blob: 5fb0d1505314c2d40742dabd5e4ad2a0ae8d9dc1 [file] [log] [blame]
/*
*
* Copyright (c) 2022 Project CHIP Authors
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "OTAImageProcessorImpl.h"
#include <app/clusters/ota-requestor/OTADownloader.h>
#include <app/clusters/ota-requestor/OTARequestorInterface.h>
#include <lib/support/CodeUtils.h>
#include <ota_serial_flash.h>
#include <platform/CHIPDeviceLayer.h>
using namespace ::chip::DeviceLayer::Internal;
namespace chip {
namespace DeviceLayer {
#ifdef P6_OTA
CHIP_ERROR OTAImageProcessorImpl::PrepareDownload()
{
DeviceLayer::PlatformMgr().ScheduleWork(HandlePrepareDownload, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::Finalize()
{
DeviceLayer::PlatformMgr().ScheduleWork(HandleFinalize, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::Apply()
{
DeviceLayer::PlatformMgr().ScheduleWork(HandleApply, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::Abort()
{
DeviceLayer::PlatformMgr().ScheduleWork(HandleAbort, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::ProcessHeader(ByteSpan & block)
{
// Only modify the ByteSpan if the OTAImageHeaderParser is currently initialized.
if (mHeaderParser.IsInitialized())
{
OTAImageHeader header;
// AccumulateAndDecode will cause the OTAImageHeader bytes to be stored
// in header. We don't do anything with header, however, the other
// consequence of this call is to advance the data pointer in block. In
// this or subsequent calls to this API, block will end up pointing at
// the first byte after OTAImageHeader.
CHIP_ERROR error = mHeaderParser.AccumulateAndDecode(block, header);
// If we have not received all the bytes of the OTAImageHeader yet, that is OK.
// Return CHIP_NO_ERROR and expect that future blocks will contain the rest.
ReturnErrorCodeIf(error == CHIP_ERROR_BUFFER_TOO_SMALL, CHIP_NO_ERROR);
// If there is some error other than "too small", return that so future
// processing will be aborted.
ReturnErrorOnFailure(error);
mParams.totalFileBytes = header.mPayloadSize;
// If we are here, then we have received all the OTAImageHeader bytes.
// Calling Clear() here results in the parser state being set to
// uninitialized. This means future calls to ProcessHeader will not
// modify block and those future bytes will be written to the device.
mHeaderParser.Clear();
}
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::ProcessBlock(ByteSpan & block)
{
if ((block.data() == nullptr) || block.empty())
{
return CHIP_ERROR_INVALID_ARGUMENT;
}
// Store block data for HandleProcessBlock to access
CHIP_ERROR err = SetBlock(block);
if (err != CHIP_NO_ERROR)
{
ChipLogError(SoftwareUpdate, "Cannot set block data: %" CHIP_ERROR_FORMAT, err.Format());
}
DeviceLayer::PlatformMgr().ScheduleWork(HandleProcessBlock, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
bool OTAImageProcessorImpl::IsFirstImageRun()
{
OTARequestorInterface * requestor = GetRequestorInstance();
ReturnErrorCodeIf(requestor == nullptr, false);
uint32_t currentVersion;
ReturnErrorCodeIf(ConfigurationMgr().GetSoftwareVersion(currentVersion) != CHIP_NO_ERROR, false);
ChipLogProgress(SoftwareUpdate, "%ld", currentVersion);
ChipLogProgress(SoftwareUpdate, "%ld", requestor->GetTargetVersion());
return ((requestor->GetCurrentUpdateState() == OTARequestorInterface::OTAUpdateStateEnum::kApplying) &&
(requestor->GetTargetVersion() == currentVersion));
}
CHIP_ERROR OTAImageProcessorImpl::ConfirmCurrentImage()
{
OTARequestorInterface * requestor = chip::GetRequestorInstance();
if (requestor == nullptr)
{
return CHIP_ERROR_INTERNAL;
}
uint32_t currentVersion;
ReturnErrorOnFailure(DeviceLayer::ConfigurationMgr().GetSoftwareVersion(currentVersion));
if (currentVersion != requestor->GetTargetVersion())
{
return CHIP_ERROR_INCORRECT_STATE;
}
return CHIP_NO_ERROR;
}
void OTAImageProcessorImpl::HandlePrepareDownload(intptr_t context)
{
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
if (imageProcessor == nullptr)
{
ChipLogError(SoftwareUpdate, "ImageProcessor context is null");
return;
}
else if (imageProcessor->mDownloader == nullptr)
{
ChipLogError(SoftwareUpdate, "mDownloader is null");
return;
}
/* Initialize SMIF subsystem for OTA Image download */
ota_smif_initialize();
// Open and erase secondary flash area to prepare
if (flash_area_open(FLASH_AREA_IMAGE_SECONDARY(0), &(imageProcessor->mFlashArea)) != 0)
{
imageProcessor->mDownloader->OnPreparedForDownload(CHIP_ERROR_OPEN_FAILED);
return;
}
// Note: This only erases up to the secondary slot size (which fa_size is
// set to). It will not erase the persistent storage as that only uses
// a small region towards the end of flash.
if (flash_area_erase(imageProcessor->mFlashArea, 0, imageProcessor->mFlashArea->fa_size) != 0)
{
imageProcessor->mDownloader->OnPreparedForDownload(CHIP_ERROR_OPEN_FAILED);
return;
}
// init the OTAImageHeaderParser instance to indicate that we haven't yet
// parsed the header out of the incoming image.
imageProcessor->mHeaderParser.Init();
imageProcessor->mDownloader->OnPreparedForDownload(CHIP_NO_ERROR);
}
void OTAImageProcessorImpl::HandleFinalize(intptr_t context)
{
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
if (imageProcessor == nullptr)
{
return;
}
flash_area_close(imageProcessor->mFlashArea);
ChipLogProgress(SoftwareUpdate, "Setting boot pending");
int ret = boot_set_pending(0, 1);
if (ret != 0)
{
ChipLogError(SoftwareUpdate, "Failed to set boot pending");
return;
}
imageProcessor->ReleaseBlock();
}
void OTAImageProcessorImpl::HandleAbort(intptr_t context)
{
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
if (imageProcessor == nullptr)
{
return;
}
flash_area_erase(imageProcessor->mFlashArea, 0, imageProcessor->mFlashArea->fa_size);
imageProcessor->ReleaseBlock();
}
void OTAImageProcessorImpl::HandleProcessBlock(intptr_t context)
{
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
if (imageProcessor == nullptr)
{
ChipLogError(SoftwareUpdate, "ImageProcessor context is null");
return;
}
else if (imageProcessor->mDownloader == nullptr)
{
ChipLogError(SoftwareUpdate, "mDownloader is null");
return;
}
// The call to ProcessHeader will result in the modification of the block ByteSpan data
// pointer if the OTAImageHeader is present in the image. The result is that only
// the new application bytes will be written to the device in the flash_area_write calls,
// as all bytes for the header are skipped.
ByteSpan block = ByteSpan(imageProcessor->mBlock.data(), imageProcessor->mBlock.size());
CHIP_ERROR error = imageProcessor->ProcessHeader(block);
if (error != CHIP_NO_ERROR)
{
ChipLogError(SoftwareUpdate, "Failed to process OTA image header");
imageProcessor->mDownloader->EndDownload(error);
return;
}
// send down only the post-processed bytes from block to this call, rather than sending down
// the original bytes from imageProcessor. The bytes in imageProcessor may include date
// from the OTAImageHeader, which we don't want.
int rc = flash_area_write(imageProcessor->mFlashArea, imageProcessor->mParams.downloadedBytes, block.data(), block.size());
if (rc != 0)
{
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_WRITE_FAILED);
return;
}
// increment the total downloaded bytes by the potentially modified block ByteSpan size
imageProcessor->mParams.downloadedBytes += block.size();
imageProcessor->mDownloader->FetchNextData();
}
void OTAImageProcessorImpl::HandleApply(intptr_t context)
{
ChipLogProgress(SoftwareUpdate, "Rebooting after 2 seconds...");
cy_rtos_delay_milliseconds(2000);
NVIC_SystemReset();
return;
}
CHIP_ERROR OTAImageProcessorImpl::SetBlock(ByteSpan & block)
{
if (!IsSpanUsable(block))
{
ReleaseBlock();
return CHIP_NO_ERROR;
}
if (mBlock.size() < block.size())
{
if (!mBlock.empty())
{
ReleaseBlock();
}
uint8_t * mBlock_ptr = static_cast<uint8_t *>(chip::Platform::MemoryAlloc(block.size()));
if (mBlock_ptr == nullptr)
{
return CHIP_ERROR_NO_MEMORY;
}
mBlock = MutableByteSpan(mBlock_ptr, block.size());
}
CHIP_ERROR err = CopySpanToMutableSpan(block, mBlock);
if (err != CHIP_NO_ERROR)
{
ChipLogError(SoftwareUpdate, "Cannot copy block data: %" CHIP_ERROR_FORMAT, err.Format());
return err;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::ReleaseBlock()
{
if (mBlock.data() != nullptr)
{
chip::Platform::MemoryFree(mBlock.data());
}
mBlock = MutableByteSpan();
return CHIP_NO_ERROR;
}
#endif // P6_OTA
} // namespace DeviceLayer
} // namespace chip