blob: cd484653feca2b1e39bd2a956e15961ec75429b0 [file] [log] [blame]
/*
*
* Copyright (c) 2020-2021 Project CHIP Authors
* Copyright (c) 2013-2017 Nest Labs, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Implementation of CHIP Device Controller, a common class
* that implements discovery, pairing and provisioning of CHIP
* devices.
*
*/
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
// module header, comes first
#include <controller/CHIPDeviceController.h>
#include <app-common/zap-generated/enums.h>
#include <controller-clusters/zap-generated/CHIPClusters.h>
#if CONFIG_DEVICE_LAYER
#include <platform/CHIPDeviceLayer.h>
#include <platform/ConfigurationManager.h>
#endif
#include <app/InteractionModelEngine.h>
#include <app/util/DataModelHandler.h>
#include <app/util/error-mapping.h>
#include <credentials/CHIPCert.h>
#include <credentials/DeviceAttestationCredsProvider.h>
#include <crypto/CHIPCryptoPAL.h>
#include <lib/core/CHIPCore.h>
#include <lib/core/CHIPEncoding.h>
#include <lib/core/CHIPSafeCasts.h>
#include <lib/core/NodeId.h>
#include <lib/support/Base64.h>
#include <lib/support/CHIPArgParser.hpp>
#include <lib/support/CHIPMem.h>
#include <lib/support/CodeUtils.h>
#include <lib/support/ErrorStr.h>
#include <lib/support/PersistentStorageMacros.h>
#include <lib/support/SafeInt.h>
#include <lib/support/ScopedBuffer.h>
#include <lib/support/TimeUtils.h>
#include <lib/support/logging/CHIPLogging.h>
#include <messaging/ExchangeContext.h>
#include <protocols/secure_channel/MessageCounterManager.h>
#include <setup_payload/ManualSetupPayloadGenerator.h>
#include <setup_payload/QRCodeSetupPayloadGenerator.h>
#include <setup_payload/QRCodeSetupPayloadParser.h>
#if CONFIG_NETWORK_LAYER_BLE
#include <ble/BleLayer.h>
#include <transport/raw/BLE.h>
#endif
#include <app/util/af-enums.h>
#include <errno.h>
#include <inttypes.h>
#include <memory>
#include <stdint.h>
#include <stdlib.h>
#include <time.h>
using namespace chip::Inet;
using namespace chip::System;
using namespace chip::Transport;
using namespace chip::Credentials;
// For some applications those does not implement IMDelegate, the DeviceControllerInteractionModelDelegate will dispatch the
// response to IMDefaultResponseCallback CHIPClientCallbacks, for the applications those implemented IMDelegate, this function will
// not be used.
bool __attribute__((weak)) IMDefaultResponseCallback(const chip::app::Command * commandObj, EmberAfStatus status)
{
return false;
}
namespace chip {
namespace Controller {
using namespace chip::Encoding;
#if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
using namespace chip::Protocols::UserDirectedCommissioning;
#endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
constexpr uint32_t kSessionEstablishmentTimeout = 30 * kMillisecondsPerSecond;
DeviceController::DeviceController()
{
mState = State::NotInitialized;
mStorageDelegate = nullptr;
mPairedDevicesInitialized = false;
}
CHIP_ERROR DeviceController::Init(ControllerInitParams params)
{
VerifyOrReturnError(mState == State::NotInitialized, CHIP_ERROR_INCORRECT_STATE);
VerifyOrReturnError(params.systemState != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(params.systemState->SystemLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(params.systemState->InetLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
mStorageDelegate = params.storageDelegate;
#if CONFIG_NETWORK_LAYER_BLE
VerifyOrReturnError(params.systemState->BleLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
#endif
VerifyOrReturnError(params.systemState->TransportMgr() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
// TODO Exchange Mgr needs to be able to track multiple delegates. Delegate API should be able to query for the right delegate
// to handle events.
ReturnErrorOnFailure(
params.systemState->ExchangeMgr()->RegisterUnsolicitedMessageHandlerForProtocol(Protocols::TempZCL::Id, this));
params.systemState->ExchangeMgr()->SetDelegate(this);
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
Dnssd::Resolver::Instance().Init(params.systemState->InetLayer());
Dnssd::Resolver::Instance().SetResolverDelegate(this);
RegisterDeviceAddressUpdateDelegate(params.deviceAddressUpdateDelegate);
RegisterDeviceDiscoveryDelegate(params.deviceDiscoveryDelegate);
#endif // CHIP_DEVICE_CONFIG_ENABLE_DNSSD
InitDataModelHandler(params.systemState->ExchangeMgr());
VerifyOrReturnError(params.operationalCredentialsDelegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
mOperationalCredentialsDelegate = params.operationalCredentialsDelegate;
ReturnErrorOnFailure(ProcessControllerNOCChain(params));
mSystemState = params.systemState->Retain();
mState = State::Initialized;
ReleaseAllDevices();
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceController::ProcessControllerNOCChain(const ControllerInitParams & params)
{
FabricInfo newFabric;
ReturnErrorCodeIf(params.ephemeralKeypair == nullptr, CHIP_ERROR_INVALID_ARGUMENT);
newFabric.SetEphemeralKey(params.ephemeralKeypair);
constexpr uint32_t chipCertAllocatedLen = kMaxCHIPCertLength;
chip::Platform::ScopedMemoryBuffer<uint8_t> chipCert;
ReturnErrorCodeIf(!chipCert.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
MutableByteSpan chipCertSpan(chipCert.Get(), chipCertAllocatedLen);
ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerRCAC, chipCertSpan));
ReturnErrorOnFailure(newFabric.SetRootCert(chipCertSpan));
if (params.controllerICAC.empty())
{
ChipLogProgress(Controller, "Intermediate CA is not needed");
}
else
{
chipCertSpan = MutableByteSpan(chipCert.Get(), chipCertAllocatedLen);
ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerICAC, chipCertSpan));
ReturnErrorOnFailure(newFabric.SetICACert(chipCertSpan));
}
chipCertSpan = MutableByteSpan(chipCert.Get(), chipCertAllocatedLen);
ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerNOC, chipCertSpan));
ReturnErrorOnFailure(newFabric.SetNOCCert(chipCertSpan));
newFabric.SetVendorId(params.controllerVendorId);
FabricInfo * fabric = params.systemState->Fabrics()->FindFabricWithIndex(mFabricIndex);
ReturnErrorCodeIf(fabric == nullptr, CHIP_ERROR_INCORRECT_STATE);
ReturnErrorOnFailure(fabric->SetFabricInfo(newFabric));
mLocalId = fabric->GetPeerId();
mVendorId = fabric->GetVendorId();
mFabricId = fabric->GetFabricId();
ChipLogProgress(Controller, "Joined the fabric at index %d. Compressed fabric ID is: 0x" ChipLogFormatX64, mFabricIndex,
ChipLogValueX64(GetCompressedFabricId()));
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceController::Shutdown()
{
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
ChipLogDetail(Controller, "Shutting down the controller");
for (uint32_t i = 0; i < kNumMaxActiveDevices; i++)
{
mActiveDevices[i].Reset();
}
mState = State::NotInitialized;
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
Dnssd::Resolver::Instance().Shutdown();
#endif // CHIP_DEVICE_CONFIG_ENABLE_DNSSD
mStorageDelegate = nullptr;
ReleaseAllDevices();
mSystemState->Fabrics()->ReleaseFabricIndex(mFabricIndex);
mSystemState->Release();
mSystemState = nullptr;
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
Dnssd::Resolver::Instance().SetResolverDelegate(nullptr);
mDeviceAddressUpdateDelegate = nullptr;
mDeviceDiscoveryDelegate = nullptr;
#endif // CHIP_DEVICE_CONFIG_ENABLE_DNSSD
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceController::GetDevice(NodeId deviceId, Device ** out_device)
{
CHIP_ERROR err = CHIP_NO_ERROR;
Device * device = nullptr;
uint16_t index = 0;
VerifyOrExit(out_device != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
index = FindDeviceIndex(deviceId);
if (index < kNumMaxActiveDevices)
{
device = &mActiveDevices[index];
}
else
{
err = InitializePairedDeviceList();
SuccessOrExit(err);
VerifyOrExit(mPairedDevices.Contains(deviceId), err = CHIP_ERROR_NOT_CONNECTED);
index = GetInactiveDeviceIndex();
VerifyOrExit(index < kNumMaxActiveDevices, err = CHIP_ERROR_NO_MEMORY);
device = &mActiveDevices[index];
{
SerializedDevice deviceInfo;
uint16_t size = sizeof(deviceInfo.inner);
PERSISTENT_KEY_OP(deviceId, kPairedDeviceKeyPrefix, key,
err = mStorageDelegate->SyncGetKeyValue(key, deviceInfo.inner, size));
SuccessOrExit(err);
VerifyOrExit(size <= sizeof(deviceInfo.inner), err = CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
err = device->Deserialize(deviceInfo);
VerifyOrExit(err == CHIP_NO_ERROR, ReleaseDevice(device));
device->Init(GetControllerDeviceInitParams(), mFabricIndex);
}
}
*out_device = device;
exit:
if (err != CHIP_NO_ERROR && device != nullptr)
{
ReleaseDevice(device);
}
return err;
}
bool DeviceController::DoesDevicePairingExist(const PeerId & deviceId)
{
if (InitializePairedDeviceList() == CHIP_NO_ERROR)
{
return mPairedDevices.Contains(deviceId.GetNodeId());
}
return false;
}
CHIP_ERROR DeviceController::GetConnectedDevice(NodeId deviceId, Callback::Callback<OnDeviceConnected> * onConnection,
Callback::Callback<OnDeviceConnectionFailure> * onFailure)
{
CHIP_ERROR err = CHIP_NO_ERROR;
Device * device = nullptr;
err = GetDevice(deviceId, &device);
SuccessOrExit(err);
if (device->IsSecureConnected())
{
onConnection->mCall(onConnection->mContext, device);
return CHIP_NO_ERROR;
}
err = device->EstablishConnectivity(onConnection, onFailure);
SuccessOrExit(err);
exit:
if (err != CHIP_NO_ERROR)
{
onFailure->mCall(onFailure->mContext, deviceId, err);
}
return err;
}
CHIP_ERROR DeviceController::UpdateDevice(NodeId deviceId)
{
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
return Dnssd::Resolver::Instance().ResolveNodeId(PeerId().SetCompressedFabricId(GetCompressedFabricId()).SetNodeId(deviceId),
chip::Inet::kIPAddressType_Any);
#else
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
#endif // CHIP_DEVICE_CONFIG_ENABLE_DNSSD
}
void DeviceController::PersistDevice(Device * device)
{
if (mState == State::Initialized)
{
device->Persist();
}
else
{
ChipLogError(Controller, "Failed to persist device. Controller not initialized.");
}
}
CHIP_ERROR DeviceController::OnMessageReceived(Messaging::ExchangeContext * ec, const PayloadHeader & payloadHeader,
System::PacketBufferHandle && msgBuf)
{
uint16_t index;
VerifyOrExit(mState == State::Initialized, ChipLogError(Controller, "OnMessageReceived was called in incorrect state"));
VerifyOrExit(ec != nullptr, ChipLogError(Controller, "OnMessageReceived was called with null exchange"));
index = FindDeviceIndex(ec->GetSecureSession().GetPeerNodeId());
VerifyOrExit(index < kNumMaxActiveDevices, ChipLogError(Controller, "OnMessageReceived was called for unknown device object"));
mActiveDevices[index].OnMessageReceived(ec, payloadHeader, std::move(msgBuf));
exit:
return CHIP_NO_ERROR;
}
void DeviceController::OnResponseTimeout(Messaging::ExchangeContext * ec)
{
ChipLogProgress(Controller, "Time out! failed to receive response from Exchange: " ChipLogFormatExchange,
ChipLogValueExchange(ec));
}
void DeviceController::OnNewConnection(SessionHandle session, Messaging::ExchangeManager * mgr)
{
VerifyOrReturn(mState == State::Initialized, ChipLogError(Controller, "OnNewConnection was called in incorrect state"));
uint16_t index = FindDeviceIndex(mgr->GetSessionManager()->GetSecureSession(session)->GetPeerNodeId());
VerifyOrReturn(index < kNumMaxActiveDevices,
ChipLogDetail(Controller, "OnNewConnection was called for unknown device, ignoring it."));
mActiveDevices[index].OnNewConnection(session);
}
void DeviceController::OnConnectionExpired(SessionHandle session, Messaging::ExchangeManager * mgr)
{
VerifyOrReturn(mState == State::Initialized, ChipLogError(Controller, "OnConnectionExpired was called in incorrect state"));
uint16_t index = FindDeviceIndex(session);
VerifyOrReturn(index < kNumMaxActiveDevices,
ChipLogDetail(Controller, "OnConnectionExpired was called for unknown device, ignoring it."));
mActiveDevices[index].OnConnectionExpired(session);
}
uint16_t DeviceController::GetInactiveDeviceIndex()
{
uint16_t i = 0;
while (i < kNumMaxActiveDevices && mActiveDevices[i].IsActive())
i++;
if (i < kNumMaxActiveDevices)
{
mActiveDevices[i].SetActive(true);
}
return i;
}
void DeviceController::ReleaseDevice(Device * device)
{
device->Reset();
}
void DeviceController::ReleaseDevice(uint16_t index)
{
if (index < kNumMaxActiveDevices)
{
ReleaseDevice(&mActiveDevices[index]);
}
}
void DeviceController::ReleaseDeviceById(NodeId remoteDeviceId)
{
for (uint16_t i = 0; i < kNumMaxActiveDevices; i++)
{
if (mActiveDevices[i].GetDeviceId() == remoteDeviceId)
{
ReleaseDevice(&mActiveDevices[i]);
}
}
}
void DeviceController::ReleaseAllDevices()
{
for (uint16_t i = 0; i < kNumMaxActiveDevices; i++)
{
ReleaseDevice(&mActiveDevices[i]);
}
}
uint16_t DeviceController::FindDeviceIndex(SessionHandle session)
{
uint16_t i = 0;
while (i < kNumMaxActiveDevices)
{
if (mActiveDevices[i].IsActive() && mActiveDevices[i].IsSecureConnected() && mActiveDevices[i].MatchesSession(session))
{
return i;
}
i++;
}
return i;
}
uint16_t DeviceController::FindDeviceIndex(NodeId id)
{
uint16_t i = 0;
while (i < kNumMaxActiveDevices)
{
if (mActiveDevices[i].IsActive() && mActiveDevices[i].GetDeviceId() == id)
{
return i;
}
i++;
}
return i;
}
CHIP_ERROR DeviceController::InitializePairedDeviceList()
{
CHIP_ERROR err = CHIP_NO_ERROR;
uint8_t * buffer = nullptr;
VerifyOrExit(mStorageDelegate != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
if (!mPairedDevicesInitialized)
{
constexpr uint16_t max_size = sizeof(uint64_t) * kNumMaxPairedDevices;
buffer = static_cast<uint8_t *>(chip::Platform::MemoryCalloc(max_size, 1));
uint16_t size = max_size;
VerifyOrExit(buffer != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
CHIP_ERROR lookupError = CHIP_NO_ERROR;
PERSISTENT_KEY_OP(static_cast<uint64_t>(0), kPairedDeviceListKeyPrefix, key,
lookupError = mStorageDelegate->SyncGetKeyValue(key, buffer, size));
// It's ok to not have an entry for the Paired Device list. We treat it the same as having an empty list.
if (lookupError != CHIP_ERROR_KEY_NOT_FOUND)
{
VerifyOrExit(size <= max_size, err = CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
err = SetPairedDeviceList(ByteSpan(buffer, size));
SuccessOrExit(err);
}
}
exit:
if (buffer != nullptr)
{
chip::Platform::MemoryFree(buffer);
}
if (err != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed to initialize the device list with error: %" CHIP_ERROR_FORMAT, err.Format());
}
return err;
}
CHIP_ERROR DeviceController::SetPairedDeviceList(ByteSpan serialized)
{
CHIP_ERROR err = mPairedDevices.Deserialize(serialized);
if (err != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed to recreate the device list with buffer %.*s\n", static_cast<int>(serialized.size()),
serialized.data());
}
else
{
mPairedDevicesInitialized = true;
}
return err;
}
void DeviceController::PersistNextKeyId()
{
if (mStorageDelegate != nullptr && mState == State::Initialized)
{
uint16_t nextKeyID = mIDAllocator.Peek();
mStorageDelegate->SyncSetKeyValue(kNextAvailableKeyID, &nextKeyID, sizeof(nextKeyID));
}
}
CHIP_ERROR DeviceController::GetPeerAddressAndPort(PeerId peerId, Inet::IPAddress & addr, uint16_t & port)
{
VerifyOrReturnError(GetCompressedFabricId() == peerId.GetCompressedFabricId(), CHIP_ERROR_INVALID_ARGUMENT);
uint16_t index = FindDeviceIndex(peerId.GetNodeId());
VerifyOrReturnError(index < kNumMaxActiveDevices, CHIP_ERROR_NOT_CONNECTED);
VerifyOrReturnError(mActiveDevices[index].GetAddress(addr, port), CHIP_ERROR_NOT_CONNECTED);
return CHIP_NO_ERROR;
}
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
void DeviceController::OnNodeIdResolved(const chip::Dnssd::ResolvedNodeData & nodeData)
{
CHIP_ERROR err = CHIP_NO_ERROR;
Device * device = nullptr;
Inet::InterfaceId interfaceId = INET_NULL_INTERFACEID;
err = GetDevice(nodeData.mPeerId.GetNodeId(), &device);
SuccessOrExit(err);
// Only use the mDNS resolution's InterfaceID for addresses that are IPv6 LLA.
// For all other addresses, we should rely on the device's routing table to route messages sent.
// Forcing messages down an InterfaceId might fail. For example, in bridged networks like Thread,
// mDNS advertisements are not usually received on the same interface the peer is reachable on.
if (nodeData.mAddress.IsIPv6LinkLocal())
{
interfaceId = nodeData.mInterfaceId;
}
err = device->UpdateAddress(Transport::PeerAddress::UDP(nodeData.mAddress, nodeData.mPort, interfaceId));
SuccessOrExit(err);
PersistDevice(device);
exit:
if (mDeviceAddressUpdateDelegate != nullptr)
{
mDeviceAddressUpdateDelegate->OnAddressUpdateComplete(nodeData.mPeerId.GetNodeId(), err);
}
return;
};
void DeviceController::OnNodeIdResolutionFailed(const chip::PeerId & peer, CHIP_ERROR error)
{
ChipLogError(Controller, "Error resolving node id: %s", ErrorStr(error));
if (mDeviceAddressUpdateDelegate != nullptr)
{
mDeviceAddressUpdateDelegate->OnAddressUpdateComplete(peer.GetNodeId(), error);
}
};
#endif // CHIP_DEVICE_CONFIG_ENABLE_DNSSD
ControllerDeviceInitParams DeviceController::GetControllerDeviceInitParams()
{
return ControllerDeviceInitParams{
.transportMgr = mSystemState->TransportMgr(),
.sessionManager = mSystemState->SessionMgr(),
.exchangeMgr = mSystemState->ExchangeMgr(),
.inetLayer = mSystemState->InetLayer(),
.storageDelegate = mStorageDelegate,
.idAllocator = &mIDAllocator,
.fabricsTable = mSystemState->Fabrics(),
.imDelegate = mSystemState->IMDelegate(),
};
}
DeviceCommissioner::DeviceCommissioner() :
mSuccess(BasicSuccess, this), mFailure(BasicFailure, this), mCertificateChainResponseCallback(OnCertificateChainResponse, this),
mAttestationResponseCallback(OnAttestationResponse, this), mOpCSRResponseCallback(OnOperationalCertificateSigningRequest, this),
mNOCResponseCallback(OnOperationalCertificateAddResponse, this), mRootCertResponseCallback(OnRootCertSuccessResponse, this),
mOnCertificateChainFailureCallback(OnCertificateChainFailureResponse, this),
mOnAttestationFailureCallback(OnAttestationFailureResponse, this), mOnCSRFailureCallback(OnCSRFailureResponse, this),
mOnCertFailureCallback(OnAddNOCFailureResponse, this), mOnRootCertFailureCallback(OnRootCertFailureResponse, this),
mOnDeviceConnectedCallback(OnDeviceConnectedFn, this), mOnDeviceConnectionFailureCallback(OnDeviceConnectionFailureFn, this),
mDeviceNOCChainCallback(OnDeviceNOCChainGeneration, this), mSetUpCodePairer(this)
{
mPairingDelegate = nullptr;
mDeviceBeingPaired = kNumMaxActiveDevices;
mPairedDevicesUpdated = false;
}
CHIP_ERROR DeviceCommissioner::Init(CommissionerInitParams params)
{
ReturnErrorOnFailure(DeviceController::Init(params));
uint16_t nextKeyID = 0;
uint16_t size = sizeof(nextKeyID);
CHIP_ERROR error = mStorageDelegate->SyncGetKeyValue(kNextAvailableKeyID, &nextKeyID, size);
if ((error != CHIP_NO_ERROR) || (size != sizeof(nextKeyID)))
{
nextKeyID = 0;
}
ReturnErrorOnFailure(mIDAllocator.ReserveUpTo(nextKeyID));
mPairingDelegate = params.pairingDelegate;
#if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
mUdcTransportMgr = chip::Platform::New<DeviceIPTransportMgr>();
ReturnErrorOnFailure(mUdcTransportMgr->Init(Transport::UdpListenParameters(mSystemState->InetLayer())
.SetAddressType(Inet::kIPAddressType_IPv6)
.SetListenPort((uint16_t)(mUdcListenPort))
#if INET_CONFIG_ENABLE_IPV4
,
Transport::UdpListenParameters(mSystemState->InetLayer())
.SetAddressType(Inet::kIPAddressType_IPv4)
.SetListenPort((uint16_t)(mUdcListenPort))
#endif // INET_CONFIG_ENABLE_IPV4
));
mUdcServer = chip::Platform::New<UserDirectedCommissioningServer>();
mUdcTransportMgr->SetSessionManager(mUdcServer);
mUdcServer->SetInstanceNameResolver(this);
mUdcServer->SetUserConfirmationProvider(this);
#endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
#if CONFIG_NETWORK_LAYER_BLE
mSetUpCodePairer.SetBleLayer(mSystemState->BleLayer());
#endif // CONFIG_NETWORK_LAYER_BLE
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceCommissioner::Shutdown()
{
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
ChipLogDetail(Controller, "Shutting down the commissioner");
mPairingSession.Clear();
PersistDeviceList();
#if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
if (mUdcTransportMgr != nullptr)
{
chip::Platform::Delete(mUdcTransportMgr);
mUdcTransportMgr = nullptr;
}
if (mUdcServer != nullptr)
{
mUdcServer->SetInstanceNameResolver(nullptr);
mUdcServer->SetUserConfirmationProvider(nullptr);
chip::Platform::Delete(mUdcServer);
mUdcServer = nullptr;
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
DeviceController::Shutdown();
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode)
{
return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode);
}
CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & params)
{
CHIP_ERROR err = CHIP_NO_ERROR;
Device * device = nullptr;
Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
Messaging::ExchangeContext * exchangeCtxt = nullptr;
Optional<SessionHandle> session;
uint16_t keyID = 0;
FabricInfo * fabric = mSystemState->Fabrics()->FindFabricWithIndex(mFabricIndex);
VerifyOrExit(IsOperationalNodeId(remoteDeviceId), err = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
VerifyOrExit(mDeviceBeingPaired == kNumMaxActiveDevices, err = CHIP_ERROR_INCORRECT_STATE);
VerifyOrExit(fabric != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
err = InitializePairedDeviceList();
SuccessOrExit(err);
// TODO: We need to specify the peer address for BLE transport in bindings.
if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle ||
params.GetPeerAddress().GetTransportType() == Transport::Type::kUndefined)
{
#if CONFIG_NETWORK_LAYER_BLE
if (!params.HasBleLayer())
{
params.SetPeerAddress(Transport::PeerAddress::BLE());
}
peerAddress = Transport::PeerAddress::BLE();
#endif // CONFIG_NETWORK_LAYER_BLE
}
else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kTcp ||
params.GetPeerAddress().GetTransportType() == Transport::Type::kUdp)
{
peerAddress = Transport::PeerAddress::UDP(params.GetPeerAddress().GetIPAddress(), params.GetPeerAddress().GetPort(),
params.GetPeerAddress().GetInterface());
}
mDeviceBeingPaired = GetInactiveDeviceIndex();
VerifyOrExit(mDeviceBeingPaired < kNumMaxActiveDevices, err = CHIP_ERROR_NO_MEMORY);
device = &mActiveDevices[mDeviceBeingPaired];
// If the CSRNonce is passed in, using that else using a random one..
if (params.HasCSRNonce())
{
ReturnErrorOnFailure(device->SetCSRNonce(params.GetCSRNonce().Value()));
}
else
{
uint8_t mCSRNonce[kOpCSRNonceLength];
Crypto::DRBG_get_bytes(mCSRNonce, sizeof(mCSRNonce));
ReturnErrorOnFailure(device->SetCSRNonce(ByteSpan(mCSRNonce)));
}
// If the AttestationNonce is passed in, using that else using a random one..
if (params.HasAttestationNonce())
{
ReturnErrorOnFailure(device->SetAttestationNonce(params.GetAttestationNonce().Value()));
}
else
{
uint8_t mAttestationNonce[kAttestationNonceLength];
Crypto::DRBG_get_bytes(mAttestationNonce, sizeof(mAttestationNonce));
ReturnErrorOnFailure(device->SetAttestationNonce(ByteSpan(mAttestationNonce)));
}
mIsIPRendezvous = (params.GetPeerAddress().GetTransportType() != Transport::Type::kBle);
err = mPairingSession.MessageDispatch().Init(mSystemState->SessionMgr());
SuccessOrExit(err);
device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress, fabric->GetFabricIndex());
mSystemState->SystemLayer()->StartTimer(kSessionEstablishmentTimeout, OnSessionEstablishmentTimeoutCallback, this);
if (params.GetPeerAddress().GetTransportType() != Transport::Type::kBle)
{
device->SetAddress(params.GetPeerAddress().GetIPAddress());
}
#if CONFIG_NETWORK_LAYER_BLE
else
{
if (params.HasConnectionObject())
{
SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetConnectionObject()));
}
else if (params.HasDiscriminator())
{
SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByDiscriminator(params.GetDiscriminator()));
}
else
{
ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
}
}
#endif
session = mSystemState->SessionMgr()->CreateUnauthenticatedSession(params.GetPeerAddress());
VerifyOrExit(session.HasValue(), err = CHIP_ERROR_NO_MEMORY);
exchangeCtxt = mSystemState->ExchangeMgr()->NewContext(session.Value(), &mPairingSession);
VerifyOrExit(exchangeCtxt != nullptr, err = CHIP_ERROR_INTERNAL);
err = mIDAllocator.Allocate(keyID);
SuccessOrExit(err);
err = mPairingSession.Pair(params.GetPeerAddress(), params.GetSetupPINCode(), keyID, exchangeCtxt, this);
// Immediately persist the updted mNextKeyID value
// TODO maybe remove FreeRendezvousSession() since mNextKeyID is always persisted immediately
PersistNextKeyId();
exit:
if (err != CHIP_NO_ERROR)
{
// Delete the current rendezvous session only if a device is not currently being paired.
if (mDeviceBeingPaired == kNumMaxActiveDevices)
{
FreeRendezvousSession();
}
if (device != nullptr)
{
ReleaseDevice(device);
mDeviceBeingPaired = kNumMaxActiveDevices;
}
}
return err;
}
CHIP_ERROR DeviceCommissioner::PairTestDeviceWithoutSecurity(NodeId remoteDeviceId, const Transport::PeerAddress & peerAddress,
SerializedDevice & serialized)
{
CHIP_ERROR err = CHIP_NO_ERROR;
Device * device = nullptr;
SecurePairingUsingTestSecret * testSecurePairingSecret = nullptr;
// Check that the caller has provided an IP address (instead of a BLE peer address)
VerifyOrExit(peerAddress.GetTransportType() == Transport::Type::kUdp, err = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(IsOperationalNodeId(remoteDeviceId), err = CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
VerifyOrExit(mDeviceBeingPaired == kNumMaxActiveDevices, err = CHIP_ERROR_INCORRECT_STATE);
testSecurePairingSecret = chip::Platform::New<SecurePairingUsingTestSecret>();
VerifyOrExit(testSecurePairingSecret != nullptr, err = CHIP_ERROR_NO_MEMORY);
mDeviceBeingPaired = GetInactiveDeviceIndex();
VerifyOrExit(mDeviceBeingPaired < kNumMaxActiveDevices, err = CHIP_ERROR_NO_MEMORY);
device = &mActiveDevices[mDeviceBeingPaired];
testSecurePairingSecret->ToSerializable(device->GetPairing());
device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress, mFabricIndex);
device->Serialize(serialized);
err = mSystemState->SessionMgr()->NewPairing(Optional<Transport::PeerAddress>::Value(peerAddress), device->GetDeviceId(),
testSecurePairingSecret, CryptoContext::SessionRole::kInitiator, mFabricIndex);
if (err != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed in setting up secure channel: err %s", ErrorStr(err));
OnSessionEstablishmentError(err);
}
SuccessOrExit(err);
mPairedDevices.Insert(device->GetDeviceId());
mPairedDevicesUpdated = true;
// Note - This assumes storage is synchronous, the device must be in storage before we can cleanup
// the rendezvous session and mark pairing success
PersistDevice(device);
// Also persist the device list at this time
// This makes sure that a newly added device is immediately available
PersistDeviceList();
if (mPairingDelegate != nullptr)
{
mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
}
RendezvousCleanup(CHIP_NO_ERROR);
exit:
if (testSecurePairingSecret != nullptr)
{
chip::Platform::Delete(testSecurePairingSecret);
}
if (err != CHIP_NO_ERROR)
{
if (device != nullptr)
{
ReleaseDevice(device);
mDeviceBeingPaired = kNumMaxActiveDevices;
}
}
return err;
}
CHIP_ERROR DeviceCommissioner::StopPairing(NodeId remoteDeviceId)
{
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mDeviceBeingPaired < kNumMaxActiveDevices, CHIP_ERROR_INCORRECT_STATE);
Device * device = &mActiveDevices[mDeviceBeingPaired];
VerifyOrReturnError(device->GetDeviceId() == remoteDeviceId, CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
FreeRendezvousSession();
ReleaseDevice(device);
mDeviceBeingPaired = kNumMaxActiveDevices;
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceCommissioner::UnpairDevice(NodeId remoteDeviceId)
{
// TODO: Send unpairing message to the remote device.
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
if (mDeviceBeingPaired < kNumMaxActiveDevices)
{
Device * device = &mActiveDevices[mDeviceBeingPaired];
if (device->GetDeviceId() == remoteDeviceId)
{
FreeRendezvousSession();
}
}
if (mStorageDelegate != nullptr)
{
PERSISTENT_KEY_OP(remoteDeviceId, kPairedDeviceKeyPrefix, key, mStorageDelegate->SyncDeleteKeyValue(key));
}
mPairedDevices.Remove(remoteDeviceId);
mPairedDevicesUpdated = true;
ReleaseDeviceById(remoteDeviceId);
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceCommissioner::OperationalDiscoveryComplete(NodeId remoteDeviceId)
{
ChipLogProgress(Controller, "OperationalDiscoveryComplete for device ID %" PRIu64, remoteDeviceId);
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
Device * device = nullptr;
ReturnErrorOnFailure(GetDevice(remoteDeviceId, &device));
device->OperationalCertProvisioned();
PersistDevice(device);
PersistNextKeyId();
return GetConnectedDevice(remoteDeviceId, &mOnDeviceConnectedCallback, &mOnDeviceConnectionFailureCallback);
}
CHIP_ERROR DeviceCommissioner::OpenCommissioningWindow(NodeId deviceId, uint16_t timeout, uint16_t iteration,
uint16_t discriminator, uint8_t option)
{
ChipLogProgress(Controller, "OpenCommissioningWindow for device ID %" PRIu64, deviceId);
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
Device * device = nullptr;
ReturnErrorOnFailure(GetDevice(deviceId, &device));
std::string QRCode;
std::string manualPairingCode;
SetupPayload payload;
Device::CommissioningWindowOption commissioningWindowOption;
ByteSpan salt(reinterpret_cast<const uint8_t *>(kSpake2pKeyExchangeSalt), strlen(kSpake2pKeyExchangeSalt));
payload.discriminator = discriminator;
switch (option)
{
case 0:
commissioningWindowOption = Device::CommissioningWindowOption::kOriginalSetupCode;
break;
case 1:
commissioningWindowOption = Device::CommissioningWindowOption::kTokenWithRandomPIN;
break;
case 2:
commissioningWindowOption = Device::CommissioningWindowOption::kTokenWithProvidedPIN;
break;
default:
ChipLogError(Controller, "Invalid Pairing Window option");
return CHIP_ERROR_INVALID_ARGUMENT;
}
ReturnErrorOnFailure(device->OpenCommissioningWindow(timeout, iteration, commissioningWindowOption, salt, payload));
if (commissioningWindowOption != Device::CommissioningWindowOption::kOriginalSetupCode)
{
ReturnErrorOnFailure(ManualSetupPayloadGenerator(payload).payloadDecimalStringRepresentation(manualPairingCode));
ChipLogProgress(Controller, "Manual pairing code: [%s]", manualPairingCode.c_str());
ReturnErrorOnFailure(QRCodeSetupPayloadGenerator(payload).payloadBase38Representation(QRCode));
ChipLogProgress(Controller, "SetupQRCode: [%s]", QRCode.c_str());
}
return CHIP_NO_ERROR;
}
void DeviceCommissioner::FreeRendezvousSession()
{
PersistNextKeyId();
}
void DeviceCommissioner::RendezvousCleanup(CHIP_ERROR status)
{
FreeRendezvousSession();
// TODO: make mStorageDelegate mandatory once all controller applications implement the interface.
if (mDeviceBeingPaired != kNumMaxActiveDevices && mStorageDelegate != nullptr)
{
// Let's release the device that's being paired.
// If pairing was successful, its information is
// already persisted. The application will use GetDevice()
// method to get access to the device, which will fetch
// the device information from the persistent storage.
DeviceController::ReleaseDevice(mDeviceBeingPaired);
}
mDeviceBeingPaired = kNumMaxActiveDevices;
if (mPairingDelegate != nullptr)
{
mPairingDelegate->OnPairingComplete(status);
}
}
void DeviceCommissioner::OnSessionEstablishmentError(CHIP_ERROR err)
{
mSystemState->SystemLayer()->CancelTimer(OnSessionEstablishmentTimeoutCallback, this);
if (mPairingDelegate != nullptr)
{
mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingFailed);
}
RendezvousCleanup(err);
}
void DeviceCommissioner::OnSessionEstablished()
{
VerifyOrReturn(mDeviceBeingPaired < kNumMaxActiveDevices, OnSessionEstablishmentError(CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR));
Device * device = &mActiveDevices[mDeviceBeingPaired];
// TODO: the session should know which peer we are trying to connect to when started
mPairingSession.SetPeerNodeId(device->GetDeviceId());
CHIP_ERROR err = mSystemState->SessionMgr()->NewPairing(
Optional<Transport::PeerAddress>::Value(mPairingSession.GetPeerAddress()), mPairingSession.GetPeerNodeId(),
&mPairingSession, CryptoContext::SessionRole::kInitiator, mFabricIndex);
if (err != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed in setting up secure channel: err %s", ErrorStr(err));
OnSessionEstablishmentError(err);
return;
}
ChipLogDetail(Controller, "Remote device completed SPAKE2+ handshake");
// TODO: Add code to receive OpCSR from the device, and process the signing request
// For IP rendezvous, this is sent as part of the state machine.
#if CONFIG_USE_CLUSTERS_FOR_IP_COMMISSIONING
bool usingLegacyFlowWithImmediateStart = !mIsIPRendezvous;
#else
bool usingLegacyFlowWithImmediateStart = true;
#endif
if (usingLegacyFlowWithImmediateStart)
{
err = SendCertificateChainRequestCommand(device, CertificateType::kPAI);
if (err != CHIP_NO_ERROR)
{
ChipLogError(Ble, "Failed in sending 'Certificate Chain request' command to the device: err %s", ErrorStr(err));
OnSessionEstablishmentError(err);
return;
}
}
else
{
AdvanceCommissioningStage(CHIP_NO_ERROR);
}
}
CHIP_ERROR DeviceCommissioner::SendCertificateChainRequestCommand(Device * device, Credentials::CertificateType certificateType)
{
ChipLogDetail(Controller, "Sending Certificate Chain request to %p device", device);
VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
chip::Controller::OperationalCredentialsCluster cluster;
cluster.Associate(device, 0);
mCertificateTypeBeingRequested = certificateType;
Callback::Cancelable * successCallback = mCertificateChainResponseCallback.Cancel();
Callback::Cancelable * failureCallback = mOnCertificateChainFailureCallback.Cancel();
ReturnErrorOnFailure(cluster.CertificateChainRequest(successCallback, failureCallback, certificateType));
ChipLogDetail(Controller, "Sent Certificate Chain request, waiting for the DAC Certificate");
return CHIP_NO_ERROR;
}
void DeviceCommissioner::OnCertificateChainFailureResponse(void * context, uint8_t status)
{
ChipLogProgress(Controller, "Device failed to receive the Certificate Chain request Response: 0x%02x", status);
DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
commissioner->mCertificateChainResponseCallback.Cancel();
commissioner->mOnCertificateChainFailureCallback.Cancel();
// TODO: Map error status to correct error code
commissioner->OnSessionEstablishmentError(CHIP_ERROR_INTERNAL);
}
void DeviceCommissioner::OnCertificateChainResponse(void * context, ByteSpan certificate)
{
ChipLogProgress(Controller, "Received certificate chain from the device");
DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
commissioner->mCertificateChainResponseCallback.Cancel();
commissioner->mOnCertificateChainFailureCallback.Cancel();
if (commissioner->ProcessCertificateChain(certificate) != CHIP_NO_ERROR)
{
// Handle error, and notify session failure to the commissioner application.
ChipLogError(Controller, "Failed to process the certificate chain request");
// TODO: Map error status to correct error code
commissioner->OnSessionEstablishmentError(CHIP_ERROR_INTERNAL);
}
}
CHIP_ERROR DeviceCommissioner::ProcessCertificateChain(const ByteSpan & certificate)
{
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mDeviceBeingPaired < kNumMaxActiveDevices, CHIP_ERROR_INCORRECT_STATE);
Device * device = &mActiveDevices[mDeviceBeingPaired];
// PAI is being requested first - If PAI is not present, DAC will be requested next anyway.
switch (mCertificateTypeBeingRequested)
{
case CertificateType::kDAC: {
device->SetDAC(certificate);
break;
}
case CertificateType::kPAI: {
device->SetPAI(certificate);
break;
}
case CertificateType::kUnknown:
default: {
return CHIP_ERROR_INTERNAL;
}
}
if (device->AreCredentialsAvailable())
{
ChipLogProgress(Controller, "Sending Attestation Request to the device.");
ReturnErrorOnFailure(SendAttestationRequestCommand(device, device->GetAttestationNonce()));
}
else
{
CHIP_ERROR err = SendCertificateChainRequestCommand(device, CertificateType::kDAC);
if (err != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed in sending Certificate Chain request command to the device: err %s", ErrorStr(err));
OnSessionEstablishmentError(err);
return err;
}
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceCommissioner::SendAttestationRequestCommand(Device * device, const ByteSpan & attestationNonce)
{
ChipLogDetail(Controller, "Sending Attestation request to %p device", device);
VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
chip::Controller::OperationalCredentialsCluster cluster;
cluster.Associate(device, 0);
Callback::Cancelable * successCallback = mAttestationResponseCallback.Cancel();
Callback::Cancelable * failureCallback = mOnAttestationFailureCallback.Cancel();
ReturnErrorOnFailure(cluster.AttestationRequest(successCallback, failureCallback, attestationNonce));
ChipLogDetail(Controller, "Sent Attestation request, waiting for the Attestation Information");
return CHIP_NO_ERROR;
}
void DeviceCommissioner::OnAttestationFailureResponse(void * context, uint8_t status)
{
ChipLogProgress(Controller, "Device failed to receive the Attestation Information Response: 0x%02x", status);
DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
commissioner->mAttestationResponseCallback.Cancel();
commissioner->mOnAttestationFailureCallback.Cancel();
// TODO: Map error status to correct error code
commissioner->OnSessionEstablishmentError(CHIP_ERROR_INTERNAL);
}
void DeviceCommissioner::OnAttestationResponse(void * context, chip::ByteSpan attestationElements, chip::ByteSpan signature)
{
ChipLogProgress(Controller, "Received Attestation Information from the device");
DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
commissioner->mAttestationResponseCallback.Cancel();
commissioner->mOnAttestationFailureCallback.Cancel();
commissioner->HandleAttestationResult(commissioner->ValidateAttestationInfo(attestationElements, signature));
}
CHIP_ERROR DeviceCommissioner::ValidateAttestationInfo(const ByteSpan & attestationElements, const ByteSpan & signature)
{
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mDeviceBeingPaired < kNumMaxActiveDevices, CHIP_ERROR_INCORRECT_STATE);
Device * device = &mActiveDevices[mDeviceBeingPaired];
DeviceAttestationVerifier * dac_verifier = GetDeviceAttestationVerifier();
// Retrieve attestation challenge
ByteSpan attestationChallenge = mSystemState->SessionMgr()
->GetSecureSession({ mPairingSession.GetPeerNodeId(), mPairingSession.GetLocalSessionId(),
mPairingSession.GetPeerSessionId(), mFabricIndex })
->GetCryptoContext()
.GetAttestationChallenge();
AttestationVerificationResult result = dac_verifier->VerifyAttestationInformation(
attestationElements, attestationChallenge, signature, device->GetPAI(), device->GetDAC(), device->GetAttestationNonce());
if (result != AttestationVerificationResult::kSuccess)
{
if (result == AttestationVerificationResult::kNotImplemented)
{
ChipLogError(Controller,
"Failed in verifying 'Attestation Information' command received from the device due to default "
"DeviceAttestationVerifier Class not being overriden by a real implementation.");
return CHIP_ERROR_NOT_IMPLEMENTED;
}
else
{
ChipLogError(Controller,
"Failed in verifying 'Attestation Information' command received from the device: err %hu. Look at "
"AttestationVerificationResult enum to understand the errors",
static_cast<uint16_t>(result));
// Go look at AttestationVerificationResult enum in src/credentials/DeviceAttestationVerifier.h to understand the
// errors.
return CHIP_ERROR_INTERNAL;
}
}
ChipLogProgress(Controller, "Successfully validated 'Attestation Information' command received from the device.");
// TODO: Validate Certification Declaration
// TODO: Validate Firmware Information
return CHIP_NO_ERROR;
}
void DeviceCommissioner::HandleAttestationResult(CHIP_ERROR err)
{
if (err != CHIP_NO_ERROR)
{
// Here we assume the Attestation Information validation always succeeds.
// Spec mandates that commissioning shall continue despite attestation fails (in some cases).
// TODO: Handle failure scenarios where commissioning may progress regardless.
ChipLogError(Controller, "Failed to validate the Attestation Information");
}
VerifyOrReturn(mState == State::Initialized);
VerifyOrReturn(mDeviceBeingPaired < kNumMaxActiveDevices);
Device * device = &mActiveDevices[mDeviceBeingPaired];
ChipLogProgress(Controller, "Sending 'CSR request' command to the device.");
CHIP_ERROR error = SendOperationalCertificateSigningRequestCommand(device);
if (error != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed in sending 'CSR request' command to the device: err %s", ErrorStr(error));
OnSessionEstablishmentError(error);
return;
}
}
CHIP_ERROR DeviceCommissioner::SendOperationalCertificateSigningRequestCommand(Device * device)
{
ChipLogDetail(Controller, "Sending OpCSR request to %p device", device);
VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
chip::Controller::OperationalCredentialsCluster cluster;
cluster.Associate(device, 0);
Callback::Cancelable * successCallback = mOpCSRResponseCallback.Cancel();
Callback::Cancelable * failureCallback = mOnCSRFailureCallback.Cancel();
ReturnErrorOnFailure(cluster.OpCSRRequest(successCallback, failureCallback, device->GetCSRNonce()));
ChipLogDetail(Controller, "Sent OpCSR request, waiting for the CSR");
return CHIP_NO_ERROR;
}
void DeviceCommissioner::OnCSRFailureResponse(void * context, uint8_t status)
{
ChipLogProgress(Controller, "Device failed to receive the CSR request Response: 0x%02x", status);
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
commissioner->mOpCSRResponseCallback.Cancel();
commissioner->mOnCSRFailureCallback.Cancel();
// TODO: Map error status to correct error code
commissioner->OnSessionEstablishmentError(CHIP_ERROR_INTERNAL);
}
void DeviceCommissioner::OnOperationalCertificateSigningRequest(void * context, ByteSpan NOCSRElements,
ByteSpan AttestationSignature)
{
ChipLogProgress(Controller, "Received certificate signing request from the device");
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
commissioner->mOpCSRResponseCallback.Cancel();
commissioner->mOnCSRFailureCallback.Cancel();
if (commissioner->ProcessOpCSR(NOCSRElements, AttestationSignature) != CHIP_NO_ERROR)
{
// Handle error, and notify session failure to the commissioner application.
ChipLogError(Controller, "Failed to process the certificate signing request");
// TODO: Map error status to correct error code
commissioner->OnSessionEstablishmentError(CHIP_ERROR_INTERNAL);
}
}
void DeviceCommissioner::OnDeviceNOCChainGeneration(void * context, CHIP_ERROR status, const ByteSpan & noc, const ByteSpan & icac,
const ByteSpan & rcac)
{
CHIP_ERROR err = CHIP_NO_ERROR;
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
ChipLogProgress(Controller, "Received callback from the CA for NOC Chain generation. Status %s", ErrorStr(status));
Device * device = nullptr;
VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
VerifyOrExit(commissioner->mDeviceBeingPaired < kNumMaxActiveDevices, err = CHIP_ERROR_INCORRECT_STATE);
// Check if the callback returned a failure
VerifyOrExit(status == CHIP_NO_ERROR, err = status);
// TODO - Verify that the generated root cert matches with commissioner's root cert
device = &commissioner->mActiveDevices[commissioner->mDeviceBeingPaired];
{
// Reuse NOC Cert buffer for temporary store Root Cert.
MutableByteSpan rootCert = device->GetMutableNOCCert();
err = ConvertX509CertToChipCert(rcac, rootCert);
SuccessOrExit(err);
err = commissioner->SendTrustedRootCertificate(device, rootCert);
SuccessOrExit(err);
}
if (!icac.empty())
{
MutableByteSpan icaCert = device->GetMutableICACert();
err = ConvertX509CertToChipCert(icac, icaCert);
SuccessOrExit(err);
err = device->SetICACertBufferSize(icaCert.size());
SuccessOrExit(err);
}
{
MutableByteSpan nocCert = device->GetMutableNOCCert();
err = ConvertX509CertToChipCert(noc, nocCert);
SuccessOrExit(err);
err = device->SetNOCCertBufferSize(nocCert.size());
SuccessOrExit(err);
}
exit:
if (err != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed in generating device's operational credentials. Error %s", ErrorStr(err));
commissioner->OnSessionEstablishmentError(err);
}
}
CHIP_ERROR DeviceCommissioner::ProcessOpCSR(const ByteSpan & NOCSRElements, const ByteSpan & AttestationSignature)
{
VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mDeviceBeingPaired < kNumMaxActiveDevices, CHIP_ERROR_INCORRECT_STATE);
Device * device = &mActiveDevices[mDeviceBeingPaired];
ChipLogProgress(Controller, "Getting certificate chain for the device from the issuer");
mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(device->GetDeviceId());
mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(0);
return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, AttestationSignature, ByteSpan(), ByteSpan(),
ByteSpan(), &mDeviceNOCChainCallback);
}
CHIP_ERROR DeviceCommissioner::SendOperationalCertificate(Device * device, const ByteSpan & nocCertBuf, const ByteSpan & icaCertBuf)
{
VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
chip::Controller::OperationalCredentialsCluster cluster;
cluster.Associate(device, 0);
Callback::Cancelable * successCallback = mNOCResponseCallback.Cancel();
Callback::Cancelable * failureCallback = mOnCertFailureCallback.Cancel();
ReturnErrorOnFailure(cluster.AddNOC(successCallback, failureCallback, nocCertBuf, icaCertBuf, ByteSpan(nullptr, 0),
mLocalId.GetNodeId(), mVendorId));
ChipLogProgress(Controller, "Sent operational certificate to the device");
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceCommissioner::ConvertFromNodeOperationalCertStatus(uint8_t err)
{
switch (err)
{
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_SUCCESS:
return CHIP_NO_ERROR;
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_INVALID_PUBLIC_KEY:
return CHIP_ERROR_INVALID_PUBLIC_KEY;
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_INVALID_NODE_OP_ID:
return CHIP_ERROR_WRONG_NODE_ID;
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_INVALID_NOC:
return CHIP_ERROR_CERT_LOAD_FAILED;
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_MISSING_CSR:
return CHIP_ERROR_INCORRECT_STATE;
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_TABLE_FULL:
return CHIP_ERROR_NO_MEMORY;
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_INSUFFICIENT_PRIVILEGE:
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_FABRIC_CONFLICT:
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_LABEL_CONFLICT:
return CHIP_ERROR_INVALID_ARGUMENT;
case EMBER_ZCL_NODE_OPERATIONAL_CERT_STATUS_INVALID_FABRIC_INDEX:
return CHIP_ERROR_INVALID_FABRIC_ID;
}
return CHIP_ERROR_CERT_LOAD_FAILED;
}
void DeviceCommissioner::OnAddNOCFailureResponse(void * context, uint8_t status)
{
ChipLogProgress(Controller, "Device failed to receive the operational certificate Response: 0x%02x", status);
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
commissioner->mOpCSRResponseCallback.Cancel();
commissioner->mOnCertFailureCallback.Cancel();
// TODO: Map error status to correct error code
commissioner->OnSessionEstablishmentError(CHIP_ERROR_INTERNAL);
}
void DeviceCommissioner::OnOperationalCertificateAddResponse(void * context, uint8_t StatusCode, uint8_t FabricIndex,
ByteSpan DebugText)
{
ChipLogProgress(Controller, "Device returned status %d on receiving the NOC", StatusCode);
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
CHIP_ERROR err = CHIP_NO_ERROR;
Device * device = nullptr;
VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
commissioner->mOpCSRResponseCallback.Cancel();
commissioner->mOnCertFailureCallback.Cancel();
VerifyOrExit(commissioner->mDeviceBeingPaired < kNumMaxActiveDevices, err = CHIP_ERROR_INCORRECT_STATE);
err = ConvertFromNodeOperationalCertStatus(StatusCode);
SuccessOrExit(err);
device = &commissioner->mActiveDevices[commissioner->mDeviceBeingPaired];
err = commissioner->OnOperationalCredentialsProvisioningCompletion(device);
exit:
if (err != CHIP_NO_ERROR)
{
ChipLogProgress(Controller, "Add NOC failed with error %s", ErrorStr(err));
commissioner->OnSessionEstablishmentError(err);
}
}
CHIP_ERROR DeviceCommissioner::SendTrustedRootCertificate(Device * device, const ByteSpan & rcac)
{
VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
ChipLogProgress(Controller, "Sending root certificate to the device");
chip::Controller::OperationalCredentialsCluster cluster;
cluster.Associate(device, 0);
Callback::Cancelable * successCallback = mRootCertResponseCallback.Cancel();
Callback::Cancelable * failureCallback = mOnRootCertFailureCallback.Cancel();
ReturnErrorOnFailure(cluster.AddTrustedRootCertificate(successCallback, failureCallback, rcac));
ChipLogProgress(Controller, "Sent root certificate to the device");
return CHIP_NO_ERROR;
}
void DeviceCommissioner::OnRootCertSuccessResponse(void * context)
{
ChipLogProgress(Controller, "Device confirmed that it has received the root certificate");
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
CHIP_ERROR err = CHIP_NO_ERROR;
Device * device = nullptr;
VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
commissioner->mRootCertResponseCallback.Cancel();
commissioner->mOnRootCertFailureCallback.Cancel();
VerifyOrExit(commissioner->mDeviceBeingPaired < kNumMaxActiveDevices, err = CHIP_ERROR_INCORRECT_STATE);
device = &commissioner->mActiveDevices[commissioner->mDeviceBeingPaired];
ChipLogProgress(Controller, "Sending operational certificate chain to the device");
err = commissioner->SendOperationalCertificate(device, device->GetNOCCert(), device->GetICACert());
SuccessOrExit(err);
exit:
if (err != CHIP_NO_ERROR)
{
commissioner->OnSessionEstablishmentError(err);
}
}
void DeviceCommissioner::OnRootCertFailureResponse(void * context, uint8_t status)
{
ChipLogProgress(Controller, "Device failed to receive the root certificate Response: 0x%02x", status);
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
commissioner->mRootCertResponseCallback.Cancel();
commissioner->mOnRootCertFailureCallback.Cancel();
// TODO: Map error status to correct error code
commissioner->OnSessionEstablishmentError(CHIP_ERROR_INTERNAL);
}
CHIP_ERROR DeviceCommissioner::OnOperationalCredentialsProvisioningCompletion(Device * device)
{
ChipLogProgress(Controller, "Operational credentials provisioned on device %p", device);
VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
#if CONFIG_USE_CLUSTERS_FOR_IP_COMMISSIONING
if (mIsIPRendezvous)
{
AdvanceCommissioningStage(CHIP_NO_ERROR);
}
else
#endif
{
mPairingSession.ToSerializable(device->GetPairing());
mSystemState->SystemLayer()->CancelTimer(OnSessionEstablishmentTimeoutCallback, this);
mPairedDevices.Insert(device->GetDeviceId());
mPairedDevicesUpdated = true;
// Note - This assumes storage is synchronous, the device must be in storage before we can cleanup
// the rendezvous session and mark pairing success
PersistDevice(device);
// Also persist the device list at this time
// This makes sure that a newly added device is immediately available
PersistDeviceList();
if (mPairingDelegate != nullptr)
{
mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
}
RendezvousCleanup(CHIP_NO_ERROR);
}
return CHIP_NO_ERROR;
}
void DeviceCommissioner::PersistDeviceList()
{
if (mStorageDelegate != nullptr && mPairedDevicesUpdated && mState == State::Initialized)
{
mPairedDevices.Serialize([&](ByteSpan data) -> CHIP_ERROR {
VerifyOrReturnError(data.size() <= UINT16_MAX, CHIP_ERROR_INVALID_ARGUMENT);
PERSISTENT_KEY_OP(static_cast<uint64_t>(0), kPairedDeviceListKeyPrefix, key,
mStorageDelegate->SyncSetKeyValue(key, data.data(), static_cast<uint16_t>(data.size())));
mPairedDevicesUpdated = false;
return CHIP_NO_ERROR;
});
}
}
void DeviceCommissioner::ReleaseDevice(Device * device)
{
PersistDeviceList();
DeviceController::ReleaseDevice(device);
}
#if CONFIG_NETWORK_LAYER_BLE
CHIP_ERROR DeviceCommissioner::CloseBleConnection()
{
// It is fine since we can only commission one device at the same time.
// We should be able to distinguish different BLE connections if we want
// to commission multiple devices at the same time over BLE.
return mSystemState->BleLayer()->CloseAllBleConnections();
}
#endif
void DeviceCommissioner::OnSessionEstablishmentTimeout()
{
VerifyOrReturn(mState == State::Initialized);
VerifyOrReturn(mDeviceBeingPaired < kNumMaxActiveDevices);
Device * device = &mActiveDevices[mDeviceBeingPaired];
StopPairing(device->GetDeviceId());
if (mPairingDelegate != nullptr)
{
mPairingDelegate->OnPairingComplete(CHIP_ERROR_TIMEOUT);
}
}
void DeviceCommissioner::OnSessionEstablishmentTimeoutCallback(System::Layer * aLayer, void * aAppState)
{
static_cast<DeviceCommissioner *>(aAppState)->OnSessionEstablishmentTimeout();
}
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
CHIP_ERROR DeviceCommissioner::DiscoverCommissionableNodes(Dnssd::DiscoveryFilter filter)
{
ReturnErrorOnFailure(SetUpNodeDiscovery());
return chip::Dnssd::Resolver::Instance().FindCommissionableNodes(filter);
}
const Dnssd::DiscoveredNodeData * DeviceCommissioner::GetDiscoveredDevice(int idx)
{
return GetDiscoveredNode(idx);
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_DNSSD
#if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
CHIP_ERROR DeviceCommissioner::SetUdcListenPort(uint16_t listenPort)
{
if (mState == State::Initialized)
{
return CHIP_ERROR_INCORRECT_STATE;
}
mUdcListenPort = listenPort;
return CHIP_NO_ERROR;
}
void DeviceCommissioner::FindCommissionableNode(char * instanceName)
{
Dnssd::DiscoveryFilter filter(Dnssd::DiscoveryFilterType::kInstanceName, instanceName);
DiscoverCommissionableNodes(filter);
}
void DeviceCommissioner::OnUserDirectedCommissioningRequest(const Dnssd::DiscoveredNodeData & nodeData)
{
ChipLogDetail(Controller, "------PROMPT USER!! OnUserDirectedCommissioningRequest instance=%s", nodeData.instanceName);
}
void DeviceCommissioner::OnNodeDiscoveryComplete(const chip::Dnssd::DiscoveredNodeData & nodeData)
{
if (mUdcServer != nullptr)
{
mUdcServer->OnCommissionableNodeFound(nodeData);
}
AbstractDnssdDiscoveryController::OnNodeDiscoveryComplete(nodeData);
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
void DeviceControllerInteractionModelDelegate::OnResponse(app::CommandSender * apCommandSender,
const app::ConcreteCommandPath & aPath, TLV::TLVReader * aData)
{
// Generally IM has more detailed errors than ember library, here we always use the, the actual handling of the
// commands should implement full IMDelegate.
// #6308 By implement app side IM delegate, we should be able to accept detailed error codes.
// Note: The IMDefaultResponseCallback is a bridge to the old CallbackMgr before IM is landed, so it still accepts EmberAfStatus
// instead of IM status code.
if (aData != nullptr)
{
chip::app::DispatchSingleClusterResponseCommand(aPath, *aData, apCommandSender);
}
else
{
IMDefaultResponseCallback(apCommandSender, EMBER_ZCL_STATUS_SUCCESS);
}
}
void DeviceControllerInteractionModelDelegate::OnError(const app::CommandSender * apCommandSender,
Protocols::InteractionModel::Status aClusterStatus, CHIP_ERROR aError)
{
// The IMDefaultResponseCallback started out life as an Ember function, so it only accepted
// Ember status codes. Consequently, let's convert the IM code over to a meaningful Ember status before dispatching.
//
// This however, results in loss (aError is completely discarded). When full cluster-specific status codes are implemented as
// well, this will be an even bigger problem.
//
// For now, #10331 tracks this issue.
IMDefaultResponseCallback(apCommandSender, app::ToEmberAfStatus(aClusterStatus));
}
void DeviceControllerInteractionModelDelegate::OnDone(app::CommandSender * apCommandSender)
{
return chip::Platform::Delete(apCommandSender);
}
void DeviceControllerInteractionModelDelegate::OnReportData(const app::ReadClient * apReadClient, const app::ClusterInfo & aPath,
TLV::TLVReader * apData, Protocols::InteractionModel::Status status)
{
IMReadReportAttributesResponseCallback(apReadClient, aPath, apData, status);
}
CHIP_ERROR DeviceControllerInteractionModelDelegate::ReadError(app::ReadClient * apReadClient, CHIP_ERROR aError)
{
app::ClusterInfo path;
path.mNodeId = apReadClient->GetPeerNodeId();
IMReadReportAttributesResponseCallback(apReadClient, path, nullptr, Protocols::InteractionModel::Status::Failure);
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceControllerInteractionModelDelegate::ReadDone(app::ReadClient * apReadClient)
{
// Release the object for subscription
if (apReadClient->IsSubscriptionType())
{
FreeAttributePathParam(apReadClient->GetAppIdentifier());
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceControllerInteractionModelDelegate::WriteResponseStatus(const app::WriteClient * apWriteClient,
const app::StatusIB & aStatusIB,
app::AttributePathParams & aAttributePathParams,
uint8_t aAttributeIndex)
{
IMWriteResponseCallback(apWriteClient, chip::app::ToEmberAfStatus(aStatusIB.mStatus));
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceControllerInteractionModelDelegate::WriteResponseProtocolError(const app::WriteClient * apWriteClient,
uint8_t aAttributeIndex)
{
// When WriteResponseProtocolError occurred, it means server returned an invalid packet.
IMWriteResponseCallback(apWriteClient, EMBER_ZCL_STATUS_FAILURE);
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceControllerInteractionModelDelegate::WriteResponseError(const app::WriteClient * apWriteClient, CHIP_ERROR aError)
{
// When WriteResponseError occurred, it means we failed to receive the response from server.
IMWriteResponseCallback(apWriteClient, EMBER_ZCL_STATUS_FAILURE);
return CHIP_NO_ERROR;
}
CHIP_ERROR DeviceControllerInteractionModelDelegate::SubscribeResponseProcessed(const app::ReadClient * apSubscribeClient)
{
#if !CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE // temporary - until example app clusters are updated (Issue 8347)
// When WriteResponseError occurred, it means we failed to receive the response from server.
IMSubscribeResponseCallback(apSubscribeClient, EMBER_ZCL_STATUS_SUCCESS);
#endif
return CHIP_NO_ERROR;
}
void BasicSuccess(void * context, uint16_t val)
{
ChipLogProgress(Controller, "Received success response 0x%x\n", val);
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
commissioner->AdvanceCommissioningStage(CHIP_NO_ERROR);
}
void BasicFailure(void * context, uint8_t status)
{
ChipLogProgress(Controller, "Received failure response %d\n", (int) status);
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
commissioner->OnSessionEstablishmentError(static_cast<CHIP_ERROR>(status));
}
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
void DeviceCommissioner::OnNodeIdResolved(const chip::Dnssd::ResolvedNodeData & nodeData)
{
DeviceController::OnNodeIdResolved(nodeData);
OperationalDiscoveryComplete(nodeData.mPeerId.GetNodeId());
}
void DeviceCommissioner::OnNodeIdResolutionFailed(const chip::PeerId & peer, CHIP_ERROR error)
{
if (mDeviceBeingPaired < kNumMaxActiveDevices)
{
Device * device = &mActiveDevices[mDeviceBeingPaired];
if (device->GetDeviceId() == peer.GetNodeId() && mCommissioningStage == CommissioningStage::kFindOperational)
{
OnSessionEstablishmentError(error);
}
}
DeviceController::OnNodeIdResolutionFailed(peer, error);
}
#endif
void DeviceCommissioner::OnDeviceConnectedFn(void * context, Device * device)
{
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
VerifyOrReturn(commissioner != nullptr, ChipLogProgress(Controller, "Device connected callback with null context. Ignoring"));
if (commissioner->mDeviceBeingPaired < kNumMaxActiveDevices)
{
Device * deviceBeingPaired = &commissioner->mActiveDevices[commissioner->mDeviceBeingPaired];
if (device == deviceBeingPaired && commissioner->mIsIPRendezvous)
{
if (commissioner->mCommissioningStage == CommissioningStage::kFindOperational)
{
commissioner->AdvanceCommissioningStage(CHIP_NO_ERROR);
}
// For IP rendezvous, we don't want to call commissioning complete below because IP commissioning
// has more steps currently.
return;
}
}
VerifyOrReturn(commissioner->mPairingDelegate != nullptr,
ChipLogProgress(Controller, "Device connected callback with null pairing delegate. Ignoring"));
commissioner->mPairingDelegate->OnCommissioningComplete(device->GetDeviceId(), CHIP_NO_ERROR);
}
void DeviceCommissioner::OnDeviceConnectionFailureFn(void * context, NodeId deviceId, CHIP_ERROR error)
{
DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
ChipLogProgress(Controller, "Device connection failed. Error %s", ErrorStr(error));
VerifyOrReturn(commissioner != nullptr,
ChipLogProgress(Controller, "Device connection failure callback with null context. Ignoring"));
VerifyOrReturn(commissioner->mPairingDelegate != nullptr,
ChipLogProgress(Controller, "Device connection failure callback with null pairing delegate. Ignoring"));
commissioner->mPairingDelegate->OnCommissioningComplete(deviceId, error);
}
CommissioningStage DeviceCommissioner::GetNextCommissioningStage()
{
switch (mCommissioningStage)
{
case CommissioningStage::kSecurePairing:
return CommissioningStage::kArmFailsafe;
case CommissioningStage::kArmFailsafe:
return CommissioningStage::kConfigRegulatory;
case CommissioningStage::kConfigRegulatory:
return CommissioningStage::kDeviceAttestation;
case CommissioningStage::kDeviceAttestation:
// TODO(cecille): device attestation casues operational cert provisioinging to happen, This should be a separate stage.
// For thread and wifi, this should go to network setup then enable. For on-network we can skip right to finding the
// operational network because the provisioning of certificates will trigger the device to start operational advertising.
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
return CommissioningStage::kFindOperational; // TODO : once case is working, need to add stages to find and reconnect
// here.
#else
return CommissioningStage::kSendComplete;
#endif
case CommissioningStage::kFindOperational:
return CommissioningStage::kSendComplete;
case CommissioningStage::kSendComplete:
return CommissioningStage::kCleanup;
// Currently unimplemented.
case CommissioningStage::kConfigACL:
case CommissioningStage::kNetworkSetup:
case CommissioningStage::kNetworkEnable:
case CommissioningStage::kScanNetworks:
case CommissioningStage::kCheckCertificates:
return CommissioningStage::kError;
// Neither of these have a next stage so return kError;
case CommissioningStage::kCleanup:
case CommissioningStage::kError:
return CommissioningStage::kError;
}
return CommissioningStage::kError;
}
void DeviceCommissioner::AdvanceCommissioningStage(CHIP_ERROR err)
{
// For now, we ignore errors coming in from the device since not all commissioning clusters are implemented on the device
// side.
CommissioningStage nextStage = GetNextCommissioningStage();
if (nextStage == CommissioningStage::kError)
{
return;
}
if (!mIsIPRendezvous)
{
return;
}
Device * device = nullptr;
if (mDeviceBeingPaired >= kNumMaxActiveDevices)
{
return;
}
device = &mActiveDevices[mDeviceBeingPaired];
// TODO(cecille): We probably want something better than this for breadcrumbs.
uint64_t breadcrumb = static_cast<uint64_t>(nextStage);
// TODO(cecille): This should be customized per command.
constexpr uint32_t kCommandTimeoutMs = 3000;
switch (nextStage)
{
case CommissioningStage::kArmFailsafe: {
// TODO(cecille): This is NOT the right way to do this - we should consider attaching an im delegate per command or
// something. Per exchange context?
ChipLogProgress(Controller, "Arming failsafe");
// TODO(cecille): Find a way to enumerate the clusters here.
GeneralCommissioningCluster genCom;
// TODO: should get the endpoint information from the descriptor cluster.
genCom.Associate(device, 0);
// TODO(cecille): Make this a parameter
uint16_t commissioningExpirySeconds = 60;
genCom.ArmFailSafe(mSuccess.Cancel(), mFailure.Cancel(), commissioningExpirySeconds, breadcrumb, kCommandTimeoutMs);
}
break;
case CommissioningStage::kConfigRegulatory: {
// To set during config phase:
// UTC time
// time zone
// dst offset
// Regulatory config
// TODO(cecille): Set time as well once the time cluster is implemented
// TODO(cecille): Worthwhile to keep this around as part of the class?
// TODO(cecille): Where is the country config actually set?
ChipLogProgress(Controller, "Setting Regulatory Config");
uint32_t regulatoryLocation = EMBER_ZCL_REGULATORY_LOCATION_TYPE_OUTDOOR;
#if CONFIG_DEVICE_LAYER
CHIP_ERROR status = DeviceLayer::ConfigurationMgr().GetRegulatoryLocation(regulatoryLocation);
#else
CHIP_ERROR status = CHIP_ERROR_NOT_IMPLEMENTED;
#endif
if (status != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Unable to find regulatory location, defaulting to outdoor");
}
static constexpr size_t kMaxCountryCodeSize = 3;
char countryCodeStr[kMaxCountryCodeSize] = "WW";
size_t actualCountryCodeSize = 2;
#if CONFIG_DEVICE_LAYER
status = DeviceLayer::ConfigurationMgr().GetCountryCode(countryCodeStr, kMaxCountryCodeSize, actualCountryCodeSize);
#else
status = CHIP_ERROR_NOT_IMPLEMENTED;
#endif
if (status != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Unable to find country code, defaulting to WW");
}
chip::ByteSpan countryCode(reinterpret_cast<uint8_t *>(countryCodeStr), actualCountryCodeSize);
GeneralCommissioningCluster genCom;
genCom.Associate(device, 0);
genCom.SetRegulatoryConfig(mSuccess.Cancel(), mFailure.Cancel(), static_cast<uint8_t>(regulatoryLocation), countryCode,
breadcrumb, kCommandTimeoutMs);
}
break;
case CommissioningStage::kDeviceAttestation: {
ChipLogProgress(Controller, "Exchanging vendor certificates");
CHIP_ERROR status = SendCertificateChainRequestCommand(device, CertificateType::kPAI);
if (status != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed in sending 'Certificate Chain Request' command to the device: err %s", ErrorStr(err));
OnSessionEstablishmentError(err);
return;
}
}
break;
case CommissioningStage::kCheckCertificates: {
ChipLogProgress(Controller, "Exchanging certificates");
// TODO(cecille): Once this is implemented through the clusters, it should be moved to the proper stage and the callback
// should advance the commissioning stage
CHIP_ERROR status = SendOperationalCertificateSigningRequestCommand(device);
if (status != CHIP_NO_ERROR)
{
ChipLogError(Controller, "Failed in sending 'CSR Request' command to the device: err %s", ErrorStr(err));
OnSessionEstablishmentError(err);
return;
}
}
break;
// TODO: Right now, these stages are not implemented as a separate stage because they are no-ops.
// Once these are implemented through the clusters, these should be moved into their separate stages and the callbacks
// should advance the commissioning stage.
case CommissioningStage::kConfigACL:
case CommissioningStage::kNetworkSetup:
case CommissioningStage::kScanNetworks:
// TODO: Implement
break;
case CommissioningStage::kNetworkEnable: {
ChipLogProgress(Controller, "Enabling Network");
// For on-network, this is a NO-OP becuase we now start operational advertising once credentials are provisioned.
// This is a placeholder for thread and wifi networks once that is implemented.
}
break;
case CommissioningStage::kFindOperational: {
#if CHIP_DEVICE_CONFIG_ENABLE_DNSSD
ChipLogProgress(Controller, "Finding node on operational network");
Dnssd::Resolver::Instance().ResolveNodeId(
PeerId().SetCompressedFabricId(GetCompressedFabricId()).SetNodeId(device->GetDeviceId()),
Inet::IPAddressType::kIPAddressType_Any);
#endif
}
break;
case CommissioningStage::kSendComplete: {
// TODO this is actualy not correct - we must reconnect over CASE to send this command.
ChipLogProgress(Controller, "Calling commissioning complete");
GeneralCommissioningCluster genCom;
genCom.Associate(device, 0);
genCom.CommissioningComplete(mSuccess.Cancel(), mFailure.Cancel());
}
break;
case CommissioningStage::kCleanup:
ChipLogProgress(Controller, "Rendezvous cleanup");
mPairingSession.ToSerializable(device->GetPairing());
mSystemState->SystemLayer()->CancelTimer(OnSessionEstablishmentTimeoutCallback, this);
mPairedDevices.Insert(device->GetDeviceId());
mPairedDevicesUpdated = true;
// Note - This assumes storage is synchronous, the device must be in storage before we can cleanup
// the rendezvous session and mark pairing success
PersistDevice(device);
// Also persist the device list at this time
// This makes sure that a newly added device is immediately available
PersistDeviceList();
if (mPairingDelegate != nullptr)
{
mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
}
RendezvousCleanup(CHIP_NO_ERROR);
break;
case CommissioningStage::kSecurePairing:
case CommissioningStage::kError:
break;
}
mCommissioningStage = nextStage;
}
} // namespace Controller
} // namespace chip