blob: 98fd9b7e6193611280fbd13bee0ccf3c21f8a7fb [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* Copyright (c) 2014-2017 Nest Labs, Inc.
* Copyright (c) 2001-2003 Swedish Institute of Computer Science.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Copyright (c) 2001-2003 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
/*
* Wed Apr 17 16:05:29 EDT 2002 (James Roth)
*
* - Fixed an unlikely sys_thread_new() race condition.
*
* - Made current_thread() work with threads which where
* not created with sys_thread_new(). This includes
* the main thread and threads made with pthread_create().
*
* - Catch overflows where more than SYS_MBOX_SIZE messages
* are waiting to be read. The sys_mbox_post() routine
* will block until there is more room instead of just
* leaking messages.
*/
#include "lwip/debug.h"
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <lib/support/CHIPPlatformMemory.h>
#include "lwip/opt.h"
#include "lwip/stats.h"
#include "lwip/sys.h"
#define UMAX(a, b) ((a) > (b) ? (a) : (b))
static struct timeval starttime;
#if !NO_SYS
static struct sys_thread * threads = NULL;
static pthread_mutex_t threads_mutex = PTHREAD_MUTEX_INITIALIZER;
struct sys_mbox_msg
{
struct sys_mbox_msg * next;
void * msg;
};
#define SYS_MBOX_SIZE 128
struct sys_mbox
{
int first, last;
void * msgs[SYS_MBOX_SIZE];
struct sys_sem * not_empty;
struct sys_sem * not_full;
struct sys_sem * mutex;
int wait_send;
};
struct sys_sem
{
unsigned int c;
pthread_cond_t cond;
pthread_mutex_t mutex;
};
struct sys_thread
{
struct sys_thread * next;
pthread_t pthread;
};
#if SYS_LIGHTWEIGHT_PROT
static pthread_mutex_t lwprot_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_t lwprot_thread = (pthread_t) 0xDEAD;
static int lwprot_count = 0;
#endif /* SYS_LIGHTWEIGHT_PROT */
static struct sys_sem * sys_sem_new_internal(u8_t count);
static void sys_sem_free_internal(struct sys_sem * sem);
static u32_t cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex, u32_t timeout);
/*-----------------------------------------------------------------------------------*/
static struct sys_thread * introduce_thread(pthread_t id)
{
struct sys_thread * thread;
thread = (struct sys_thread *) CHIPPlatformMemoryAlloc(sizeof(struct sys_thread));
if (thread != NULL)
{
pthread_mutex_lock(&threads_mutex);
thread->next = threads;
thread->pthread = id;
threads = thread;
pthread_mutex_unlock(&threads_mutex);
}
return thread;
}
/*-----------------------------------------------------------------------------------*/
static void finish_thread(struct sys_thread * thread)
{
struct sys_thread * cursor;
struct sys_thread * previous;
if (thread != NULL)
{
pthread_mutex_lock(&threads_mutex);
previous = NULL;
cursor = threads;
while (cursor != NULL)
{
if (cursor == thread)
{
if (previous != NULL)
{
previous->next = cursor->next;
}
else
{
threads = cursor->next;
}
cursor->next = NULL;
cursor->pthread = 0;
break;
}
previous = cursor;
cursor = cursor->next;
}
pthread_mutex_unlock(&threads_mutex);
CHIPPlatformMemoryFree(thread);
}
}
/*-----------------------------------------------------------------------------------*/
sys_thread_t sys_thread_new(const char * name, lwip_thread_fn function, void * arg, int stacksize, int prio)
{
int code;
pthread_t tmp;
struct sys_thread * st = NULL;
LWIP_UNUSED_ARG(name);
LWIP_UNUSED_ARG(stacksize);
LWIP_UNUSED_ARG(prio);
code = pthread_create(&tmp, NULL, (void * (*) (void *) ) function, arg);
if (0 == code)
{
st = introduce_thread(tmp);
}
if (NULL == st)
{
LWIP_DEBUGF(SYS_DEBUG, ("sys_thread_new: pthread_create %d, st = 0x%lx", code, (unsigned long) st));
abort();
}
return st;
}
/*-----------------------------------------------------------------------------------*/
err_t sys_thread_finish(sys_thread_t t)
{
int code;
code = pthread_join(t->pthread, NULL);
if (0 == code)
{
finish_thread(t);
return ERR_OK;
}
return ERR_VAL;
}
/*-----------------------------------------------------------------------------------*/
err_t sys_mbox_new_extra(void * pool, struct sys_mbox ** mb, int size)
{
return sys_mbox_new(mb, size);
}
err_t sys_mbox_new(struct sys_mbox ** mb, int size)
{
struct sys_mbox * mbox;
LWIP_UNUSED_ARG(size);
mbox = (struct sys_mbox *) CHIPPlatformMemoryAlloc(sizeof(struct sys_mbox));
if (mbox == NULL)
{
return ERR_MEM;
}
mbox->first = mbox->last = 0;
mbox->not_empty = sys_sem_new_internal(0);
mbox->not_full = sys_sem_new_internal(0);
mbox->mutex = sys_sem_new_internal(1);
mbox->wait_send = 0;
SYS_STATS_INC_USED(mbox);
*mb = mbox;
return ERR_OK;
}
/*-----------------------------------------------------------------------------------*/
void sys_mbox_free(struct sys_mbox ** mb)
{
if ((mb != NULL) && (*mb != SYS_MBOX_NULL))
{
struct sys_mbox * mbox = *mb;
SYS_STATS_DEC(mbox.used);
sys_arch_sem_wait(&mbox->mutex, 0);
sys_sem_free_internal(mbox->not_empty);
sys_sem_free_internal(mbox->not_full);
sys_sem_free_internal(mbox->mutex);
mbox->not_empty = mbox->not_full = mbox->mutex = NULL;
/* LWIP_DEBUGF("sys_mbox_free: mbox 0x%lx\n", mbox); */
CHIPPlatformMemoryFree(mbox);
}
}
/*-----------------------------------------------------------------------------------*/
err_t sys_mbox_trypost(struct sys_mbox ** mb, void * msg)
{
u8_t first;
struct sys_mbox * mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_trypost: mbox %p msg %p\n", (void *) mbox, (void *) msg));
if ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE))
{
sys_sem_signal(&mbox->mutex);
return ERR_MEM;
}
mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg;
if (mbox->last == mbox->first)
{
first = 1;
}
else
{
first = 0;
}
mbox->last++;
if (first)
{
sys_sem_signal(&mbox->not_empty);
}
sys_sem_signal(&mbox->mutex);
return ERR_OK;
}
/*-----------------------------------------------------------------------------------*/
void sys_mbox_post(struct sys_mbox ** mb, void * msg)
{
u8_t first;
struct sys_mbox * mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_post: mbox %p msg %p\n", (void *) mbox, (void *) msg));
while ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE))
{
mbox->wait_send++;
sys_sem_signal(&mbox->mutex);
sys_arch_sem_wait(&mbox->not_full, 0);
sys_arch_sem_wait(&mbox->mutex, 0);
mbox->wait_send--;
}
mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg;
if (mbox->last == mbox->first)
{
first = 1;
}
else
{
first = 0;
}
mbox->last++;
if (first)
{
sys_sem_signal(&mbox->not_empty);
}
sys_sem_signal(&mbox->mutex);
}
/*-----------------------------------------------------------------------------------*/
u32_t sys_arch_mbox_tryfetch(struct sys_mbox ** mb, void ** msg)
{
struct sys_mbox * mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
if (mbox->first == mbox->last)
{
sys_sem_signal(&mbox->mutex);
return SYS_MBOX_EMPTY;
}
if (msg != NULL)
{
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p msg %p\n", (void *) mbox, *msg));
*msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE];
}
else
{
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p, null msg\n", (void *) mbox));
}
mbox->first++;
if (mbox->wait_send)
{
sys_sem_signal(&mbox->not_full);
}
sys_sem_signal(&mbox->mutex);
return 0;
}
/*-----------------------------------------------------------------------------------*/
u32_t sys_arch_mbox_fetch(struct sys_mbox ** mb, void ** msg, u32_t timeout)
{
u32_t time_needed = 0;
struct sys_mbox * mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
/* The mutex lock is quick so we don't bother with the timeout
stuff here. */
sys_arch_sem_wait(&mbox->mutex, 0);
while (mbox->first == mbox->last)
{
sys_sem_signal(&mbox->mutex);
/* We block while waiting for a mail to arrive in the mailbox. We
must be prepared to timeout. */
if (timeout != 0)
{
time_needed = sys_arch_sem_wait(&mbox->not_empty, timeout);
if (time_needed == SYS_ARCH_TIMEOUT)
{
return SYS_ARCH_TIMEOUT;
}
}
else
{
sys_arch_sem_wait(&mbox->not_empty, 0);
}
sys_arch_sem_wait(&mbox->mutex, 0);
}
if (msg != NULL)
{
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p msg %p\n", (void *) mbox, *msg));
*msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE];
}
else
{
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p, null msg\n", (void *) mbox));
}
mbox->first++;
if (mbox->wait_send)
{
sys_sem_signal(&mbox->not_full);
}
sys_sem_signal(&mbox->mutex);
return time_needed;
}
/*-----------------------------------------------------------------------------------*/
static struct sys_sem * sys_sem_new_internal(u8_t count)
{
struct sys_sem * sem;
sem = (struct sys_sem *) CHIPPlatformMemoryAlloc(sizeof(struct sys_sem));
if (sem != NULL)
{
sem->c = count;
pthread_cond_init(&(sem->cond), NULL);
pthread_mutex_init(&(sem->mutex), NULL);
}
return sem;
}
/*-----------------------------------------------------------------------------------*/
err_t sys_sem_new(struct sys_sem ** sem, u8_t count)
{
SYS_STATS_INC_USED(sem);
*sem = sys_sem_new_internal(count);
if (*sem == NULL)
{
return ERR_MEM;
}
return ERR_OK;
}
/*-----------------------------------------------------------------------------------*/
static u32_t cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex, u32_t timeout)
{
time_t tdiff;
time_t sec, usec;
struct timeval rtime1, rtime2;
struct timespec ts;
int retval;
if (timeout > 0)
{
/* Get a timestamp and add the timeout value. */
gettimeofday(&rtime1, NULL);
sec = rtime1.tv_sec;
usec = rtime1.tv_usec;
usec += timeout % 1000 * 1000;
sec += (int) (timeout / 1000) + (int) (usec / 1000000);
usec = usec % 1000000;
ts.tv_nsec = usec * 1000;
ts.tv_sec = sec;
retval = pthread_cond_timedwait(cond, mutex, &ts);
if (retval == ETIMEDOUT)
{
return SYS_ARCH_TIMEOUT;
}
/* Calculate for how long we waited for the cond. */
gettimeofday(&rtime2, NULL);
tdiff = (rtime2.tv_sec - rtime1.tv_sec) * 1000 + (rtime2.tv_usec - rtime1.tv_usec) / 1000;
if (tdiff <= 0)
{
return 0;
}
return (u32_t) tdiff;
}
pthread_cond_wait(cond, mutex);
return 0;
}
/*-----------------------------------------------------------------------------------*/
u32_t sys_arch_sem_wait(struct sys_sem ** s, u32_t timeout)
{
u32_t time_needed = 0;
struct sys_sem * sem;
LWIP_ASSERT("invalid sem", (s != NULL) && (*s != NULL));
sem = *s;
pthread_mutex_lock(&(sem->mutex));
while (sem->c <= 0)
{
if (timeout > 0)
{
time_needed = cond_wait(&(sem->cond), &(sem->mutex), timeout);
if (time_needed == SYS_ARCH_TIMEOUT)
{
pthread_mutex_unlock(&(sem->mutex));
return SYS_ARCH_TIMEOUT;
}
/* pthread_mutex_unlock(&(sem->mutex));
return time_needed; */
}
else
{
cond_wait(&(sem->cond), &(sem->mutex), 0);
}
}
sem->c--;
pthread_mutex_unlock(&(sem->mutex));
return time_needed;
}
/*-----------------------------------------------------------------------------------*/
void sys_sem_signal(struct sys_sem ** s)
{
struct sys_sem * sem;
LWIP_ASSERT("invalid sem", (s != NULL) && (*s != NULL));
sem = *s;
pthread_mutex_lock(&(sem->mutex));
sem->c++;
if (sem->c > 1)
{
sem->c = 1;
}
pthread_cond_broadcast(&(sem->cond));
pthread_mutex_unlock(&(sem->mutex));
}
/*-----------------------------------------------------------------------------------*/
static void sys_sem_free_internal(struct sys_sem * sem)
{
pthread_cond_destroy(&(sem->cond));
pthread_mutex_destroy(&(sem->mutex));
CHIPPlatformMemoryFree(sem);
}
/*-----------------------------------------------------------------------------------*/
void sys_sem_free(struct sys_sem ** sem)
{
if ((sem != NULL) && (*sem != SYS_SEM_NULL))
{
SYS_STATS_DEC(sem.used);
sys_sem_free_internal(*sem);
}
}
#endif /* !NO_SYS */
/*-----------------------------------------------------------------------------------*/
u32_t sys_now(void)
{
struct timeval tv;
u32_t msec;
gettimeofday(&tv, NULL);
msec = (u32_t) ((tv.tv_sec - starttime.tv_sec) * 1000 + (tv.tv_usec - starttime.tv_usec) / 1000);
return msec;
}
/*-----------------------------------------------------------------------------------*/
void sys_init(void)
{
gettimeofday(&starttime, NULL);
}
/*-----------------------------------------------------------------------------------*/
#if SYS_LIGHTWEIGHT_PROT
/** sys_prot_t sys_arch_protect(void)
This optional function does a "fast" critical region protection and returns
the previous protection level. This function is only called during very short
critical regions. An embedded system which supports ISR-based drivers might
want to implement this function by disabling interrupts. Task-based systems
might want to implement this by using a mutex or disabling tasking. This
function should support recursive calls from the same task or interrupt. In
other words, sys_arch_protect() could be called while already protected. In
that case the return value indicates that it is already protected.
sys_arch_protect() is only required if your port is supporting an operating
system.
*/
sys_prot_t sys_arch_protect(void)
{
/* Note that for the UNIX port, we are using a lightweight mutex, and our
* own counter (which is locked by the mutex). The return code is not actually
* used. */
if (lwprot_thread != pthread_self())
{
/* We are locking the mutex where it has not been locked before *
* or is being locked by another thread */
pthread_mutex_lock(&lwprot_mutex);
lwprot_thread = pthread_self();
lwprot_count = 1;
}
else
/* It is already locked by THIS thread */
lwprot_count++;
return 0;
}
/*-----------------------------------------------------------------------------------*/
/** void sys_arch_unprotect(sys_prot_t pval)
This optional function does a "fast" set of critical region protection to the
value specified by pval. See the documentation for sys_arch_protect() for
more information. This function is only required if your port is supporting
an operating system.
*/
void sys_arch_unprotect(sys_prot_t pval)
{
LWIP_UNUSED_ARG(pval);
if (lwprot_thread == pthread_self())
{
if (--lwprot_count == 0)
{
lwprot_thread = (pthread_t) 0xDEAD;
pthread_mutex_unlock(&lwprot_mutex);
}
}
}
#endif /* SYS_LIGHTWEIGHT_PROT */
/*-----------------------------------------------------------------------------------*/
#ifndef MAX_JIFFY_OFFSET
#define MAX_JIFFY_OFFSET ((~0U >> 1) - 1)
#endif
#ifndef HZ
#define HZ 100
#endif
u32_t sys_jiffies(void)
{
struct timeval tv;
unsigned long sec;
long usec;
gettimeofday(&tv, NULL);
sec = tv.tv_sec - starttime.tv_sec;
usec = tv.tv_usec;
if (sec >= (MAX_JIFFY_OFFSET / HZ))
return MAX_JIFFY_OFFSET;
usec += 1000000L / HZ - 1;
usec /= 1000000L / HZ;
return HZ * sec + usec;
}
#if PPP_DEBUG
#include <stdarg.h>
void ppp_trace(int level, const char * format, ...)
{
va_list args;
(void) level;
va_start(args, format);
vprintf(format, args);
va_end(args);
}
#endif
#ifdef LWIP_DEBUG
unsigned char gLwIP_DebugFlags = 0;
#endif