blob: a14c0527b44240370996562f3cfa2eaa1c350419 [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* Copyright (c) 2018 Nest Labs, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides implementations of the CHIP System Layer platform
* time/clock functions based on the FreeRTOS tick counter.
*/
/* this file behaves like a config.h, comes first */
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <lib/support/TimeUtils.h>
#include "FreeRTOS.h"
namespace chip {
namespace System {
namespace Clock {
namespace Internal {
ClockImpl gClockImpl;
} // namespace Internal
namespace {
constexpr uint32_t kTicksOverflowShift = (configUSE_16_BIT_TICKS) ? 16 : 32;
uint64_t sBootTimeUS = 0;
#ifdef __CORTEX_M
BaseType_t sNumOfOverflows;
#endif
} // unnamed namespace
/**
* Returns the number of FreeRTOS ticks since the system booted.
*
* NOTE: The default implementation of this function uses FreeRTOS's
* vTaskSetTimeOutState() function to get the total number of ticks,
* irrespective of tick counter overflows. Unfortunately, this function cannot
* be called in interrupt context, no equivalent ISR function exists, and
* FreeRTOS provides no portable way of determining whether a function is being
* called in an interrupt context. Adaptations that need to use the Chip
* Get/SetClock methods from within an interrupt handler must override this
* function with a suitable alternative that works on the target platform. The
* provided version is safe to call on ARM Cortex platforms with CMSIS
* libraries.
*/
uint64_t FreeRTOSTicksSinceBoot(void) __attribute__((weak));
uint64_t FreeRTOSTicksSinceBoot(void)
{
TimeOut_t timeOut;
#ifdef __CORTEX_M
if (SCB->ICSR & SCB_ICSR_VECTACTIVE_Msk) // running in an interrupt context
{
// Note that sNumOverflows may be quite stale, and under those
// circumstances, the function may violate monotonicity guarantees
timeOut.xTimeOnEntering = xTaskGetTickCountFromISR();
timeOut.xOverflowCount = sNumOfOverflows;
}
else
{
#endif
vTaskSetTimeOutState(&timeOut);
#ifdef __CORTEX_M
// BaseType_t is supposed to be atomic
sNumOfOverflows = timeOut.xOverflowCount;
}
#endif
return static_cast<uint64_t>(timeOut.xTimeOnEntering) + (static_cast<uint64_t>(timeOut.xOverflowCount) << kTicksOverflowShift);
}
Clock::Microseconds64 ClockImpl::GetMonotonicMicroseconds64(void)
{
return Clock::Microseconds64((FreeRTOSTicksSinceBoot() * kMicrosecondsPerSecond) / configTICK_RATE_HZ);
}
Clock::Milliseconds64 ClockImpl::GetMonotonicMilliseconds64(void)
{
return Clock::Milliseconds64((FreeRTOSTicksSinceBoot() * kMillisecondsPerSecond) / configTICK_RATE_HZ);
}
uint64_t GetClock_Monotonic(void)
{
return (FreeRTOSTicksSinceBoot() * kMicrosecondsPerSecond) / configTICK_RATE_HZ;
}
uint64_t GetClock_MonotonicMS(void)
{
return (FreeRTOSTicksSinceBoot() * kMillisecondsPerSecond) / configTICK_RATE_HZ;
}
uint64_t GetClock_MonotonicHiRes(void)
{
return GetClock_Monotonic();
}
CHIP_ERROR ClockImpl::GetClock_RealTime(Clock::Microseconds64 & aCurTime)
{
// TODO(19081): This platform does not properly error out if wall clock has
// not been set. For now, short circuit this.
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
#if 0
if (sBootTimeUS == 0)
{
return CHIP_ERROR_REAL_TIME_NOT_SYNCED;
}
aCurTime = Clock::Microseconds64(sBootTimeUS + GetClock_Monotonic());
return CHIP_NO_ERROR;
#endif
}
CHIP_ERROR ClockImpl::GetClock_RealTimeMS(Clock::Milliseconds64 & aCurTime)
{
if (sBootTimeUS == 0)
{
return CHIP_ERROR_REAL_TIME_NOT_SYNCED;
}
aCurTime = Clock::Milliseconds64((sBootTimeUS + GetClock_Monotonic()) / 1000);
return CHIP_NO_ERROR;
}
CHIP_ERROR ClockImpl::SetClock_RealTime(Clock::Microseconds64 aNewCurTime)
{
uint64_t timeSinceBootUS = GetClock_Monotonic();
if (aNewCurTime.count() > timeSinceBootUS)
{
sBootTimeUS = aNewCurTime.count() - timeSinceBootUS;
}
else
{
sBootTimeUS = 0;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR InitClock_RealTime()
{
Clock::Microseconds64 curTime =
Clock::Microseconds64((static_cast<uint64_t>(CHIP_SYSTEM_CONFIG_VALID_REAL_TIME_THRESHOLD) * UINT64_C(1000000)));
// Use CHIP_SYSTEM_CONFIG_VALID_REAL_TIME_THRESHOLD as the initial value of RealTime.
// Then the RealTime obtained from GetClock_RealTime will be always valid.
//
// TODO(19081): This is broken because it causes the platform to report
// that it does have wall clock time when it actually doesn't.
return System::SystemClock().SetClock_RealTime(curTime);
}
} // namespace Clock
} // namespace System
} // namespace chip