blob: b2f0be7a48192a8967f09597a3fcec6800a8f204 [file] [log] [blame]
/*
*
* Copyright (c) 2022 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for Beken platform.
*/
#include <lib/support/CHIPMemString.h>
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <crypto/CHIPCryptoPAL.h>
#include <platform/Beken/DiagnosticDataProviderImpl.h>
#include <platform/DiagnosticDataProvider.h>
#include "matter_pal.h"
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
currentHeapFree = xPortGetFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
currentHeapUsed = prvHeapGetTotalSize() - xPortGetFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
currentHeapHighWatermark = prvHeapGetTotalSize() - xPortGetMinimumEverFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = 0;
CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
bootReason = static_cast<BootReasonType>(reason);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
NetworkInterface * ifp = new NetworkInterface();
struct netif * netif;
netif = (struct netif *) net_get_sta_handle(); // assume only on station mode
if (netif == NULL || ifp == NULL)
{
ChipLogError(DeviceLayer, "Can't get the netif instance");
*netifpp = NULL;
return CHIP_ERROR_INTERNAL;
}
Platform::CopyString(ifp->Name, netif->hostname);
ifp->name = CharSpan::fromCharString(ifp->Name);
ifp->type = EMBER_ZCL_INTERFACE_TYPE_WI_FI;
ifp->offPremiseServicesReachableIPv4.SetNonNull(false);
ifp->offPremiseServicesReachableIPv6.SetNonNull(false);
memcpy(ifp->MacAddress, netif->hwaddr, sizeof(netif->hwaddr));
*netifpp = ifp;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(ByteSpan & BssId)
{
LinkStatusTypeDef linkStatus;
memset(&linkStatus, 0x0, sizeof(LinkStatusTypeDef));
if (0 == bk_wlan_get_link_status(&linkStatus))
{
BssId = ByteSpan(linkStatus.bssid, 6);
}
else
{
ChipLogError(DeviceLayer, "GetWiFiBssId Not Supported");
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(uint8_t & wifiVersion)
{
// Support 802.11a/n Wi-Fi in Beken chipset
wifiVersion = EMBER_ZCL_WI_FI_VERSION_TYPE_N;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(uint8_t & securityType)
{
int cipher_type;
cipher_type = bk_sta_cipher_type();
switch (cipher_type)
{
case BK_SECURITY_TYPE_NONE:
securityType = EMBER_ZCL_SECURITY_TYPE_NONE;
break;
case BK_SECURITY_TYPE_WEP:
securityType = EMBER_ZCL_SECURITY_TYPE_WEP;
break;
case BK_SECURITY_TYPE_WPA_TKIP:
case BK_SECURITY_TYPE_WPA_AES:
securityType = EMBER_ZCL_SECURITY_TYPE_WPA;
break;
case BK_SECURITY_TYPE_WPA2_AES:
case BK_SECURITY_TYPE_WPA2_TKIP:
case BK_SECURITY_TYPE_WPA2_MIXED:
securityType = EMBER_ZCL_SECURITY_TYPE_WPA2;
break;
case BK_SECURITY_TYPE_WPA3_SAE:
case BK_SECURITY_TYPE_WPA3_WPA2_MIXED:
securityType = EMBER_ZCL_SECURITY_TYPE_WPA3;
break;
case BK_SECURITY_TYPE_AUTO:
default:
securityType = EMBER_ZCL_SECURITY_TYPE_UNSPECIFIED;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber)
{
LinkStatusTypeDef linkStatus;
memset(&linkStatus, 0x0, sizeof(LinkStatusTypeDef));
if (0 == bk_wlan_get_link_status(&linkStatus))
{
channelNumber = linkStatus.channel;
}
else
{
ChipLogError(DeviceLayer, "GetWiFiChannelNumber Not Supported");
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi)
{
LinkStatusTypeDef linkStatus;
memset(&linkStatus, 0x0, sizeof(LinkStatusTypeDef));
if (0 == bk_wlan_get_link_status(&linkStatus))
{
rssi = linkStatus.wifi_strength;
}
else
{
ChipLogError(DeviceLayer, "GetWiFiRssi Not Supported");
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount)
{
beaconLostCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate)
{
currentMaxRate = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount)
{
packetMulticastRxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount)
{
packetMulticastTxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount)
{
packetUnicastRxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount)
{
packetUnicastTxCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount)
{
overrunCount = 0;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts()
{
return CHIP_NO_ERROR;
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip