blob: 5bfbc5c44e839bfea58052c0c8c289938712e435 [file] [log] [blame]
#
# Copyright (c) 2023 Project CHIP Authors
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from dataclasses import dataclass
from typing import Any, Callable
import chip.clusters as Clusters
import chip.clusters.ClusterObjects
import chip.tlv
from basic_composition_support import BasicCompositionTests
from chip import ChipUtility
from chip.clusters.Attribute import ValueDecodeFailure
from chip.clusters.ClusterObjects import ClusterAttributeDescriptor, ClusterObjectFieldDescriptor
from chip.interaction_model import InteractionModelError, Status
from chip.tlv import uint
from global_attribute_ids import GlobalAttributeIds
from matter_testing_support import (AttributePathLocation, ClusterPathLocation, CommandPathLocation, MatterBaseTest,
async_test_body, default_matter_test_main)
from mobly import asserts
from taglist_and_topology_test_support import (create_device_type_list_for_root, create_device_type_lists, find_tag_list_problems,
find_tree_roots, flat_list_ok, get_direct_children_of_root, parts_list_cycles,
separate_endpoint_types)
def check_int_in_range(min_value: int, max_value: int, allow_null: bool = False) -> Callable:
"""Returns a checker for whether `obj` is an int that fits in a range."""
def int_in_range_checker(obj: Any):
"""Inner checker logic for check_int_in_range
Checker validates that `obj` must have decoded as an integral value in range [min_value, max_value].
On failure, a ValueError is raised with a diagnostic message.
"""
if obj is None and allow_null:
return
if not isinstance(obj, int) and not isinstance(obj, chip.tlv.uint):
raise ValueError(f"Value {str(obj)} is not an integer or uint (decoded type: {type(obj)})")
int_val = int(obj)
if (int_val < min_value) or (int_val > max_value):
raise ValueError(
f"Value {int_val} (0x{int_val:X}) not in range [{min_value}, {max_value}] ([0x{min_value:X}, 0x{max_value:X}])")
return int_in_range_checker
def check_list_of_ints_in_range(min_value: int, max_value: int, min_size: int = 0, max_size: int = 65535, allow_null: bool = False) -> Callable:
"""Returns a checker for whether `obj` is a list of ints that fit in a range."""
def list_of_ints_in_range_checker(obj: Any):
"""Inner checker for check_list_of_ints_in_range.
Checker validates that `obj` must have decoded as a list of integral values in range [min_value, max_value].
The length of the list must be between [min_size, max_size].
On failure, a ValueError is raised with a diagnostic message.
"""
if obj is None and allow_null:
return
if not isinstance(obj, list):
raise ValueError(f"Value {str(obj)} is not a list, but a list was expected (decoded type: {type(obj)})")
if len(obj) < min_size or len(obj) > max_size:
raise ValueError(
f"Value {str(obj)} is a list of size {len(obj)}, but expected a list with size in range [{min_size}, {max_size}]")
for val_idx, val in enumerate(obj):
if not isinstance(val, int) and not isinstance(val, chip.tlv.uint):
raise ValueError(
f"At index {val_idx} in {str(obj)}, value {val} is not an int/uint, but an int/uint was expected (decoded type: {type(val)})")
int_val = int(val)
if not ((int_val >= min_value) and (int_val <= max_value)):
raise ValueError(
f"At index {val_idx} in {str(obj)}, value {int_val} (0x{int_val:X}) not in range [{min_value}, {max_value}] ([0x{min_value:X}, 0x{max_value:X}])")
return list_of_ints_in_range_checker
def check_non_empty_list_of_ints_in_range(min_value: int, max_value: int, max_size: int = 65535, allow_null: bool = False) -> Callable:
"""Returns a checker for whether `obj` is a non-empty list of ints that fit in a range."""
return check_list_of_ints_in_range(min_value, max_value, min_size=1, max_size=max_size, allow_null=allow_null)
def check_no_duplicates(obj: Any) -> None:
if not isinstance(obj, list):
raise ValueError(f"Value {str(obj)} is not a list, but a list was expected (decoded type: {type(obj)})")
if len(set(obj)) != len(obj):
raise ValueError(f"Value {str(obj)} contains duplicate values")
class TC_DeviceBasicComposition(MatterBaseTest, BasicCompositionTests):
@async_test_body
async def setup_class(self):
super().setup_class()
await self.setup_class_helper()
# ======= START OF ACTUAL TESTS =======
def test_TC_SM_1_1(self):
ROOT_NODE_DEVICE_TYPE = 0x16
self.print_step(1, "Perform a wildcard read of attributes on all endpoints - already done")
self.print_step(2, "Verify that endpoint 0 exists")
if 0 not in self.endpoints:
self.record_error(self.get_test_name(), location=AttributePathLocation(endpoint_id=0),
problem="Did not find Endpoint 0.", spec_location="Endpoint Composition")
self.fail_current_test()
self.print_step(3, "Verify that endpoint 0 descriptor cluster includes the root node device type")
if Clusters.Descriptor not in self.endpoints[0]:
self.record_error(self.get_test_name(), location=AttributePathLocation(endpoint_id=0),
problem="No descriptor cluster on Endpoint 0", spec_location="Root node device type")
self.fail_current_test()
listed_device_types = [i.deviceType for i in self.endpoints[0]
[Clusters.Descriptor][Clusters.Descriptor.Attributes.DeviceTypeList]]
if ROOT_NODE_DEVICE_TYPE not in listed_device_types:
self.record_error(self.get_test_name(), location=AttributePathLocation(endpoint_id=0),
problem="Root node device type not listed on endpoint 0", spec_location="Root node device type")
self.fail_current_test()
self.print_step(4, "Verify that the root node device type does not appear in any of the non-zero endpoints")
for endpoint_id, endpoint in self.endpoints.items():
if endpoint_id == 0:
continue
listed_device_types = [i.deviceType for i in endpoint[Clusters.Descriptor]
[Clusters.Descriptor.Attributes.DeviceTypeList]]
if ROOT_NODE_DEVICE_TYPE in listed_device_types:
self.record_error(self.get_test_name(), location=AttributePathLocation(endpoint_id=endpoint_id),
problem=f'Root node device type listed on endpoint {endpoint_id}', spec_location="Root node device type")
self.fail_current_test()
self.print_step(5, "Verify the existence of all the root node clusters on EP0")
root = self.endpoints[0]
required_clusters = [Clusters.BasicInformation, Clusters.AccessControl, Clusters.GroupKeyManagement,
Clusters.GeneralCommissioning, Clusters.AdministratorCommissioning, Clusters.OperationalCredentials, Clusters.GeneralDiagnostics]
for c in required_clusters:
if c not in root:
self.record_error(self.get_test_name(), location=AttributePathLocation(endpoint_id=0),
problem=f'Root node does not contain required cluster {c}', spec_location="Root node device type")
self.fail_current_test()
def test_TC_DT_1_1(self):
self.print_step(1, "Perform a wildcard read of attributes on all endpoints - already done")
self.print_step(2, "Verify that each endpoint includes a descriptor cluster")
success = True
for endpoint_id, endpoint in self.endpoints.items():
has_descriptor = (Clusters.Descriptor in endpoint)
logging.info(f"Checking descriptor on Endpoint {endpoint_id}: {'found' if has_descriptor else 'not_found'}")
if not has_descriptor:
self.record_error(self.get_test_name(), location=AttributePathLocation(endpoint_id=endpoint_id, cluster_id=Clusters.Descriptor.id),
problem=f"Did not find a descriptor on endpoint {endpoint_id}", spec_location="Base Cluster Requirements for Matter")
success = False
if not success:
self.fail_current_test("At least one endpoint was missing the descriptor cluster.")
async def _read_non_standard_attribute_check_unsupported_read(self, endpoint_id, cluster_id, attribute_id) -> bool:
@dataclass
class TempAttribute(ClusterAttributeDescriptor):
@ChipUtility.classproperty
def cluster_id(cls) -> int:
return cluster_id
@ChipUtility.classproperty
def attribute_id(cls) -> int:
return attribute_id
@ChipUtility.classproperty
def attribute_type(cls) -> ClusterObjectFieldDescriptor:
return ClusterObjectFieldDescriptor(Type=uint)
