blob: e99f913369eda805075b9dfcd6b10b4897dce237 [file] [log] [blame]
/*
*
* Copyright (c) 2020-2022 Project CHIP Authors
* Copyright (c) 2020 Nest Labs, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides the implementation of the Device Layer ConfigurationManager object
* for NXP platforms using the NXP SDK.
*/
/* this file behaves like a config.h, comes first */
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include "NXPConfig.h"
#include <platform/ConfigurationManager.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/internal/GenericConfigurationManagerImpl.ipp>
#include "fsl_device_registers.h"
#if CONFIG_CHIP_PLAT_LOAD_REAL_FACTORY_DATA
#include "FactoryDataProvider.h"
#endif
#if CHIP_DEVICE_CONFIG_ENABLE_WPA
extern "C" {
#include "wlan.h"
}
#endif
namespace chip {
namespace DeviceLayer {
using namespace ::chip::DeviceLayer::Internal;
ConfigurationManagerImpl & ConfigurationManagerImpl::GetDefaultInstance()
{
static ConfigurationManagerImpl sInstance;
return sInstance;
}
CHIP_ERROR ConfigurationManagerImpl::Init()
{
CHIP_ERROR err;
uint32_t rebootCount = 0;
bool failSafeArmed;
// Initialize the generic implementation base class.
err = Internal::GenericConfigurationManagerImpl<NXPConfig>::Init();
SuccessOrExit(err);
if (NXPConfig::ConfigValueExists(NXPConfig::kCounterKey_RebootCount))
{
err = GetRebootCount(rebootCount);
SuccessOrExit(err);
err = StoreRebootCount(rebootCount + 1);
SuccessOrExit(err);
}
else
{
// The first boot after factory reset of the Node.
err = StoreRebootCount(1);
SuccessOrExit(err);
}
if (!NXPConfig::ConfigValueExists(NXPConfig::kCounterKey_TotalOperationalHours))
{
err = StoreTotalOperationalHours(0);
SuccessOrExit(err);
}
if (!NXPConfig::ConfigValueExists(NXPConfig::kCounterKey_BootReason))
{
err = StoreBootReason(to_underlying(BootReasonType::kUnspecified));
SuccessOrExit(err);
}
// TODO: Initialize the global GroupKeyStore object here
err = CHIP_NO_ERROR;
exit:
return err;
}
CHIP_ERROR ConfigurationManagerImpl::GetPrimaryWiFiMACAddress(uint8_t * buf)
{
#if CHIP_DEVICE_CONFIG_ENABLE_WPA
if (wlan_get_mac_address(buf) != WM_SUCCESS)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
#else
(void) memset(&buf[0], 0, 6); // this is to avoid compilation error in GenericConfigurationManagerImpl.cpp
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
#endif
}
CHIP_ERROR ConfigurationManagerImpl::GetUniqueId(char * buf, size_t bufSize)
{
CHIP_ERROR err;
size_t uniqueIdLen = 0; // without counting null-terminator
err = ReadConfigValueStr(NXPConfig::kConfigKey_UniqueId, buf, bufSize, uniqueIdLen);
ReturnErrorOnFailure(err);
ReturnErrorCodeIf(uniqueIdLen >= bufSize, CHIP_ERROR_BUFFER_TOO_SMALL);
ReturnErrorCodeIf(buf[uniqueIdLen] != 0, CHIP_ERROR_INVALID_STRING_LENGTH);
return err;
}
CHIP_ERROR ConfigurationManagerImpl::StoreUniqueId(const char * uniqueId, size_t uniqueIdLen)
{
return WriteConfigValueStr(NXPConfig::kConfigKey_UniqueId, uniqueId, uniqueIdLen);
}
CHIP_ERROR ConfigurationManagerImpl::GenerateUniqueId(char * buf, size_t bufSize)
{
uint64_t randomUniqueId = Crypto::GetRandU64();
return Encoding::BytesToUppercaseHexString(reinterpret_cast<uint8_t *>(&randomUniqueId), sizeof(uint64_t), buf, bufSize);
}
bool ConfigurationManagerImpl::CanFactoryReset()
{
// TODO: query the application to determine if factory reset is allowed.
return true;
}
void ConfigurationManagerImpl::InitiateFactoryReset()
{
PlatformMgr().ScheduleWork(DoFactoryReset);
}
CHIP_ERROR ConfigurationManagerImpl::ReadPersistedStorageValue(::chip::Platform::PersistedStorage::Key persistedStorageKey,
uint32_t & value)
{
CHIP_ERROR err;
err = NXPConfig::ReadConfigValueCounter(persistedStorageKey, value);
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
err = CHIP_ERROR_PERSISTED_STORAGE_VALUE_NOT_FOUND;
}
SuccessOrExit(err);
exit:
return err;
}
CHIP_ERROR ConfigurationManagerImpl::WritePersistedStorageValue(::chip::Platform::PersistedStorage::Key persistedStorageKey,
uint32_t value)
{
// This method reads Chip Persisted Counter type nvm3 objects.
// (where persistedStorageKey represents an index to the counter).
CHIP_ERROR err;
err = NXPConfig::WriteConfigValueCounter(persistedStorageKey, value);
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
err = CHIP_ERROR_PERSISTED_STORAGE_VALUE_NOT_FOUND;
}
SuccessOrExit(err);
exit:
return err;
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, bool & val)
{
return NXPConfig::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, uint32_t & val)
{
return NXPConfig::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValue(Key key, uint64_t & val)
{
return NXPConfig::ReadConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValueStr(Key key, char * buf, size_t bufSize, size_t & outLen)
{
return NXPConfig::ReadConfigValueStr(key, buf, bufSize, outLen);
}
CHIP_ERROR ConfigurationManagerImpl::ReadConfigValueBin(Key key, uint8_t * buf, size_t bufSize, size_t & outLen)
{
return NXPConfig::ReadConfigValueBin(key, buf, bufSize, outLen);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, bool val)
{
return NXPConfig::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, uint32_t val)
{
return NXPConfig::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValue(Key key, uint64_t val)
{
return NXPConfig::WriteConfigValue(key, val);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueStr(Key key, const char * str)
{
return NXPConfig::WriteConfigValueStr(key, str);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueStr(Key key, const char * str, size_t strLen)
{
return NXPConfig::WriteConfigValueStr(key, str, strLen);
}
CHIP_ERROR ConfigurationManagerImpl::WriteConfigValueBin(Key key, const uint8_t * data, size_t dataLen)
{
return NXPConfig::WriteConfigValueBin(key, data, dataLen);
}
void ConfigurationManagerImpl::RunConfigUnitTest(void)
{
NXPConfig::RunConfigUnitTest();
}
void ConfigurationManagerImpl::DoFactoryReset(intptr_t arg)
{
CHIP_ERROR err;
ChipLogProgress(DeviceLayer, "Performing factory reset");
err = NXPConfig::FactoryResetConfig();
if (err != CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "FactoryResetConfig() failed: %s", ErrorStr(err));
}
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
ThreadStackMgr().ErasePersistentInfo();
#endif // CHIP_DEVICE_CONFIG_ENABLE_THREAD
/* Schedule a reset in the next idle call */
PlatformMgrImpl().ScheduleResetInIdle();
}
CHIP_ERROR ConfigurationManagerImpl::GetRebootCount(uint32_t & rebootCount)
{
return ReadConfigValue(NXPConfig::kCounterKey_RebootCount, rebootCount);
}
CHIP_ERROR ConfigurationManagerImpl::StoreRebootCount(uint32_t rebootCount)
{
return WriteConfigValue(NXPConfig::kCounterKey_RebootCount, rebootCount);
}
CHIP_ERROR ConfigurationManagerImpl::GetBootReason(uint32_t & bootReason)
{
return ReadConfigValue(NXPConfig::kCounterKey_BootReason, bootReason);
}
CHIP_ERROR ConfigurationManagerImpl::StoreBootReason(uint32_t bootReason)
{
return WriteConfigValue(NXPConfig::kCounterKey_BootReason, bootReason);
}
CHIP_ERROR ConfigurationManagerImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
return ReadConfigValue(NXPConfig::kCounterKey_TotalOperationalHours, totalOperationalHours);
}
CHIP_ERROR ConfigurationManagerImpl::StoreTotalOperationalHours(uint32_t totalOperationalHours)
{
return WriteConfigValue(NXPConfig::kCounterKey_TotalOperationalHours, totalOperationalHours);
}
ConfigurationManager & ConfigurationMgrImpl()
{
return ConfigurationManagerImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip