Walk through linked list, maintaining head pointer so we can free list later. |
| for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next) |
| { |
| if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == |
| InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_WI_FI) |
| { |
| ChipLogProgress(DeviceLayer, "Found the primary WiFi interface:%s", StringOrNullMarker(ifa->ifa_name)); |
| break; |
| } |
| } |
| |
| if (ifa != nullptr) |
| { |
| if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr) |
| { |
| // The usecase of this function is embedded devices,on which we can interact with the WiFi |
| // driver to get the accurate number of muticast and unicast packets accurately. |
| // On Linux simulation, we can only get the total packets received, the total bytes transmitted, |
| // the multicast packets received and receiver ring buff overflow. |
| |
| struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data; |
| switch (type) |
| { |
| case WiFiStatsCountType::kWiFiUnicastPacketRxCount: |
| count = stats->rx_packets; |
| err = CHIP_NO_ERROR; |
| break; |
| case WiFiStatsCountType::kWiFiUnicastPacketTxCount: |
| count = stats->tx_packets; |
| err = CHIP_NO_ERROR; |
| break; |
| case WiFiStatsCountType::kWiFiMulticastPacketRxCount: |
| count = stats->multicast; |
| err = CHIP_NO_ERROR; |
| break; |
| case WiFiStatsCountType::kWiFiMulticastPacketTxCount: |
| count = 0; |
| err = CHIP_NO_ERROR; |
| break; |
| case WiFiStatsCountType::kWiFiOverrunCount: |
| count = stats->rx_over_errors; |
| err = CHIP_NO_ERROR; |
| break; |
| default: |
| ChipLogError(DeviceLayer, "Unknown WiFi statistic metric type"); |
| break; |
| } |
| } |
| } |
| |
| freeifaddrs(ifaddr); |
| } |
| |
| return err; |
| } |
| #endif // #if CHIP_DEVICE_CONFIG_ENABLE_WIFI |
| |
| } // namespace |
| |
| namespace chip { |
| namespace DeviceLayer { |
| |
| DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance() |
| { |
| static DiagnosticDataProviderImpl sInstance; |
| return sInstance; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree) |
| { |
| #ifndef __GLIBC__ |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| #else |
| struct mallinfo mallocInfo = mallinfo(); |
| |
| // Get the current amount of heap memory, in bytes, that are not being utilized |
| // by the current running program. |
| currentHeapFree = mallocInfo.fordblks; |
| |
| return CHIP_NO_ERROR; |
| #endif |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed) |
| { |
| #ifndef __GLIBC__ |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| #else |
| struct mallinfo mallocInfo = mallinfo(); |
| |
| // Get the current amount of heap memory, in bytes, that are being used by |
| // the current running program. |
| currentHeapUsed = mallocInfo.uordblks; |
| |
| return CHIP_NO_ERROR; |
| #endif |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark) |
| { |
| #ifndef __GLIBC__ |
| return CHIP_ERROR_NOT_IMPLEMENTED; |
| #else |
| struct mallinfo mallocInfo = mallinfo(); |
| |
| // The usecase of this function is embedded devices,on which we would need to intercept |
| // malloc/calloc/free and then record the maximum amount of heap memory,in bytes, that |
| // has been used by the Node. |
| // On Linux, since it uses virtual memory, whereby a page of memory could be copied to |
| // the hard disk, called swap space, and free up that page of memory. So it is impossible |
| // to know accurately peak physical memory it use. We just return the current heap memory |
| // being used by the current running program. |
| currentHeapHighWatermark = mallocInfo.uordblks; |
| |
| return CHIP_NO_ERROR; |
| #endif |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks() |
| { |
| // If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the |
| // value of the CurrentHeapUsed. |
| |
| // On Linux, the write operation is non-op since we always rely on the mallinfo system |
| // function to get the current heap memory. |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut) |
| { |
| CHIP_ERROR err = CHIP_ERROR_READ_FAILED; |
| DIR * proc_dir = opendir("/proc/self/task"); |
| |
| if (proc_dir == nullptr) |
| { |
| ChipLogError(DeviceLayer, "Failed to open current process task directory"); |
| } |
| else |
| { |
| ThreadMetrics * head = nullptr; |
| struct dirent * entry; |
| |
| /* proc available, iterate through tasks... */ |
| while ((entry = readdir(proc_dir)) != nullptr) |
| { |
| if (entry->d_name[0] == '.') |
| continue; |
| |
| ThreadMetrics * thread = new ThreadMetrics(); |
| |
| Platform::CopyString(thread->NameBuf, entry->d_name); |
| thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf)); |
| thread->id = atoi(entry->d_name); |
| |
| // TODO: Get stack info of each thread: thread->stackFreeCurrent, |
| // thread->stackFreeMinimum, thread->stackSize. |
| |
| thread->Next = head; |
| head = thread; |
| } |
| |
| closedir(proc_dir); |
| |
| *threadMetricsOut = head; |
| err = CHIP_NO_ERROR; |
| } |
| |
| return err; |
| } |
| |
| void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics) |
| { |
| while (threadMetrics) |
| { |
| ThreadMetrics * del = threadMetrics; |
| threadMetrics = threadMetrics->Next; |
| delete del; |
| } |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount) |
| { |
| uint32_t count = 0; |
| |
| CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count); |
| |
| if (err == CHIP_NO_ERROR) |
| { |
| VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| rebootCount = static_cast<uint16_t>(count); |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime) |
| { |
| System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp(); |
| System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime(); |
| |
| if (currentTime >= startTime) |
| { |
| upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count(); |
| return CHIP_NO_ERROR; |
| } |
| |
| return CHIP_ERROR_INVALID_TIME; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours) |
| { |
| uint64_t upTime = 0; |
| |
| if (GetUpTime(upTime) == CHIP_NO_ERROR) |
| { |
| uint32_t totalHours = 0; |
| if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR) |
| { |
| VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600); |
| return CHIP_NO_ERROR; |
| } |
| } |
| |
| return CHIP_ERROR_INVALID_TIME; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason) |
| { |
| uint32_t reason = 0; |
| |
| CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason); |
| |
| if (err == CHIP_NO_ERROR) |
| { |
| VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| bootReason = static_cast<BootReasonType>(reason); |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetActiveHardwareFaults(GeneralFaults<kMaxHardwareFaults> & hardwareFaults) |
| { |
| #if CHIP_CONFIG_TEST |
| // On Linux Simulation, set following hardware faults statically. |
| ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kRadio))); |
| ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kSensor))); |
| ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kPowerSource))); |
| ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kUserInterfaceFault))); |
| #endif |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetActiveRadioFaults(GeneralFaults<kMaxRadioFaults> & radioFaults) |
| { |
| #if CHIP_CONFIG_TEST |
| // On Linux Simulation, set following radio faults statically. |
| ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_ENUM_WI_FI_FAULT)); |
| ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_ENUM_CELLULAR_FAULT)); |
| ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_ENUM_THREAD_FAULT)); |
| ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_ENUM_NFC_FAULT)); |
| #endif |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetActiveNetworkFaults(GeneralFaults<kMaxNetworkFaults> & networkFaults) |
| { |
| #if CHIP_CONFIG_TEST |
| // On Linux Simulation, set following radio faults statically. |
| ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kHardwareFailure))); |
| ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kNetworkJammed))); |
| ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kConnectionFailed))); |
| #endif |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp) |
| { |
| CHIP_ERROR err = CHIP_ERROR_READ_FAILED; |
| struct ifaddrs * ifaddr = nullptr; |
| |
| if (getifaddrs(&ifaddr) == -1) |
| { |
| ChipLogError(DeviceLayer, "Failed to get network interfaces"); |
| } |
| else |
| { |
| NetworkInterface * head = nullptr; |
| |
| // Walk through linked list, maintaining head pointer so we can free list later. |
| for (struct ifaddrs * ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next) |
| { |
| if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_PACKET) |
| { |
| uint8_t size = 0; |
| NetworkInterface * ifp = new NetworkInterface(); |
| |
| Platform::CopyString(ifp->Name, ifa->ifa_name); |
| |
| ifp->name = CharSpan::fromCharString(ifp->Name); |
| ifp->isOperational = ifa->ifa_flags & IFF_RUNNING; |
| ifp->type = ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name); |
| ifp->offPremiseServicesReachableIPv4.SetNull(); |
| ifp->offPremiseServicesReachableIPv6.SetNull(); |
| |
| if (ConnectivityUtils::GetInterfaceIPv4Addrs(ifa->ifa_name, size, ifp) == CHIP_NO_ERROR) |
| { |
| if (size > 0) |
| { |
| ifp->IPv4Addresses = DataModel::List<const chip::ByteSpan>(ifp->Ipv4AddressSpans, size); |
| } |
| } |
| |
| if (ConnectivityUtils::GetInterfaceIPv6Addrs(ifa->ifa_name, size, ifp) == CHIP_NO_ERROR) |
| { |
| if (size > 0) |
| { |
| ifp->IPv6Addresses = DataModel::List<const chip::ByteSpan>(ifp->Ipv6AddressSpans, size); |
| } |
| } |
| |
| if (ConnectivityUtils::GetInterfaceHardwareAddrs(ifa->ifa_name, ifp->MacAddress, kMaxHardwareAddrSize) != |
| CHIP_NO_ERROR) |
| { |
| ChipLogError(DeviceLayer, "Failed to get network hardware address"); |
| } |
| else |
| { |
| // Set 48-bit IEEE MAC Address |
| ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 6); |
| } |
| |
| ifp->Next = head; |
| head = ifp; |
| } |
| } |
| |
| *netifpp = head; |
| err = CHIP_NO_ERROR; |
| |
| freeifaddrs(ifaddr); |
| } |
| |
| return err; |
| } |
| |
| void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp) |
| { |
| while (netifp) |
| { |
| NetworkInterface * del = netifp; |
| netifp = netifp->Next; |
| delete del; |
| } |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthPHYRate(app::Clusters::EthernetNetworkDiagnostics::PHYRateEnum & pHYRate) |
| { |
| if (ConnectivityMgrImpl().GetEthernetIfName() == nullptr) |
| { |
| return CHIP_ERROR_READ_FAILED; |
| } |
| |
| return ConnectivityUtils::GetEthPHYRate(ConnectivityMgrImpl().GetEthernetIfName(), pHYRate); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthFullDuplex(bool & fullDuplex) |
| { |
| if (ConnectivityMgrImpl().GetEthernetIfName() == nullptr) |
| { |
| return CHIP_ERROR_READ_FAILED; |
| } |
| |
| return ConnectivityUtils::GetEthFullDuplex(ConnectivityMgrImpl().GetEthernetIfName(), fullDuplex); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthTimeSinceReset(uint64_t & timeSinceReset) |
| { |
| return GetDiagnosticDataProvider().GetUpTime(timeSinceReset); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthPacketRxCount(uint64_t & packetRxCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthPacketRxCount, count)); |
| VerifyOrReturnError(count >= mEthPacketRxCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| packetRxCount = count - mEthPacketRxCount; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthPacketTxCount(uint64_t & packetTxCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthPacketTxCount, count)); |
| VerifyOrReturnError(count >= mEthPacketTxCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| packetTxCount = count - mEthPacketTxCount; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthTxErrCount(uint64_t & txErrCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthTxErrCount, count)); |
| VerifyOrReturnError(count >= mEthTxErrCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| txErrCount = count - mEthTxErrCount; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthCollisionCount(uint64_t & collisionCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthCollisionCount, count)); |
| VerifyOrReturnError(count >= mEthCollisionCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| collisionCount = count - mEthCollisionCount; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetEthOverrunCount(uint64_t & overrunCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthOverrunCount, count)); |
| VerifyOrReturnError(count >= mEthOverrunCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| overrunCount = count - mEthOverrunCount; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::ResetEthNetworkDiagnosticsCounts() |
| { |
| CHIP_ERROR err = CHIP_ERROR_READ_FAILED; |
| struct ifaddrs * ifaddr = nullptr; |
| |
| if (getifaddrs(&ifaddr) == -1) |
| { |
| ChipLogError(DeviceLayer, "Failed to get network interfaces"); |
| } |
| else |
| { |
| struct ifaddrs * ifa = nullptr; |
| |
| // Walk through linked list, maintaining head pointer so we can free list later. |
| for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next) |
| { |
| if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == |
| InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_ETHERNET) |
| { |
| ChipLogProgress(DeviceLayer, "Found the primary Ethernet interface:%s", StringOrNullMarker(ifa->ifa_name)); |
| break; |
| } |
| } |
| |
| if (ifa != nullptr) |
| { |
| if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr) |
| { |
| struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data; |
| |
| mEthPacketRxCount = stats->rx_packets; |
| mEthPacketTxCount = stats->tx_packets; |
| mEthTxErrCount = stats->tx_errors; |
| mEthCollisionCount = stats->collisions; |
| mEthOverrunCount = stats->rx_over_errors; |
| err = CHIP_NO_ERROR; |
| } |
| } |
| |
| freeifaddrs(ifaddr); |
| } |
| |
| return err; |
| } |
| |
| #if CHIP_DEVICE_CONFIG_ENABLE_WIFI |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber) |
| { |
| if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr) |
| { |
| return CHIP_ERROR_READ_FAILED; |
| } |
| |
| return ConnectivityUtils::GetWiFiChannelNumber(ConnectivityMgrImpl().GetWiFiIfName(), channelNumber); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi) |
| { |
| if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr) |
| { |
| return CHIP_ERROR_READ_FAILED; |
| } |
| |
| return ConnectivityUtils::GetWiFiRssi(ConnectivityMgrImpl().GetWiFiIfName(), rssi); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount) |
| { |
| uint32_t count; |
| |
| if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr) |
| { |
| return CHIP_ERROR_READ_FAILED; |
| } |
| |
| ReturnErrorOnFailure(ConnectivityUtils::GetWiFiBeaconLostCount(ConnectivityMgrImpl().GetWiFiIfName(), count)); |
| VerifyOrReturnError(count >= mBeaconLostCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| beaconLostCount = count - mBeaconLostCount; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate) |
| { |
| if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr) |
| { |
| return CHIP_ERROR_READ_FAILED; |
| } |
| |
| return ConnectivityUtils::GetWiFiCurrentMaxRate(ConnectivityMgrImpl().GetWiFiIfName(), currentMaxRate); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiMulticastPacketRxCount, count)); |
| VerifyOrReturnError(count >= mPacketMulticastRxCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| count -= mPacketMulticastRxCount; |
| VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| packetMulticastRxCount = static_cast<uint32_t>(count); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiMulticastPacketTxCount, count)); |
| VerifyOrReturnError(count >= mPacketMulticastTxCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| count -= mPacketMulticastTxCount; |
| VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| packetMulticastTxCount = static_cast<uint32_t>(count); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiUnicastPacketRxCount, count)); |
| VerifyOrReturnError(count >= mPacketUnicastRxCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| count -= mPacketUnicastRxCount; |
| VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| packetUnicastRxCount = static_cast<uint32_t>(count); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiUnicastPacketTxCount, count)); |
| VerifyOrReturnError(count >= mPacketUnicastTxCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| count -= mPacketUnicastTxCount; |
| VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| packetUnicastTxCount = static_cast<uint32_t>(count); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount) |
| { |
| uint64_t count; |
| |
| ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiOverrunCount, count)); |
| VerifyOrReturnError(count >= mOverrunCount, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| |
| overrunCount = count - mOverrunCount; |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts() |
| { |
| CHIP_ERROR err = CHIP_ERROR_READ_FAILED; |
| struct ifaddrs * ifaddr = nullptr; |
| |
| ReturnErrorOnFailure(GetWiFiBeaconLostCount(mBeaconLostCount)); |
| |
| if (getifaddrs(&ifaddr) == -1) |
| { |
| ChipLogError(DeviceLayer, "Failed to get network interfaces"); |
| } |
| else |
| { |
| struct ifaddrs * ifa = nullptr; |
| |
| // Walk through linked list, maintaining head pointer so we can free list later. |
| for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next) |
| { |
| if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == |
| InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_WI_FI) |
| { |
| ChipLogProgress(DeviceLayer, "Found the primary WiFi interface:%s", StringOrNullMarker(ifa->ifa_name)); |
| break; |
| } |
| } |
| |
| if (ifa != nullptr) |
| { |
| if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr) |
| { |
| struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data; |
| |
| mPacketMulticastRxCount = stats->multicast; |
| mPacketMulticastTxCount = 0; |
| mPacketUnicastRxCount = stats->rx_packets; |
| mPacketUnicastTxCount = stats->tx_packets; |
| mOverrunCount = stats->rx_over_errors; |
| |
| err = CHIP_NO_ERROR; |
| } |
| } |
| |
| freeifaddrs(ifaddr); |
| } |
| |
| return err; |
| } |
| #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI |
| |
| #if CHIP_DEVICE_CONFIG_ENABLE_WPA |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wiFiVersion) |
| { |
| return ConnectivityMgrImpl().GetWiFiVersion(wiFiVersion); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & value) |
| { |
| return ConnectivityMgrImpl().GetWiFiBssId(value); |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType) |
| { |
| return ConnectivityMgrImpl().GetWiFiSecurityType(securityType); |
| } |
| #endif // CHIP_DEVICE_CONFIG_ENABLE_WPA |
| |
| DiagnosticDataProvider & GetDiagnosticDataProviderImpl() |
| { |
| return DiagnosticDataProviderImpl::GetDefaultInstance(); |
| } |
| |
| } // namespace DeviceLayer |
| } // namespace chip |