@ChipUtility.classproperty
def standard_attribute(cls) -> bool:
return False
value: 'uint' = 0
result = await self.default_controller.Read(nodeid=self.dut_node_id, attributes=[(endpoint_id, TempAttribute)])
try:
attr_ret = result.tlvAttributes[endpoint_id][cluster_id][attribute_id]
except KeyError:
attr_ret = None
error_type_ok = attr_ret is not None and isinstance(
attr_ret, Clusters.Attribute.ValueDecodeFailure) and isinstance(attr_ret.Reason, InteractionModelError)
got_expected_error = error_type_ok and attr_ret.Reason.status == Status.UnsupportedRead
return got_expected_error
@async_test_body
async def test_TC_IDM_10_1(self):
self.print_step(1, "Perform a wildcard read of attributes on all endpoints - already done")
@dataclass
class RequiredMandatoryAttribute:
id: int
name: str
validators: list[Callable]
ATTRIBUTES_TO_CHECK = [
RequiredMandatoryAttribute(id=GlobalAttributeIds.CLUSTER_REVISION_ID, name="ClusterRevision",
validators=[check_int_in_range(1, 0xFFFF)]),
RequiredMandatoryAttribute(id=GlobalAttributeIds.FEATURE_MAP_ID, name="FeatureMap",
validators=[check_int_in_range(0, 0xFFFF_FFFF)]),
RequiredMandatoryAttribute(id=GlobalAttributeIds.ATTRIBUTE_LIST_ID, name="AttributeList",
validators=[check_non_empty_list_of_ints_in_range(0, 0xFFFF_FFFF), check_no_duplicates]),
# TODO: Check for EventList
# RequiredMandatoryAttribute(id=0xFFFA, name="EventList", validator=check_list_of_ints_in_range(0, 0xFFFF_FFFF)),
RequiredMandatoryAttribute(id=GlobalAttributeIds.ACCEPTED_COMMAND_LIST_ID, name="AcceptedCommandList",
validators=[check_list_of_ints_in_range(0, 0xFFFF_FFFF), check_no_duplicates]),
RequiredMandatoryAttribute(id=GlobalAttributeIds.GENERATED_COMMAND_LIST_ID, name="GeneratedCommandList",
validators=[check_list_of_ints_in_range(0, 0xFFFF_FFFF), check_no_duplicates]),
]
self.print_step(2, "Validate all global attributes are present")
success = True
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
for req_attribute in ATTRIBUTES_TO_CHECK:
attribute_string = self.cluster_mapper.get_attribute_string(cluster_id, req_attribute.id)
has_attribute = (req_attribute.id in cluster)
location = AttributePathLocation(endpoint_id, cluster_id, req_attribute.id)
logging.debug(
f"Checking for mandatory global {attribute_string} on {location.as_cluster_string(self.cluster_mapper)}: {'found' if has_attribute else 'not_found'}")
# Check attribute is actually present
if not has_attribute:
self.record_error(self.get_test_name(), location=location,
problem=f"Did not find mandatory global {attribute_string} on {location.as_cluster_string(self.cluster_mapper)}", spec_location="Global Elements")
success = False
continue
self.print_step(3, "Validate the global attributes are in range and do not contain duplicates")
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
for req_attribute in ATTRIBUTES_TO_CHECK:
# Validate attribute value based on the provided validators.
for validator in req_attribute.validators:
try:
validator(cluster[req_attribute.id])
except ValueError as e:
location = AttributePathLocation(endpoint_id, cluster_id, req_attribute.id)
self.record_error(self.get_test_name(), location=location,
problem=f"Failed validation of value on {location.as_string(self.cluster_mapper)}: {str(e)}", spec_location="Global Elements")
success = False
continue
except KeyError:
# A KeyError here means the attribute does not exist. This problem was already recorded in step 2,
# but we don't assert until the end of the test, so ignore this and don't re-record the error.
continue
self.print_step(4, "Validate the attribute list exactly matches the set of reported attributes")
if success:
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
attribute_list = cluster[GlobalAttributeIds.ATTRIBUTE_LIST_ID]
for attribute_id in attribute_list:
location = AttributePathLocation(endpoint_id, cluster_id, attribute_id)
has_attribute = attribute_id in cluster
attribute_string = self.cluster_mapper.get_attribute_string(cluster_id, attribute_id)
logging.debug(
f"Checking presence of claimed supported {attribute_string} on {location.as_cluster_string(self.cluster_mapper)}: {'found' if has_attribute else 'not_found'}")
if not has_attribute:
# Check if this is a write-only attribute by trying to read it.
# If it's present and write-only it should return an UNSUPPORTED_READ error. All other errors are a failure.
# Because these can be MEI attributes, we need to build the ClusterAttributeDescriptor manually since it's
# not guaranteed to be generated. Since we expect an error back anyway, the type doesn't matter.
write_only_attribute = await self._read_non_standard_attribute_check_unsupported_read(
endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=attribute_id)
if not write_only_attribute:
self.record_error(self.get_test_name(), location=location,
problem=f"Did not find {attribute_string} on {location.as_cluster_string(self.cluster_mapper)} when it was claimed in AttributeList ({attribute_list})", spec_location="AttributeList Attribute")
success = False
continue
attribute_value = cluster[attribute_id]
if isinstance(attribute_value, ValueDecodeFailure):
self.record_warning(self.get_test_name(), location=location,
problem=f"Found a failure to read/decode {attribute_string} on {location.as_cluster_string(self.cluster_mapper)} when it was claimed as supported in AttributeList ({attribute_list}): {str(attribute_value)}", spec_location="AttributeList Attribute")
# Warn only for now
# TODO: Fail in the future
continue
for attribute_id in cluster:
if attribute_id not in attribute_list:
attribute_string = self.cluster_mapper.get_attribute_string(cluster_id, attribute_id)
location = AttributePathLocation(endpoint_id, cluster_id, attribute_id)
self.record_error(self.get_test_name(), location=location,
problem=f'Found attribute {attribute_string} on {location.as_cluster_string(self.cluster_mapper)} not listed in attribute list', spec_location="AttributeList Attribute")
success = False
self.print_step(
5, "Validate that the global attributes do not contain any additional values in the standard or scoped range that are not defined by the cluster specification")
# Validate there are attributes in the global range that are not in the required list
allowed_globals = [a.id for a in ATTRIBUTES_TO_CHECK]
# also allow event list because it's not disallowed
event_list_id = 0xFFFA
allowed_globals.append(event_list_id)
global_range_min = 0x0000_F000
attribute_standard_range_max = 0x000_4FFF
mei_range_min = 0x0001_0000
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
globals = [a for a in cluster[GlobalAttributeIds.ATTRIBUTE_LIST_ID] if a >= global_range_min and a < mei_range_min]
unexpected_globals = sorted(list(set(globals) - set(allowed_globals)))
for unexpected in unexpected_globals:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=unexpected)
self.record_error(self.get_test_name(), location=location,
problem=f"Unexpected global attribute {unexpected} in cluster {cluster_id}", spec_location="Global elements")
success = False
# validate that all the returned attributes in the standard clusters contain only known attribute ids
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
if cluster_id not in chip.clusters.ClusterObjects.ALL_ATTRIBUTES:
# Skip clusters that are not part of the standard generated corpus (e.g. MS clusters)
continue
standard_attributes = [a for a in cluster[GlobalAttributeIds.ATTRIBUTE_LIST_ID]
if a <= attribute_standard_range_max]
allowed_standard_attributes = chip.clusters.ClusterObjects.ALL_ATTRIBUTES[cluster_id]
unexpected_standard_attributes = sorted(list(set(standard_attributes) - set(allowed_standard_attributes)))
for unexpected in unexpected_standard_attributes:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=unexpected)
self.record_error(self.get_test_name(), location=location,
problem=f"Unexpected standard attribute {unexpected} in cluster {cluster_id}", spec_location=f"Cluster {cluster_id}")
success = False
# validate there are no attributes in the range between standard and global
# This is de-facto already covered in the check above, assuming the spec hasn't defined any values in this range, but we should make sure
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
bad_range_values = [a for a in cluster[GlobalAttributeIds.ATTRIBUTE_LIST_ID] if a >
attribute_standard_range_max and a < global_range_min]
for bad in bad_range_values:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=bad)
self.record_error(self.get_test_name(), location=location,
problem=f"Attribute in undefined range {bad} in cluster {cluster_id}", spec_location=f"Cluster {cluster_id}")
success = False
command_standard_range_max = 0x0000_00FF
# Command lists only have a scoped range, so we only need to check for known command ids, no global range check
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
if cluster_id not in chip.clusters.ClusterObjects.ALL_CLUSTERS:
continue
standard_accepted_commands = [
a for a in cluster[GlobalAttributeIds.ACCEPTED_COMMAND_LIST_ID] if a <= command_standard_range_max]
standard_generated_commands = [
a for a in cluster[GlobalAttributeIds.GENERATED_COMMAND_LIST_ID] if a <= command_standard_range_max]
if cluster_id in chip.clusters.ClusterObjects.ALL_ACCEPTED_COMMANDS:
allowed_accepted_commands = [a for a in chip.clusters.ClusterObjects.ALL_ACCEPTED_COMMANDS[cluster_id]]
else:
allowed_accepted_commands = []
if cluster_id in chip.clusters.ClusterObjects.ALL_GENERATED_COMMANDS:
allowed_generated_commands = [a for a in chip.clusters.ClusterObjects.ALL_GENERATED_COMMANDS[cluster_id]]
else:
allowed_generated_commands = []
# Compare the set of commands in the standard range that the DUT says it accepts vs. the commands we know about.
unexpected_accepted_commands = sorted(list(set(standard_accepted_commands) - set(allowed_accepted_commands)))
unexpected_generated_commands = sorted(list(set(standard_generated_commands) - set(allowed_generated_commands)))
for unexpected in unexpected_accepted_commands:
location = CommandPathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, command_id=unexpected)
self.record_error(self.get_test_name(
), location=location, problem=f'Unexpected accepted command {unexpected} in cluster {cluster_id} allowed: {allowed_accepted_commands} listed: {standard_accepted_commands}', spec_location=f'Cluster {cluster_id}')
success = False
for unexpected in unexpected_generated_commands:
location = CommandPathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, command_id=unexpected)
self.record_error(self.get_test_name(
), location=location, problem=f'Unexpected generated command {unexpected} in cluster {cluster_id} allowed: {allowed_generated_commands} listed: {standard_generated_commands}', spec_location=f'Cluster {cluster_id}')
success = False
self.print_step(
6, "Validate that none of the global attribute IDs contain values with prefixes outside of the allowed standard or MEI prefix range")
is_ci = self.check_pics('PICS_SDK_CI_ONLY')
if is_ci:
# test vendor prefixes are allowed in the CI because we use them internally in examples
bad_prefix_min = 0xFFF5_0000
else:
# test vendor prefixes are not allowed in products
bad_prefix_min = 0xFFF1_0000
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
attr_prefixes = [a & 0xFFFF_0000 for a in cluster[GlobalAttributeIds.ATTRIBUTE_LIST_ID]]
cmd_values = cluster[GlobalAttributeIds.ACCEPTED_COMMAND_LIST_ID] + \
cluster[GlobalAttributeIds.GENERATED_COMMAND_LIST_ID]
cmd_prefixes = [a & 0xFFFF_0000 for a in cmd_values]
bad_attrs = [a for a in attr_prefixes if a >= bad_prefix_min]
bad_cmds = [a for a in cmd_prefixes if a >= bad_prefix_min]
for bad in bad_attrs:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=bad)
self.record_error(self.get_test_name(
), location=location, problem=f'Attribute with bad prefix {attribute_id} in cluster {cluster_id}', spec_location='Manufacturer Extensible Identifier (MEI)')
success = False
for bad in bad_cmds:
location = CommandPathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, command_id=bad)
self.record_error(self.get_test_name(
), location=location, problem=f'Command with bad prefix {attribute_id} in cluster {cluster_id}', spec_location='Manufacturer Extensible Identifier (MEI)')
success = False
self.print_step(7, "Validate that none of the MEI global attribute IDs contain values outside of the allowed suffix range")
# Validate that any attribute in the manufacturer prefix range is in the standard suffix range.
suffix_mask = 0x0000_FFFF
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
manufacturer_range_values = [a for a in cluster[GlobalAttributeIds.ATTRIBUTE_LIST_ID] if a > mei_range_min]
for manufacturer_value in manufacturer_range_values:
suffix = manufacturer_value & suffix_mask
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id,
attribute_id=manufacturer_value)
if suffix > attribute_standard_range_max and suffix < global_range_min:
self.record_error(self.get_test_name(), location=location,
problem=f"Manufacturer attribute in undefined range {manufacturer_value} in cluster {cluster_id}",
spec_location=f"Cluster {cluster_id}")
success = False
elif suffix >= global_range_min:
self.record_error(self.get_test_name(), location=location,
problem=f"Manufacturer attribute in global range {manufacturer_value} in cluster {cluster_id}",
spec_location=f"Cluster {cluster_id}")
success = False
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
accepted_manufacturer_range_values = [
a for a in cluster[GlobalAttributeIds.ACCEPTED_COMMAND_LIST_ID] if a > mei_range_min]
generated_manufacturer_range_values = [
a for a in cluster[GlobalAttributeIds.GENERATED_COMMAND_LIST_ID] if a > mei_range_min]
all_command_manufacturer_range_values = accepted_manufacturer_range_values + generated_manufacturer_range_values
for manufacturer_value in all_command_manufacturer_range_values:
suffix = manufacturer_value & suffix_mask
location = CommandPathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, command_id=manufacturer_value)
if suffix > command_standard_range_max:
self.record_error(self.get_test_name(
), location=location, problem=f'Manufacturer command in the undefined suffix range {manufacturer_value} in cluster {cluster_id}', spec_location='Manufacturer Extensible Identifier (MEI)')
success = False
self.print_step(8, "Validate that all cluster ID prefixes are in the standard or MEI range")
for endpoint_id, endpoint in self.endpoints_tlv.items():
cluster_prefixes = [a & 0xFFFF_0000 for a in endpoint.keys()]
bad_clusters_ids = [a for a in cluster_prefixes if a >= bad_prefix_min]
for bad in bad_clusters_ids:
location = ClusterPathLocation(endpoint_id=endpoint_id, cluster_id=bad)
self.record_error(self.get_test_name(), location=location,
problem=f'Bad cluster id prefix {bad}', spec_location='Manufacturer Extensible Identifier (MEI)')
success = False
self.print_step(9, "Validate that all clusters in the standard range have a known cluster ID")
for endpoint_id, endpoint in self.endpoints_tlv.items():
standard_clusters = [a for a in endpoint.keys() if a < mei_range_min]
unknown_clusters = sorted(list(set(standard_clusters) - set(chip.clusters.ClusterObjects.ALL_CLUSTERS)))
for bad in unknown_clusters:
location = ClusterPathLocation(endpoint_id=endpoint_id, cluster_id=bad)
self.record_error(self.get_test_name(
), location=location, problem=f'Unknown cluster ID in the standard range {bad}', spec_location='Manufacturer Extensible Identifier (MEI)')
success = False
self.print_step(10, "Validate that all clusters in the MEI range have a suffix in the manufacturer suffix range")
for endpoint_id, endpoint in self.endpoints_tlv.items():
mei_clusters = [a for a in endpoint.keys() if a >= mei_range_min]
bad_clusters = [a for a in mei_clusters if ((a & 0x0000_FFFF) < 0xFC00) or ((a & 0x0000_FFFF) > 0xFFFE)]
for bad in bad_clusters:
location = ClusterPathLocation(endpoint_id=endpoint_id, cluster_id=bad)
self.record_error(self.get_test_name(
), location=location, problem=f'MEI cluster with an out of range suffix {bad}', spec_location='Manufacturer Extensible Identifier (MEI)')
success = False
self.print_step(11, "Validate that standard cluster FeatureMap attributes contains only known feature flags")
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
if cluster_id not in chip.clusters.ClusterObjects.ALL_CLUSTERS:
continue
feature_map = cluster[GlobalAttributeIds.FEATURE_MAP_ID]
feature_mask = 0
try:
feature_map_enum = chip.clusters.ClusterObjects.ALL_CLUSTERS[cluster_id].Bitmaps.Feature
for f in feature_map_enum:
feature_mask = feature_mask | f
except AttributeError:
# If there is no feature bitmap, feature mask 0 is correct
pass
feature_map_extras = feature_map & ~feature_mask
if feature_map_extras != 0:
location = ClusterPathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id)
self.record_error(self.get_test_name(), location=location,
problem=f'Standard cluster {cluster_id} with unkonwn feature {feature_map_extras:02x}')
success = False
if not success:
self.fail_current_test(
"At least one cluster has failed the range and support checks for its listed attributes, commands or features")
def test_TC_IDM_11_1(self):
success = True
for endpoint_id, endpoint in self.endpoints_tlv.items():
for cluster_id, cluster in endpoint.items():
for attribute_id, attribute in cluster.items():
if cluster_id not in Clusters.ClusterObjects.ALL_ATTRIBUTES or attribute_id not in Clusters.ClusterObjects.ALL_ATTRIBUTES[cluster_id]:
continue
if Clusters.ClusterObjects.ALL_ATTRIBUTES[cluster_id][attribute_id].attribute_type.Type is not str:
continue
try:
cluster[attribute_id].encode('utf-8', errors='strict')
except UnicodeError:
location = AttributePathLocation(endpoint_id, cluster_id, attribute_id)
attribute_string = self.cluster_mapper.get_attribute_string(cluster_id, attribute_id)
self.record_error(self.get_test_name(
), location=location, problem=f'Attribute {attribute_string} on {location.as_cluster_string(self.cluster_mapper)} is invalid UTF-8', spec_location="Data types - Character String")
success = False
if not success:
self.fail_current_test("At least one attribute string was not valid UTF-8")
def test_all_event_strings_valid(self):
asserts.skip("TODO: Validate every string in the read events is valid UTF-8 and has no nulls")
def test_all_schema_scalars(self):
asserts.skip("TODO: Validate all int/uint are in range of the schema (or null if nullable) for known attributes")
def test_all_commands_reported_are_executable(self):
asserts.skip("TODO: Validate all commands reported in AcceptedCommandList are actually executable")
def test_dump_all_pics_for_all_endpoints(self):
asserts.skip("TODO: Make a test that generates the basic PICS list for each endpoint based on actually reported contents")
def test_all_schema_mandatory_elements_present(self):
asserts.skip(
"TODO: Make a test that ensures every known cluster has the mandatory elements present (commands, attributes) based on features")
def test_all_endpoints_have_valid_composition(self):
asserts.skip(
"TODO: Make a test that verifies each endpoint has valid set of device types, and that the device type conformance is respected for each")
def test_TC_SM_1_2(self):
self.print_step(1, "Wildcard read of device - already done")
self.print_step(2, "Verify the Descriptor cluster PartsList on endpoint 0 exactly lists all the other (non-0) endpoints on the DUT")
parts_list_0 = self.endpoints[0][Clusters.Descriptor][Clusters.Descriptor.Attributes.PartsList]
cluster_id = Clusters.Descriptor.id
attribute_id = Clusters.Descriptor.Attributes.PartsList.attribute_id
location = AttributePathLocation(endpoint_id=0, cluster_id=cluster_id, attribute_id=attribute_id)
if len(self.endpoints.keys()) != len(set(self.endpoints.keys())):
self.record_error(self.get_test_name(), location=location,
problem='duplicate endpoint ids found in the returned data', spec_location="PartsList Attribute")
self.fail_current_test()
if len(parts_list_0) != len(set(parts_list_0)):
self.record_error(self.get_test_name(), location=location,
problem='Duplicate endpoint ids found in the parts list on ep0', spec_location="PartsList Attribute")
self.fail_current_test()
expected_parts = set(self.endpoints.keys())
expected_parts.remove(0)
if set(parts_list_0) != expected_parts:
self.record_error(self.get_test_name(), location=location,
problem='EP0 Descriptor parts list does not match the set of returned endpoints', spec_location="PartsList Attribute")
self.fail_current_test()
self.print_step(
3, "For each endpoint on the DUT (including EP 0), verify the PartsList in the Descriptor cluster on that endpoint does not include itself")
for endpoint_id, endpoint in self.endpoints.items():
if endpoint_id in endpoint[Clusters.Descriptor][Clusters.Descriptor.Attributes.PartsList]:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=attribute_id)
self.record_error(self.get_test_name(), location=location,
problem=f"Endpoint {endpoint_id} parts list includes itself", spec_location="PartsList Attribute")
self.fail_current_test()
self.print_step(4, "Separate endpoints into flat and tree style")
flat, tree = separate_endpoint_types(self.endpoints)
self.print_step(5, "Check for cycles in the tree endpoints")
cycles = parts_list_cycles(tree, self.endpoints)
if len(cycles) != 0:
for id in cycles:
location = AttributePathLocation(endpoint_id=id, cluster_id=cluster_id, attribute_id=attribute_id)
self.record_error(self.get_test_name(), location=location,
problem=f"Endpoint {id} parts list includes a cycle", spec_location="PartsList Attribute")
self.fail_current_test()
self.print_step(6, "Check flat lists include all sub ids")
ok = True
for endpoint_id in flat:
# ensure that every sub-id in the parts list is included in the parent
if not flat_list_ok(endpoint_id, self.endpoints):
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=attribute_id)
self.record_error(self.get_test_name(), location=location,
problem='Flat parts list does not exactly match sub-parts', spec_location='Endpoint composition')
ok = False
if not ok:
self.fail_current_test()
def test_TC_PS_3_1(self):
BRIDGED_NODE_DEVICE_TYPE_ID = 0x13
success = True
self.print_step(1, "Wildcard read of device - already done")
self.print_step(2, "Verify that all endpoints listed in the EndpointList are valid")
attribute_id = Clusters.PowerSource.Attributes.EndpointList.attribute_id
cluster_id = Clusters.PowerSource.id
attribute_string = self.cluster_mapper.get_attribute_string(cluster_id, attribute_id)
for endpoint_id, endpoint in self.endpoints.items():
if Clusters.PowerSource not in endpoint:
continue
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=attribute_id)
cluster_revision = Clusters.PowerSource.Attributes.ClusterRevision
if cluster_revision not in endpoint[Clusters.PowerSource]:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id,
attribute_id=cluster_revision.attribute_id)
self.record_error(self.get_test_name(
), location=location, problem=f'Did not find Cluster revision on {location.as_cluster_string(self.cluster_mapper)}', spec_location='Global attributes')
if endpoint[Clusters.PowerSource][cluster_revision] < 2:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id,
attribute_id=cluster_revision.attribute_id)
self.record_note(self.get_test_name(), location=location,
problem='Power source ClusterRevision is < 2, skipping remainder of test for this endpoint')
continue
if Clusters.PowerSource.Attributes.EndpointList not in endpoint[Clusters.PowerSource]:
self.record_error(self.get_test_name(), location=location,
problem=f'Did not find {attribute_string} on {location.as_cluster_string(self.cluster_mapper)}', spec_location="EndpointList Attribute")
success = False
continue
endpoint_list = endpoint[Clusters.PowerSource][Clusters.PowerSource.Attributes.EndpointList]
non_existent = set(endpoint_list) - set(self.endpoints.keys())
if non_existent:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=attribute_id)
self.record_error(self.get_test_name(), location=location,
problem=f'{attribute_string} lists a non-existent endpoint', spec_location="EndpointList Attribute")
success = False
self.print_step(3, "Verify that all Bridged Node endpoint lists are correct")
device_types = {}
parts_list = {}
for endpoint_id, endpoint in self.endpoints.items():
if Clusters.PowerSource not in endpoint or Clusters.PowerSource.Attributes.EndpointList not in endpoint[Clusters.PowerSource]:
continue
def GetPartValidityProblem(endpoint):
if Clusters.Descriptor not in endpoint:
return "Missing cluster descriptor"
if Clusters.Descriptor.Attributes.PartsList not in endpoint[Clusters.Descriptor]:
return "Missing PartList in descriptor cluster"
if Clusters.Descriptor.Attributes.DeviceTypeList not in endpoint[Clusters.Descriptor]:
return "Missing DeviceTypeList in descriptor cluster"
return None
problem = GetPartValidityProblem(endpoint)
if problem:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=Clusters.Descriptor.id,
attribute_id=Clusters.Descriptor.Attributes.PartsList.id)
self.record_error(self.get_test_name(), location=location,
problem=problem, spec_location="PartsList Attribute")
success = False
continue
device_types[endpoint_id] = [i.deviceType for i in endpoint[Clusters.Descriptor]
[Clusters.Descriptor.Attributes.DeviceTypeList]]
parts_list[endpoint_id] = endpoint[Clusters.Descriptor][Clusters.Descriptor.Attributes.PartsList]
bridged_nodes = [id for (id, dev_type) in device_types.items() if BRIDGED_NODE_DEVICE_TYPE_ID in dev_type]
for endpoint_id in bridged_nodes:
if Clusters.PowerSource not in self.endpoints[endpoint_id]:
continue
# using a list because we do want to preserve duplicates and error on those.
desired_endpoint_list = parts_list[endpoint_id].copy()
desired_endpoint_list.append(endpoint_id)
desired_endpoint_list.sort()
ep_list = self.endpoints[endpoint_id][Clusters.PowerSource][Clusters.PowerSource.Attributes.EndpointList]
ep_list.sort()
if ep_list != desired_endpoint_list:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=attribute_id)
self.record_error(self.get_test_name(), location=location,
problem=f'Power source EndpointList on bridged node endpoint {endpoint_id} is not as expected. Desired: {desired_endpoint_list} Actual: {ep_list}', spec_location="EndpointList Attribute")
success = False
self.print_step(4, "Verify that all Bridged Node children endpoint lists are correct")
children = []
# note, this doesn't handle the full tree structure, single layer only
for endpoint_id in bridged_nodes:
children = children + parts_list[endpoint_id]
for endpoint_id in children:
if Clusters.PowerSource not in self.endpoints[endpoint_id]:
continue
desired_endpoint_list = [endpoint_id]
ep_list = self.endpoints[endpoint_id][Clusters.PowerSource][Clusters.PowerSource.Attributes.EndpointList]
ep_list.sort()
if ep_list != desired_endpoint_list:
location = AttributePathLocation(endpoint_id=endpoint_id, cluster_id=cluster_id, attribute_id=attribute_id)
self.record_error(self.get_test_name(), location=location,
problem=f'Power source EndpointList on bridged child endpoint {endpoint_id} is not as expected. Desired: {desired_endpoint_list} Actual: {ep_list}', spec_location="EndpointList Attribute")
success = False
if not success:
self.fail_current_test("power source EndpointList attribute is incorrect")
def test_TC_DESC_2_2(self):
self.print_step(0, "Wildcard read of device - already done")
self.print_step(
1, "Identify all endpoints that are roots of a tree-composition. Omit any endpoints that include the Content App device type.")
_, tree = separate_endpoint_types(self.endpoints)
roots = find_tree_roots(tree, self.endpoints)
self.print_step(
1.1, "For each tree root, go through each of the children and add their endpoint IDs to a list of device types based on the DeviceTypes list")
device_types = create_device_type_lists(roots, self.endpoints)
self.print_step(
1.2, "For device types with more than one endpoint listed, ensure each of the listed endpoints has a tag attribute and the tag attributes are not the same")
problems = find_tag_list_problems(roots, device_types, self.endpoints)
for ep, problem in problems.items():
location = AttributePathLocation(endpoint_id=ep, cluster_id=Clusters.Descriptor.id,
attribute_id=Clusters.Descriptor.Attributes.TagList.attribute_id)
msg = f'problem on ep {ep}: missing feature = {problem.missing_feature}, missing attribute = {problem.missing_attribute}, duplicates = {problem.duplicates}, same_tags = {problem.same_tag}'
self.record_error(self.get_test_name(), location=location, problem=msg, spec_location="Descriptor TagList")
self.print_step(2, "Identify all the direct children of the root node endpoint")
root_direct_children = get_direct_children_of_root(self.endpoints)
self.print_step(
2.1, "Go through each of the direct children of the root node and add their endpoint IDs to a list of device types based on the DeviceTypes list")
device_types = create_device_type_list_for_root(root_direct_children, self.endpoints)
self.print_step(
2.2, "For device types with more than one endpoint listed, ensure each of the listed endpoints has a tag attribute and the tag attributes are not the same")
root_problems = find_tag_list_problems([0], {0: device_types}, self.endpoints)
if problems or root_problems:
self.fail_current_test("Problems with tags lists")
if __name__ == "__main__":
default_matter_test_main()