blob: fa357ac29f4d8a7b40d16e00c1430d82ca5fe963 [file] [log] [blame]
/*
*
* Copyright (c) 2021-2022 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for webOS platform.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <app-common/zap-generated/enums.h>
#include <lib/support/CHIPMem.h>
#include <lib/support/logging/CHIPLogging.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/webos/ConnectivityUtils.h>
#include <platform/webos/DiagnosticDataProviderImpl.h>
#include <arpa/inet.h>
#include <dirent.h>
#include <ifaddrs.h>
#include <linux/ethtool.h>
#include <linux/if_link.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <malloc.h>
#include <net/if.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
using namespace ::chip;
using namespace ::chip::TLV;
using namespace ::chip::DeviceLayer;
using namespace ::chip::DeviceLayer::Internal;
using namespace ::chip::app::Clusters::GeneralDiagnostics;
namespace {
enum class EthernetStatsCountType
{
kEthPacketRxCount,
kEthPacketTxCount,
kEthTxErrCount,
kEthCollisionCount,
kEthOverrunCount
};
enum class WiFiStatsCountType
{
kWiFiUnicastPacketRxCount,
kWiFiUnicastPacketTxCount,
kWiFiMulticastPacketRxCount,
kWiFiMulticastPacketTxCount,
kWiFiOverrunCount
};
CHIP_ERROR GetEthernetStatsCount(EthernetStatsCountType type, uint64_t & count)
{
CHIP_ERROR err = CHIP_ERROR_READ_FAILED;
struct ifaddrs * ifaddr = nullptr;
if (getifaddrs(&ifaddr) == -1)
{
ChipLogError(DeviceLayer, "Failed to get network interfaces");
}
else
{
struct ifaddrs * ifa = nullptr;
// Walk through linked list, maintaining head pointer so we can free list later.
for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == InterfaceType::EMBER_ZCL_INTERFACE_TYPE_ETHERNET)
{
ChipLogProgress(DeviceLayer, "Found the primary Ethernet interface:%s", StringOrNullMarker(ifa->ifa_name));
break;
}
}
if (ifa != nullptr)
{
if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr)
{
struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data;
switch (type)
{
case EthernetStatsCountType::kEthPacketRxCount:
count = stats->rx_packets;
err = CHIP_NO_ERROR;
break;
case EthernetStatsCountType::kEthPacketTxCount:
count = stats->tx_packets;
err = CHIP_NO_ERROR;
break;
case EthernetStatsCountType::kEthTxErrCount:
count = stats->tx_errors;
err = CHIP_NO_ERROR;
break;
case EthernetStatsCountType::kEthCollisionCount:
count = stats->collisions;
err = CHIP_NO_ERROR;
break;
case EthernetStatsCountType::kEthOverrunCount:
count = stats->rx_over_errors;
err = CHIP_NO_ERROR;
break;
default:
ChipLogError(DeviceLayer, "Unknown Ethernet statistic metric type");
break;
}
}
}
freeifaddrs(ifaddr);
}
return err;
}
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
CHIP_ERROR GetWiFiStatsCount(WiFiStatsCountType type, uint64_t & count)
{
CHIP_ERROR err = CHIP_ERROR_READ_FAILED;
struct ifaddrs * ifaddr = nullptr;
if (getifaddrs(&ifaddr) == -1)
{
ChipLogError(DeviceLayer, "Failed to get network interfaces");
}
else
{
struct ifaddrs * ifa = nullptr;
// Walk through linked list, maintaining head pointer so we can free list later.
for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == InterfaceType::EMBER_ZCL_INTERFACE_TYPE_WI_FI)
{
ChipLogProgress(DeviceLayer, "Found the primary WiFi interface:%s", StringOrNullMarker(ifa->ifa_name));
break;
}
}
if (ifa != nullptr)
{
if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr)
{
// The usecase of this function is embedded devices,on which we can interact with the WiFi
// driver to get the accurate number of muticast and unicast packets accurately.
// On Linux simulation, we can only get the total packets received, the total bytes transmitted,
// the multicast packets received and receiver ring buff overflow.
struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data;
switch (type)
{
case WiFiStatsCountType::kWiFiUnicastPacketRxCount:
count = stats->rx_packets;
err = CHIP_NO_ERROR;
break;
case WiFiStatsCountType::kWiFiUnicastPacketTxCount:
count = stats->tx_packets;
err = CHIP_NO_ERROR;
break;
case WiFiStatsCountType::kWiFiMulticastPacketRxCount:
count = stats->multicast;
err = CHIP_NO_ERROR;
break;
case WiFiStatsCountType::kWiFiMulticastPacketTxCount:
count = 0;
err = CHIP_NO_ERROR;
break;
case WiFiStatsCountType::kWiFiOverrunCount:
count = stats->rx_over_errors;
err = CHIP_NO_ERROR;
break;
default:
ChipLogError(DeviceLayer, "Unknown WiFi statistic metric type");
break;
}
}
}
freeifaddrs(ifaddr);
}
return err;
}
#endif // #if CHIP_DEVICE_CONFIG_ENABLE_WIFI
} // namespace
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
#ifndef __GLIBC__
return CHIP_ERROR_NOT_IMPLEMENTED;
#else
struct mallinfo mallocInfo = mallinfo();
// Get the current amount of heap memory, in bytes, that are not being utilized
// by the current running program.
currentHeapFree = mallocInfo.fordblks;
return CHIP_NO_ERROR;
#endif
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
#ifndef __GLIBC__
return CHIP_ERROR_NOT_IMPLEMENTED;
#else
struct mallinfo mallocInfo = mallinfo();
// Get the current amount of heap memory, in bytes, that are being used by
// the current running program.
currentHeapUsed = mallocInfo.uordblks;
return CHIP_NO_ERROR;
#endif
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
#ifndef __GLIBC__
return CHIP_ERROR_NOT_IMPLEMENTED;
#else
struct mallinfo mallocInfo = mallinfo();
// The usecase of this function is embedded devices,on which we would need to intercept
// malloc/calloc/free and then record the maximum amount of heap memory,in bytes, that
// has been used by the Node.
// On Linux, since it uses virtual memory, whereby a page of memory could be copied to
// the hard disk, called swap space, and free up that page of memory. So it is impossible
// to know accurately peak physical memory it use. We just return the current heap memory
// being used by the current running program.
currentHeapHighWatermark = mallocInfo.uordblks;
return CHIP_NO_ERROR;
#endif
}
CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut)
{
CHIP_ERROR err = CHIP_ERROR_READ_FAILED;
DIR * proc_dir = opendir("/proc/self/task");
if (proc_dir == nullptr)
{
ChipLogError(DeviceLayer, "Failed to open current process task directory");
}
else
{
ThreadMetrics * head = nullptr;
struct dirent * entry;
/* proc available, iterate through tasks... */
while ((entry = readdir(proc_dir)) != nullptr)
{
if (entry->d_name[0] == '.')
continue;
ThreadMetrics * thread = new ThreadMetrics();
Platform::CopyString(thread->NameBuf, entry->d_name);
thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf));
thread->id = atoi(entry->d_name);
// TODO: Get stack info of each thread: thread->stackFreeCurrent,
// thread->stackFreeMinimum, thread->stackSize.
thread->Next = head;
head = thread;
}
closedir(proc_dir);
*threadMetricsOut = head;
err = CHIP_NO_ERROR;
}
return err;
}
void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics)
{
while (threadMetrics)
{
ThreadMetrics * del = threadMetrics;
threadMetrics = threadMetrics->Next;
delete del;
}
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = 0;
CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
bootReason = static_cast<BootReasonType>(reason);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveHardwareFaults(GeneralFaults<kMaxHardwareFaults> & hardwareFaults)
{
#if CHIP_CONFIG_TEST
// On Linux Simulation, set following hardware faults statically.
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_RADIO));
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_SENSOR));
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_POWER_SOURCE));
ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_USER_INTERFACE_FAULT));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveRadioFaults(GeneralFaults<kMaxRadioFaults> & radioFaults)
{
#if CHIP_CONFIG_TEST
// On Linux Simulation, set following radio faults statically.
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_WI_FI_FAULT));
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_CELLULAR_FAULT));
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_THREAD_FAULT));
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_NFC_FAULT));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveNetworkFaults(GeneralFaults<kMaxNetworkFaults> & networkFaults)
{
#if CHIP_CONFIG_TEST
// On Linux Simulation, set following radio faults statically.
ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_HARDWARE_FAILURE));
ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_NETWORK_JAMMED));
ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_CONNECTION_FAILED));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
CHIP_ERROR err = CHIP_ERROR_READ_FAILED;
struct ifaddrs * ifaddr = nullptr;
if (getifaddrs(&ifaddr) == -1)
{
ChipLogError(DeviceLayer, "Failed to get network interfaces");
}
else
{
NetworkInterface * head = nullptr;
// Walk through linked list, maintaining head pointer so we can free list later.
for (struct ifaddrs * ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_PACKET)
{
NetworkInterface * ifp = new NetworkInterface();
Platform::CopyString(ifp->Name, ifa->ifa_name);
ifp->name = CharSpan::fromCharString(ifp->Name);
ifp->isOperational = ifa->ifa_flags & IFF_RUNNING;
ifp->type = ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name);
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
if (ConnectivityUtils::GetInterfaceHardwareAddrs(ifa->ifa_name, ifp->MacAddress, kMaxHardwareAddrSize) !=
CHIP_NO_ERROR)
{
ChipLogError(DeviceLayer, "Failed to get network hardware address");
}
else
{
// Set 48-bit IEEE MAC Address
ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 6);
}
ifp->Next = head;
head = ifp;
}
}
*netifpp = head;
err = CHIP_NO_ERROR;
freeifaddrs(ifaddr);
}
return err;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthPHYRate(app::Clusters::EthernetNetworkDiagnostics::PHYRateEnum & pHYRate)
{
if (ConnectivityMgrImpl().GetEthernetIfName() == nullptr)
{
return CHIP_ERROR_READ_FAILED;
}
return ConnectivityUtils::GetEthPHYRate(ConnectivityMgrImpl().GetEthernetIfName(), pHYRate);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthFullDuplex(bool & fullDuplex)
{
if (ConnectivityMgrImpl().GetEthernetIfName() == nullptr)
{
return CHIP_ERROR_READ_FAILED;
}
return ConnectivityUtils::GetEthFullDuplex(ConnectivityMgrImpl().GetEthernetIfName(), fullDuplex);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthTimeSinceReset(uint64_t & timeSinceReset)
{
return GetDiagnosticDataProvider().GetUpTime(timeSinceReset);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthPacketRxCount(uint64_t & packetRxCount)
{
uint64_t count;
ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthPacketRxCount, count));
VerifyOrReturnError(count >= mEthPacketRxCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
packetRxCount = count - mEthPacketRxCount;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthPacketTxCount(uint64_t & packetTxCount)
{
uint64_t count;
ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthPacketTxCount, count));
VerifyOrReturnError(count >= mEthPacketTxCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
packetTxCount = count - mEthPacketTxCount;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthTxErrCount(uint64_t & txErrCount)
{
uint64_t count;
ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthTxErrCount, count));
VerifyOrReturnError(count >= mEthTxErrCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
txErrCount = count - mEthTxErrCount;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthCollisionCount(uint64_t & collisionCount)
{
uint64_t count;
ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthCollisionCount, count));
VerifyOrReturnError(count >= mEthCollisionCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
collisionCount = count - mEthCollisionCount;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetEthOverrunCount(uint64_t & overrunCount)
{
uint64_t count;
ReturnErrorOnFailure(GetEthernetStatsCount(EthernetStatsCountType::kEthOverrunCount, count));
VerifyOrReturnError(count >= mEthOverrunCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
overrunCount = count - mEthOverrunCount;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetEthNetworkDiagnosticsCounts()
{
CHIP_ERROR err = CHIP_ERROR_READ_FAILED;
struct ifaddrs * ifaddr = nullptr;
if (getifaddrs(&ifaddr) == -1)
{
ChipLogError(DeviceLayer, "Failed to get network interfaces");
}
else
{
struct ifaddrs * ifa = nullptr;
// Walk through linked list, maintaining head pointer so we can free list later.
for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == InterfaceType::EMBER_ZCL_INTERFACE_TYPE_ETHERNET)
{
ChipLogProgress(DeviceLayer, "Found the primary Ethernet interface:%s", StringOrNullMarker(ifa->ifa_name));
break;
}
}
if (ifa != nullptr)
{
if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr)
{
struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data;
mEthPacketRxCount = stats->rx_packets;
mEthPacketTxCount = stats->tx_packets;
mEthTxErrCount = stats->tx_errors;
mEthCollisionCount = stats->collisions;
mEthOverrunCount = stats->rx_over_errors;
err = CHIP_NO_ERROR;
}
}
freeifaddrs(ifaddr);
}
return err;
}
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber)
{
if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr)
{
return CHIP_ERROR_READ_FAILED;
}
return ConnectivityUtils::GetWiFiChannelNumber(ConnectivityMgrImpl().GetWiFiIfName(), channelNumber);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi)
{
if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr)
{
return CHIP_ERROR_READ_FAILED;
}
return ConnectivityUtils::GetWiFiRssi(ConnectivityMgrImpl().GetWiFiIfName(), rssi);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount)
{
uint32_t count;
if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr)
{
return CHIP_ERROR_READ_FAILED;
}
ReturnErrorOnFailure(ConnectivityUtils::GetWiFiBeaconLostCount(ConnectivityMgrImpl().GetWiFiIfName(), count));
VerifyOrReturnError(count >= mBeaconLostCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
beaconLostCount = count - mBeaconLostCount;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate)
{
if (ConnectivityMgrImpl().GetWiFiIfName() == nullptr)
{
return CHIP_ERROR_READ_FAILED;
}
return ConnectivityUtils::GetWiFiCurrentMaxRate(ConnectivityMgrImpl().GetWiFiIfName(), currentMaxRate);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount)
{
uint64_t count;
ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiMulticastPacketRxCount, count));
VerifyOrReturnError(count >= mPacketMulticastRxCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
count -= mPacketMulticastRxCount;
VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
packetMulticastRxCount = static_cast<uint32_t>(count);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount)
{
uint64_t count;
ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiMulticastPacketTxCount, count));
VerifyOrReturnError(count >= mPacketMulticastTxCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
count -= mPacketMulticastTxCount;
VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
packetMulticastTxCount = static_cast<uint32_t>(count);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount)
{
uint64_t count;
ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiUnicastPacketRxCount, count));
VerifyOrReturnError(count >= mPacketUnicastRxCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
count -= mPacketUnicastRxCount;
VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
packetUnicastRxCount = static_cast<uint32_t>(count);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount)
{
uint64_t count;
ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiUnicastPacketTxCount, count));
VerifyOrReturnError(count >= mPacketUnicastTxCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
count -= mPacketUnicastTxCount;
VerifyOrReturnError(count <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
packetUnicastTxCount = static_cast<uint32_t>(count);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount)
{
uint64_t count;
ReturnErrorOnFailure(GetWiFiStatsCount(WiFiStatsCountType::kWiFiOverrunCount, count));
VerifyOrReturnError(count >= mOverrunCount, CHIP_ERROR_INVALID_INTEGER_VALUE);
overrunCount = count - mOverrunCount;
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts()
{
CHIP_ERROR err = CHIP_ERROR_READ_FAILED;
struct ifaddrs * ifaddr = nullptr;
ReturnErrorOnFailure(GetWiFiBeaconLostCount(mBeaconLostCount));
if (getifaddrs(&ifaddr) == -1)
{
ChipLogError(DeviceLayer, "Failed to get network interfaces");
}
else
{
struct ifaddrs * ifa = nullptr;
// Walk through linked list, maintaining head pointer so we can free list later.
for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ConnectivityUtils::GetInterfaceConnectionType(ifa->ifa_name) == InterfaceType::EMBER_ZCL_INTERFACE_TYPE_WI_FI)
{
ChipLogProgress(DeviceLayer, "Found the primary WiFi interface:%s", StringOrNullMarker(ifa->ifa_name));
break;
}
}
if (ifa != nullptr)
{
if (ifa->ifa_addr->sa_family == AF_PACKET && ifa->ifa_data != nullptr)
{
struct rtnl_link_stats * stats = (struct rtnl_link_stats *) ifa->ifa_data;
mPacketMulticastRxCount = stats->multicast;
mPacketMulticastTxCount = 0;
mPacketUnicastRxCount = stats->rx_packets;
mPacketUnicastTxCount = stats->tx_packets;
mOverrunCount = stats->rx_over_errors;
err = CHIP_NO_ERROR;
}
}
freeifaddrs(ifaddr);
}
return err;
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI
#if CHIP_DEVICE_CONFIG_ENABLE_WPA
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(uint8_t & wiFiVersion)
{
return ConnectivityMgrImpl().GetWiFiVersion(wiFiVersion);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(ByteSpan & value)
{
return ConnectivityMgrImpl().GetWiFiBssId(value);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(uint8_t & securityType)
{
return ConnectivityMgrImpl().GetWiFiSecurityType(securityType);
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_WPA
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip