blob: a375a9635f3b6a4efd574d6c4cdb7d3916a1a9bf [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for Genio platform.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/mt793x/DiagnosticDataProviderImpl.h>
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
#include <platform/OpenThread/GenericThreadStackManagerImpl_OpenThread.h>
#endif
#include <lwip/tcpip.h>
// #include "AppConfig.h"
#include "FreeRTOS.h"
using namespace ::chip::app::Clusters::GeneralDiagnostics;
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
// Software Diagnostics Getters
/*
* The following Heap stats keeps track of the number of calls to allocate
* and free memory as well as the number of free bytes remaining, but says
* nothing about fragmentation.
*/
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
size_t freeHeapSize = xPortGetFreeHeapSize();
currentHeapFree = static_cast<uint64_t>(freeHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
// Calculate the Heap used based on Total heap - Free heap
int64_t heapUsed = (configTOTAL_HEAP_SIZE - xPortGetFreeHeapSize());
// Something went wrong, this should not happen
VerifyOrReturnError(heapUsed >= 0, CHIP_ERROR_INVALID_INTEGER_VALUE);
currentHeapUsed = static_cast<uint64_t>(heapUsed);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
// FreeRTOS records the lowest amount of available heap during runtime
// currentHeapHighWatermark wants the highest heap usage point so we calculate it here
int64_t HighestHeapUsageRecorded = (configTOTAL_HEAP_SIZE - xPortGetMinimumEverFreeHeapSize());
// Something went wrong, this should not happen
VerifyOrReturnError(HighestHeapUsageRecorded >= 0, CHIP_ERROR_INVALID_INTEGER_VALUE);
currentHeapHighWatermark = static_cast<uint64_t>(HighestHeapUsageRecorded);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks()
{
// If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the
// value of the CurrentHeapUsed.
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut)
{
*threadMetricsOut = NULL;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics)
{
while (threadMetrics)
{
ThreadMetrics * del = threadMetrics;
threadMetrics = threadMetrics->Next;
delete del;
}
}
// General Diagnostics Getters
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = 0;
CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
bootReason = static_cast<BootReasonType>(reason);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveHardwareFaults(GeneralFaults<kMaxHardwareFaults> & hardwareFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kRadio)));
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kSensor)));
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kPowerSource)));
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kUserInterfaceFault)));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveRadioFaults(GeneralFaults<kMaxRadioFaults> & radioFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(radioFaults.add(to_underlying(RadioFaultEnum::kThreadFault)));
ReturnErrorOnFailure(radioFaults.add(to_underlying(RadioFaultEnum::kBLEFault)));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveNetworkFaults(GeneralFaults<kMaxNetworkFaults> & networkFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kHardwareFailure)));
ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kNetworkJammed)));
ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kConnectionFailed)));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
NetworkInterface * ifp = new NetworkInterface();
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance());
ifp->name = Span<const char>(threadNetworkName, strlen(threadNetworkName));
ifp->fabricConnected = true;
ifp->offPremiseServicesReachableIPv4.SetNonNull(false);
ifp->offPremiseServicesReachableIPv6.SetNonNull(false);
ifp->type = InterfaceTypeEnum::kThread;
#else
/* TODO */
#endif
uint8_t macBuffer[ConfigurationManager::kPrimaryMACAddressLength];
ConfigurationMgr().GetPrimary802154MACAddress(macBuffer);
ifp->hardwareAddress = ByteSpan(macBuffer, ConfigurationManager::kPrimaryMACAddressLength);
*netifpp = ifp;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip