blob: e04d807507cb42d9690abbc5cad50a3aa4198b6d [file] [log] [blame]
/*
*
* Copyright (c) 2021-2022 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for ESP32 platform.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <app-common/zap-generated/enums.h>
#include <crypto/CHIPCryptoPAL.h>
#include <lib/support/CHIPMemString.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/ESP32/DiagnosticDataProviderImpl.h>
#include <platform/ESP32/ESP32Utils.h>
#include "esp_event.h"
#include "esp_heap_caps_init.h"
#include "esp_log.h"
#include "esp_netif.h"
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
#include "spi_flash_mmap.h"
#else
#include "esp_spi_flash.h"
#endif
#include "esp_system.h"
#include "esp_wifi.h"
using namespace ::chip;
using namespace ::chip::TLV;
using namespace ::chip::DeviceLayer;
using namespace ::chip::DeviceLayer::Internal;
using namespace ::chip::app::Clusters::GeneralDiagnostics;
namespace {
InterfaceTypeEnum GetInterfaceType(const char * if_desc)
{
if (strncmp(if_desc, "ap", strnlen(if_desc, 2)) == 0 || strncmp(if_desc, "sta", strnlen(if_desc, 3)) == 0)
return InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_WI_FI;
if (strncmp(if_desc, "openthread", strnlen(if_desc, 10)) == 0)
return InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_THREAD;
if (strncmp(if_desc, "eth", strnlen(if_desc, 3)) == 0)
return InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_ETHERNET;
return InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_UNSPECIFIED;
}
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum MapAuthModeToSecurityType(wifi_auth_mode_t authmode)
{
using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum;
switch (authmode)
{
case WIFI_AUTH_OPEN:
return SecurityTypeEnum::kNone;
case WIFI_AUTH_WEP:
return SecurityTypeEnum::kWep;
case WIFI_AUTH_WPA_PSK:
return SecurityTypeEnum::kWpa;
case WIFI_AUTH_WPA2_PSK:
return SecurityTypeEnum::kWpa2;
case WIFI_AUTH_WPA3_PSK:
return SecurityTypeEnum::kWpa3;
default:
return SecurityTypeEnum::kUnspecified;
}
}
app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum GetWiFiVersionFromAPRecord(wifi_ap_record_t ap_info)
{
using app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum;
if (ap_info.phy_11n)
return WiFiVersionEnum::kN;
else if (ap_info.phy_11g)
return WiFiVersionEnum::kG;
else if (ap_info.phy_11b)
return WiFiVersionEnum::kB;
else
return WiFiVersionEnum::kUnknownEnumValue;
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI
} // namespace
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
currentHeapFree = esp_get_free_heap_size();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
currentHeapUsed = heap_caps_get_total_size(MALLOC_CAP_DEFAULT) - esp_get_free_heap_size();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
currentHeapHighWatermark = heap_caps_get_total_size(MALLOC_CAP_DEFAULT) - esp_get_minimum_free_heap_size();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
bootReason = BootReasonType::kUnspecified;
uint8_t reason;
reason = static_cast<uint8_t>(esp_reset_reason());
if (reason == ESP_RST_UNKNOWN)
{
bootReason = BootReasonType::kUnspecified;
}
else if (reason == ESP_RST_POWERON)
{
bootReason = BootReasonType::kPowerOnReboot;
}
else if (reason == ESP_RST_BROWNOUT)
{
bootReason = BootReasonType::kBrownOutReset;
}
else if (reason == ESP_RST_SW)
{
bootReason = BootReasonType::kSoftwareReset;
}
else if (reason == ESP_RST_INT_WDT)
{
bootReason = BootReasonType::kSoftwareWatchdogReset;
/* Reboot can be due to hardware or software watchdog*/
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
esp_netif_t * netif = esp_netif_next(NULL);
NetworkInterface * head = NULL;
uint8_t ipv6_addr_count = 0;
esp_ip6_addr_t ip6_addr[kMaxIPv6AddrCount];
if (netif == NULL)
{
ChipLogError(DeviceLayer, "Failed to get network interfaces");
}
else
{
for (esp_netif_t * ifa = netif; ifa != NULL; ifa = esp_netif_next(ifa))
{
NetworkInterface * ifp = new NetworkInterface();
esp_netif_ip_info_t ipv4_info;
Platform::CopyString(ifp->Name, esp_netif_get_ifkey(ifa));
ifp->name = CharSpan::fromCharString(ifp->Name);
ifp->isOperational = true;
ifp->type = GetInterfaceType(esp_netif_get_desc(ifa));
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
if (esp_netif_get_mac(ifa, ifp->MacAddress) != ESP_OK)
{
ChipLogError(DeviceLayer, "Failed to get network hardware address");
}
else
{
ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 6);
}
if (esp_netif_get_ip_info(ifa, &ipv4_info) == ESP_OK)
{
memcpy(ifp->Ipv4AddressesBuffer[0], &(ipv4_info.ip.addr), kMaxIPv4AddrSize);
ifp->Ipv4AddressSpans[0] = ByteSpan(ifp->Ipv4AddressesBuffer[0], kMaxIPv4AddrSize);
ifp->IPv4Addresses = app::DataModel::List<ByteSpan>(ifp->Ipv4AddressSpans, 1);
}
static_assert(kMaxIPv6AddrCount <= UINT8_MAX, "Count might not fit in ipv6_addr_count");
static_assert(ArraySize(ip6_addr) >= LWIP_IPV6_NUM_ADDRESSES, "Not enough space for our addresses.");
auto addr_count = esp_netif_get_all_ip6(ifa, ip6_addr);
if (addr_count < 0)
{
ipv6_addr_count = 0;
}
else
{
ipv6_addr_count = static_cast<uint8_t>(min(addr_count, static_cast<int>(kMaxIPv6AddrCount)));
}
for (uint8_t idx = 0; idx < ipv6_addr_count; ++idx)
{
memcpy(ifp->Ipv6AddressesBuffer[idx], ip6_addr[idx].addr, kMaxIPv6AddrSize);
ifp->Ipv6AddressSpans[idx] = ByteSpan(ifp->Ipv6AddressesBuffer[idx], kMaxIPv6AddrSize);
}
ifp->IPv6Addresses = app::DataModel::List<ByteSpan>(ifp->Ipv6AddressSpans, ipv6_addr_count);
ifp->Next = head;
head = ifp;
}
}
*netifpp = head;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & BssId)
{
constexpr size_t bssIdSize = 6;
VerifyOrReturnError(BssId.size() >= bssIdSize, CHIP_ERROR_BUFFER_TOO_SMALL);
wifi_ap_record_t ap_info;
esp_err_t err;
err = esp_wifi_sta_get_ap_info(&ap_info);
if (err != ESP_OK)
{
return CHIP_ERROR_READ_FAILED;
}
memcpy(BssId.data(), ap_info.bssid, bssIdSize);
BssId.reduce_size(bssIdSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType)
{
using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum;
securityType = SecurityTypeEnum::kUnspecified;
wifi_ap_record_t ap_info;
esp_err_t err;
err = esp_wifi_sta_get_ap_info(&ap_info);
if (err == ESP_OK)
{
securityType = MapAuthModeToSecurityType(ap_info.authmode);
}
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wifiVersion)
{
wifi_ap_record_t ap_info;
esp_err_t err = esp_wifi_sta_get_ap_info(&ap_info);
VerifyOrReturnError(err == ESP_OK, ESP32Utils::MapError(err));
wifiVersion = GetWiFiVersionFromAPRecord(ap_info);
VerifyOrReturnError(wifiVersion != app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kUnknownEnumValue,
CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber)
{
channelNumber = 0;
wifi_ap_record_t ap_info;
esp_err_t err;
err = esp_wifi_sta_get_ap_info(&ap_info);
if (err == ESP_OK)
{
channelNumber = ap_info.primary;
return CHIP_NO_ERROR;
}
return ESP32Utils::MapError(err);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi)
{
rssi = 0;
wifi_ap_record_t ap_info;
esp_err_t err;
err = esp_wifi_sta_get_ap_info(&ap_info);
if (err == ESP_OK)
{
rssi = ap_info.rssi;
return CHIP_NO_ERROR;
}
return ESP32Utils::MapError(err);
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts()
{
return CHIP_NO_ERROR;
}
#endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip