blob: fded8defa30dce96781e9202beb26756403f6857 [file] [log] [blame]
/*******************************************************************************
* @file efx32_ncp_host.c
* @brief
*******************************************************************************
* # License
* <b>Copyright 2023 Silicon Laboratories Inc. www.silabs.com</b>
*******************************************************************************
*
* The licensor of this software is Silicon Laboratories Inc. Your use of this
* software is governed by the terms of Silicon Labs Master Software License
* Agreement (MSLA) available at
* www.silabs.com/about-us/legal/master-software-license-agreement. This
* software is distributed to you in Source Code format and is governed by the
* sections of the MSLA applicable to Source Code.
*
******************************************************************************/
#include "cmsis_os2.h"
#include "dmadrv.h"
#include "em_cmu.h"
#include "em_core.h"
#include "em_gpio.h"
#include "em_usart.h"
#include "gpiointerrupt.h"
#include "sl_board_configuration_SiWx917.h"
#include "sl_constants.h"
#include "sl_rsi_utility.h"
#include "sl_si91x_host_interface.h"
#include "sl_si91x_status.h"
#include "sl_status.h"
#include "sl_wifi_constants.h"
#include <stdbool.h>
#include <string.h>
#if defined(SL_CATLOG_POWER_MANAGER_PRESENT)
#include "sl_power_manager.h"
#endif
#include "sl_board_control.h"
#include "sl_si91x_ncp_utility.h"
#include "spi_multiplex.h"
static bool dma_callback(unsigned int channel, unsigned int sequenceNo, void * userParam);
uint32_t rx_ldma_channel;
uint32_t tx_ldma_channel;
osMutexId_t ncp_transfer_mutex = 0;
static uint32_t dummy_buffer;
static sl_si91x_host_init_configuration init_config = { 0 };
// LDMA descriptor and transfer configuration structures for USART TX channel
LDMA_Descriptor_t ldmaTXDescriptor;
LDMA_TransferCfg_t ldmaTXConfig;
// LDMA descriptor and transfer configuration structures for USART RX channel
LDMA_Descriptor_t ldmaRXDescriptor;
LDMA_TransferCfg_t ldmaRXConfig;
static osSemaphoreId_t transfer_done_semaphore = NULL;
static bool dma_callback([[maybe_unused]] unsigned int channel, [[maybe_unused]] unsigned int sequenceNo,
[[maybe_unused]] void * userParam)
{
#if defined(SL_CATLOG_POWER_MANAGER_PRESENT)
sl_power_manager_remove_em_requirement(SL_POWER_MANAGER_EM1);
#endif
osSemaphoreRelease(transfer_done_semaphore);
return false;
}
static void gpio_interrupt([[maybe_unused]] uint8_t interrupt_number)
{
if (NULL != init_config.rx_irq)
{
init_config.rx_irq();
}
}
static void efx32_spi_init(void)
{
// Default asynchronous initializer (master mode, 1 Mbps, 8-bit data)
USART_InitSync_TypeDef init = USART_INITSYNC_DEFAULT;
init.msbf = true; // MSB first transmission for SPI compatibility
init.autoCsEnable = false;
init.baudrate = USART_INITSYNC_BAUDRATE;
// Configure SPI bus pins
GPIO_PinModeSet(SPI_MISO_PIN.port, SPI_MISO_PIN.pin, gpioModeInput, 0);
GPIO_PinModeSet(SPI_MOSI_PIN.port, SPI_MOSI_PIN.pin, gpioModePushPull, 0);
GPIO_PinModeSet(SPI_CLOCK_PIN.port, SPI_CLOCK_PIN.pin, gpioModePushPullAlternate, 0);
GPIO_PinModeSet(SPI_CS_PIN.port, SPI_CS_PIN.pin, gpioModePushPull, 1);
// Enable clock (not needed on xG21)
CMU_ClockEnable(SPI_USART_CMU_CLOCK, true);
/*
* Route USART RX, TX, and CLK to the specified pins. Note that CS is
* not controlled by USART so there is no write to the corresponding
* USARTROUTE register to do this.
*/
GPIO->USARTROUTE[SPI_USART_ROUTE_INDEX].RXROUTE =
(SPI_MISO_PIN.port << _GPIO_USART_RXROUTE_PORT_SHIFT) | (SPI_MISO_PIN.pin << _GPIO_USART_RXROUTE_PIN_SHIFT);
GPIO->USARTROUTE[SPI_USART_ROUTE_INDEX].TXROUTE =
(SPI_MOSI_PIN.port << _GPIO_USART_TXROUTE_PORT_SHIFT) | (SPI_MOSI_PIN.pin << _GPIO_USART_TXROUTE_PIN_SHIFT);
GPIO->USARTROUTE[SPI_USART_ROUTE_INDEX].CLKROUTE =
(SPI_CLOCK_PIN.port << _GPIO_USART_CLKROUTE_PORT_SHIFT) | (SPI_CLOCK_PIN.pin << _GPIO_USART_CLKROUTE_PIN_SHIFT);
GPIO->USARTROUTE[SPI_USART_ROUTE_INDEX].CSROUTE =
(SPI_CS_PIN.port << _GPIO_USART_CSROUTE_PORT_SHIFT) | (SPI_CS_PIN.pin << _GPIO_USART_CSROUTE_PIN_SHIFT);
// Enable USART interface pins
GPIO->USARTROUTE[SPI_USART_ROUTE_INDEX].ROUTEEN = GPIO_USART_ROUTEEN_RXPEN | // MISO
GPIO_USART_ROUTEEN_TXPEN | // MOSI
#if !SL_SPICTRL_MUX
GPIO_USART_ROUTEEN_CSPEN |
#endif
GPIO_USART_ROUTEEN_CLKPEN;
// Set slew rate for alternate usage pins
GPIO_SlewrateSet(SPI_CLOCK_PIN.port, 7, 7);
// Configure and enable USART
USART_InitSync(SPI_USART, &init);
SPI_USART->TIMING |= USART_TIMING_TXDELAY_ONE | USART_TIMING_CSSETUP_ONE | USART_TIMING_CSHOLD_ONE;
// SPI_USART->CTRL_SET |= USART_CTRL_SMSDELAY;
// configure packet pending interrupt priority
NVIC_SetPriority(GPIO_ODD_IRQn, PACKET_PENDING_INT_PRI);
GPIOINT_CallbackRegister(INTERRUPT_PIN.pin, gpio_interrupt);
GPIO_PinModeSet(INTERRUPT_PIN.port, INTERRUPT_PIN.pin, gpioModeInputPullFilter, 0);
GPIO_ExtIntConfig(INTERRUPT_PIN.port, INTERRUPT_PIN.pin, INTERRUPT_PIN.pin, true, false, true);
}
void sl_si91x_host_set_sleep_indicator(void)
{
GPIO_PinOutSet(SLEEP_CONFIRM_PIN.port, SLEEP_CONFIRM_PIN.pin);
}
void sl_si91x_host_clear_sleep_indicator(void)
{
GPIO_PinOutClear(SLEEP_CONFIRM_PIN.port, SLEEP_CONFIRM_PIN.pin);
}
uint32_t sl_si91x_host_get_wake_indicator(void)
{
return GPIO_PinInGet(WAKE_INDICATOR_PIN.port, WAKE_INDICATOR_PIN.pin);
}
sl_status_t sl_si91x_host_init(sl_si91x_host_init_configuration * config)
{
#if SL_SPICTRL_MUX
sl_status_t status = sl_board_disable_display();
if (SL_STATUS_OK != status)
{
SILABS_LOG("sl_board_disable_display failed with error: %x", status);
return status;
}
#endif // SL_SPICTRL_MUX
init_config.rx_irq = config->rx_irq;
init_config.rx_done = config->rx_done;
// Enable clock (not needed on xG21)
CMU_ClockEnable(cmuClock_GPIO, true);
#if SL_SPICTRL_MUX
spi_board_init();
#endif
if (transfer_done_semaphore == NULL)
{
transfer_done_semaphore = osSemaphoreNew(1, 0, NULL);
}
if (ncp_transfer_mutex == 0)
{
ncp_transfer_mutex = osMutexNew(NULL);
}
efx32_spi_init();
// Start reset line low
GPIO_PinModeSet(RESET_PIN.port, RESET_PIN.pin, gpioModePushPull, 0);
// Configure interrupt, sleep and wake confirmation pins
GPIO_PinModeSet(SLEEP_CONFIRM_PIN.port, SLEEP_CONFIRM_PIN.pin, gpioModeWiredOrPullDown, 1);
GPIO_PinModeSet(WAKE_INDICATOR_PIN.port, WAKE_INDICATOR_PIN.pin, gpioModeWiredOrPullDown, 0);
DMADRV_Init();
DMADRV_AllocateChannel((unsigned int *) &rx_ldma_channel, NULL);
DMADRV_AllocateChannel((unsigned int *) &tx_ldma_channel, NULL);
return SL_STATUS_OK;
}
sl_status_t sl_si91x_host_deinit(void)
{
return SL_STATUS_OK;
}
void sl_si91x_host_enable_high_speed_bus() {}
/*==================================================================*/
/**
* @fn sl_status_t sl_si91x_host_spi_transfer(const void *tx_buffer, void *rx_buffer, uint16_t buffer_length)
* @param[in] uint8_t *tx_buff, pointer to the buffer with the data to be transferred
* @param[in] uint8_t *rx_buff, pointer to the buffer to store the data received
* @param[in] uint16_t transfer_length, Number of bytes to send and receive
* @param[in] uint8_t mode, To indicate mode 8 BIT/32 BIT mode transfers.
* @param[out] None
* @return 0, 0=success
* @section description
* This API is used to transfer/receive data to the Wi-Fi module through the SPI interface.
*/
sl_status_t sl_si91x_host_spi_transfer(const void * tx_buffer, void * rx_buffer, uint16_t buffer_length)
{
osMutexAcquire(ncp_transfer_mutex, 0xFFFFFFFFUL);
#if SL_SPICTRL_MUX
sl_wfx_host_spi_cs_assert();
#endif // SL_SPICTRL_MUX
if (buffer_length < 16)
{
uint8_t * tx = (tx_buffer != NULL) ? (uint8_t *) tx_buffer : (uint8_t *) &dummy_buffer;
uint8_t * rx = (rx_buffer != NULL) ? (uint8_t *) rx_buffer : (uint8_t *) &dummy_buffer;
while (buffer_length > 0)
{
while (!(SPI_USART->STATUS & USART_STATUS_TXBL))
{
}
SPI_USART->TXDATA = (uint32_t) *tx;
while (!(SPI_USART->STATUS & USART_STATUS_TXC))
{
}
*rx = (uint8_t) SPI_USART->RXDATA;
if (tx_buffer != NULL)
{
tx++;
}
if (rx_buffer != NULL)
{
rx++;
}
buffer_length--;
}
}
else
{
if (tx_buffer == NULL)
{
dummy_buffer = 0;
ldmaTXDescriptor =
(LDMA_Descriptor_t) LDMA_DESCRIPTOR_SINGLE_P2P_BYTE(&dummy_buffer, &(SPI_USART->TXDATA), buffer_length);
}
else
{
ldmaTXDescriptor = (LDMA_Descriptor_t) LDMA_DESCRIPTOR_SINGLE_M2P_BYTE(tx_buffer, &(SPI_USART->TXDATA), buffer_length);
}
if (rx_buffer == NULL)
{
ldmaRXDescriptor =
(LDMA_Descriptor_t) LDMA_DESCRIPTOR_SINGLE_P2P_BYTE(&(SPI_USART->RXDATA), &dummy_buffer, buffer_length);
}
else
{
ldmaRXDescriptor = (LDMA_Descriptor_t) LDMA_DESCRIPTOR_SINGLE_P2M_BYTE(&(SPI_USART->RXDATA), rx_buffer, buffer_length);
}
// Transfer a byte on free space in the USART buffer
ldmaTXConfig = (LDMA_TransferCfg_t) LDMA_TRANSFER_CFG_PERIPHERAL(SPI_USART_LDMA_TX);
// Transfer a byte on receive data valid
ldmaRXConfig = (LDMA_TransferCfg_t) LDMA_TRANSFER_CFG_PERIPHERAL(SPI_USART_LDMA_RX);
#if defined(SL_CATLOG_POWER_MANAGER_PRESENT)
sl_power_manager_remove_em_requirement(SL_POWER_MANAGER_EM1);
#endif
// Start both channels
DMADRV_LdmaStartTransfer(rx_ldma_channel, &ldmaRXConfig, &ldmaRXDescriptor, dma_callback, NULL);
DMADRV_LdmaStartTransfer(tx_ldma_channel, &ldmaTXConfig, &ldmaTXDescriptor, NULL, NULL);
if (osSemaphoreAcquire(transfer_done_semaphore, 1000) != osOK)
{
BREAKPOINT();
}
}
osMutexRelease(ncp_transfer_mutex);
#if SL_SPICTRL_MUX
sl_wfx_host_spi_cs_deassert();
#endif // SL_SPICTRL_MUX
return SL_STATUS_OK;
}
void sl_si91x_host_hold_in_reset(void)
{
GPIO_PinModeSet(RESET_PIN.port, RESET_PIN.pin, gpioModePushPull, 1);
GPIO_PinOutClear(RESET_PIN.port, RESET_PIN.pin);
}
void sl_si91x_host_release_from_reset(void)
{
GPIO_PinModeSet(RESET_PIN.port, RESET_PIN.pin, gpioModeWiredOrPullDown, 1);
}
void sl_si91x_host_enable_bus_interrupt(void)
{
NVIC_ClearPendingIRQ(GPIO_ODD_IRQn);
NVIC_EnableIRQ(GPIO_ODD_IRQn);
}
void sl_si91x_host_disable_bus_interrupt(void)
{
NVIC_DisableIRQ(GPIO_ODD_IRQn);
}
bool sl_si91x_host_is_in_irq_context(void)
{
return (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) != 0U;
}