| /* |
| * |
| * Copyright (c) 2021-2022 Project CHIP Authors |
| * All rights reserved. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** |
| * @file |
| * This file implements the the CHIP CASE Session object that provides |
| * APIs for constructing a secure session using a certificate from the device's |
| * operational credentials. |
| * |
| */ |
| #include <protocols/secure_channel/CASESession.h> |
| |
| #include <atomic> |
| #include <inttypes.h> |
| #include <memory> |
| #include <string.h> |
| |
| #include <lib/core/CHIPEncoding.h> |
| #include <lib/core/CHIPSafeCasts.h> |
| #include <lib/support/CHIPMem.h> |
| #include <lib/support/CodeUtils.h> |
| #include <lib/support/SafeInt.h> |
| #include <lib/support/ScopedBuffer.h> |
| #include <lib/support/TypeTraits.h> |
| #include <messaging/SessionParameters.h> |
| #include <platform/PlatformManager.h> |
| #include <protocols/Protocols.h> |
| #include <protocols/secure_channel/CASEDestinationId.h> |
| #include <protocols/secure_channel/PairingSession.h> |
| #include <protocols/secure_channel/SessionResumptionStorage.h> |
| #include <protocols/secure_channel/StatusReport.h> |
| #include <system/SystemClock.h> |
| #include <system/TLVPacketBufferBackingStore.h> |
| #include <tracing/macros.h> |
| #include <transport/SessionManager.h> |
| |
| namespace { |
| |
| enum |
| { |
| kTag_TBEData_SenderNOC = 1, |
| kTag_TBEData_SenderICAC = 2, |
| kTag_TBEData_Signature = 3, |
| kTag_TBEData_ResumptionID = 4, |
| }; |
| |
| enum |
| { |
| kTag_TBSData_SenderNOC = 1, |
| kTag_TBSData_SenderICAC = 2, |
| kTag_TBSData_SenderPubKey = 3, |
| kTag_TBSData_ReceiverPubKey = 4, |
| }; |
| |
| enum |
| { |
| kTag_Sigma1_InitiatorRandom = 1, |
| kTag_Sigma1_InitiatorSessionId = 2, |
| kTag_Sigma1_DestinationId = 3, |
| kTag_Sigma1_InitiatorEphPubKey = 4, |
| kTag_Sigma1_InitiatorMRPParams = 5, |
| kTag_Sigma1_ResumptionID = 6, |
| kTag_Sigma1_InitiatorResumeMIC = 7, |
| }; |
| |
| enum |
| { |
| kTag_Sigma2_ResponderRandom = 1, |
| kTag_Sigma2_ResponderSessionId = 2, |
| kTag_Sigma2_ResponderEphPubKey = 3, |
| kTag_Sigma2_Encrypted2 = 4, |
| kTag_Sigma2_ResponderMRPParams = 5, |
| }; |
| |
| enum |
| { |
| kTag_Sigma3_Encrypted3 = 1, |
| }; |
| |
| } // namespace |
| |
| namespace chip { |
| |
| using namespace Crypto; |
| using namespace Credentials; |
| using namespace Messaging; |
| using namespace Encoding; |
| using namespace Protocols::SecureChannel; |
| |
| constexpr uint8_t kKDFSR2Info[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x32 }; |
| constexpr uint8_t kKDFSR3Info[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x33 }; |
| |
| constexpr uint8_t kKDFS1RKeyInfo[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x31, 0x5f, 0x52, 0x65, 0x73, 0x75, 0x6d, 0x65 }; |
| constexpr uint8_t kKDFS2RKeyInfo[] = { 0x53, 0x69, 0x67, 0x6d, 0x61, 0x32, 0x5f, 0x52, 0x65, 0x73, 0x75, 0x6d, 0x65 }; |
| |
| constexpr uint8_t kResume1MIC_Nonce[] = |
| /* "NCASE_SigmaS1" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x53, 0x31 }; |
| constexpr uint8_t kResume2MIC_Nonce[] = |
| /* "NCASE_SigmaS2" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x53, 0x32 }; |
| constexpr uint8_t kTBEData2_Nonce[] = |
| /* "NCASE_Sigma2N" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x32, 0x4e }; |
| constexpr uint8_t kTBEData3_Nonce[] = |
| /* "NCASE_Sigma3N" */ { 0x4e, 0x43, 0x41, 0x53, 0x45, 0x5f, 0x53, 0x69, 0x67, 0x6d, 0x61, 0x33, 0x4e }; |
| constexpr size_t kTBEDataNonceLength = sizeof(kTBEData2_Nonce); |
| static_assert(sizeof(kTBEData2_Nonce) == sizeof(kTBEData3_Nonce), "TBEData2_Nonce and TBEData3_Nonce must be same size"); |
| |
| // Amounts of time to allow for server-side processing of messages. |
| // |
| // These timeout values only allow for the server-side processing and assume that any transport-specific |
| // latency will be added to them. |
| // |
| // The session establishment fails if the response is not received within the resulting timeout window, |
| // which accounts for both transport latency and the server-side latency. |
| static constexpr ExchangeContext::Timeout kExpectedLowProcessingTime = System::Clock::Seconds16(2); |
| static constexpr ExchangeContext::Timeout kExpectedSigma1ProcessingTime = kExpectedLowProcessingTime; |
| static constexpr ExchangeContext::Timeout kExpectedHighProcessingTime = System::Clock::Seconds16(30); |
| |
| // Helper for managing a session's outstanding work. |
| // Holds work data which is provided to a scheduled work callback (standalone), |
| // then (if not canceled) to a scheduled after work callback (on the session). |
| template <class DATA> |
| class CASESession::WorkHelper |
| { |
| public: |
| // Work callback, processed in the background via `PlatformManager::ScheduleBackgroundWork`. |
| // This is a non-member function which does not use the associated session. |
| // The return value is passed to the after work callback (called afterward). |
| // Set `cancel` to true if calling the after work callback is not necessary. |
| typedef CHIP_ERROR (*WorkCallback)(DATA & data, bool & cancel); |
| |
| // After work callback, processed in the main Matter task via `PlatformManager::ScheduleWork`. |
| // This is a member function to be called on the associated session after the work callback. |
| // The `status` value is the result of the work callback (called beforehand), or the status of |
| // queueing the after work callback back to the Matter thread, if the work callback succeeds |
| // but queueing fails. |
| // |
| // When this callback is called asynchronously (i.e. via ScheduleWork), the helper guarantees |
| // that it will keep itself (and hence `data`) alive until the callback completes. |
| typedef CHIP_ERROR (CASESession::*AfterWorkCallback)(DATA & data, CHIP_ERROR status); |
| |
| public: |
| // Create a work helper using the specified session, work callback, after work callback, and data (template arg). |
| // Lifetime is managed by sharing between the caller (typically the session) and the helper itself (while work is scheduled). |
| static Platform::SharedPtr<WorkHelper> Create(CASESession & session, WorkCallback workCallback, |
| AfterWorkCallback afterWorkCallback) |
| { |
| struct EnableShared : public WorkHelper |
| { |
| EnableShared(CASESession & session, WorkCallback workCallback, AfterWorkCallback afterWorkCallback) : |
| WorkHelper(session, workCallback, afterWorkCallback) |
| {} |
| }; |
| auto ptr = Platform::MakeShared<EnableShared>(session, workCallback, afterWorkCallback); |
| if (ptr) |
| { |
| ptr->mWeakPtr = ptr; // used by `ScheduleWork` |
| } |
| return ptr; |
| } |
| |
| // Do the work immediately. |
| // No scheduling, no outstanding work, no shared lifetime management. |
| // |
| // The caller must guarantee that it keeps the helper alive across this call, most likely by |
| // holding a reference to it on the stack. |
| CHIP_ERROR DoWork() |
| { |
| // Ensure that this function is being called from main Matter thread |
| assertChipStackLockedByCurrentThread(); |
| |
| VerifyOrReturnError(mSession && mWorkCallback && mAfterWorkCallback, CHIP_ERROR_INCORRECT_STATE); |
| auto * helper = this; |
| bool cancel = false; |
| helper->mStatus = helper->mWorkCallback(helper->mData, cancel); |
| if (!cancel) |
| { |
| helper->mStatus = (helper->mSession->*(helper->mAfterWorkCallback))(helper->mData, helper->mStatus); |
| } |
| return helper->mStatus; |
| } |
| |
| // Schedule the work for later execution. |
| // If lifetime is managed, the helper shares management while work is outstanding. |
| CHIP_ERROR ScheduleWork() |
| { |
| VerifyOrReturnError(mSession && mWorkCallback && mAfterWorkCallback, CHIP_ERROR_INCORRECT_STATE); |
| // Hold strong ptr while work is outstanding |
| mStrongPtr = mWeakPtr.lock(); // set in `Create` |
| auto status = DeviceLayer::PlatformMgr().ScheduleBackgroundWork(WorkHandler, reinterpret_cast<intptr_t>(this)); |
| if (status != CHIP_NO_ERROR) |
| { |
| // Release strong ptr since scheduling failed. |
| mStrongPtr.reset(); |
| } |
| return status; |
| } |
| |
| // Cancel the work, by clearing the associated session. |
| void CancelWork() { mSession.store(nullptr); } |
| |
| bool IsCancelled() const { return mSession.load() == nullptr; } |
| |
| // This API returns true when background thread fails to schedule the AfterWorkCallback |
| bool UnableToScheduleAfterWorkCallback() { return mScheduleAfterWorkFailed.load(); } |
| |
| // Do after work immediately. |
| // No scheduling, no outstanding work, no shared lifetime management. |
| void DoAfterWork() |
| { |
| VerifyOrDie(UnableToScheduleAfterWorkCallback()); |
| AfterWorkHandler(reinterpret_cast<intptr_t>(this)); |
| } |
| |
| private: |
| // Create a work helper using the specified session, work callback, after work callback, and data (template arg). |
| // Lifetime is not managed, see `Create` for that option. |
| WorkHelper(CASESession & session, WorkCallback workCallback, AfterWorkCallback afterWorkCallback) : |
| mSession(&session), mWorkCallback(workCallback), mAfterWorkCallback(afterWorkCallback) |
| {} |
| |
| // Handler for the work callback. |
| static void WorkHandler(intptr_t arg) |
| { |
| auto * helper = reinterpret_cast<WorkHelper *>(arg); |
| // Hold strong ptr while work is handled |
| auto strongPtr(std::move(helper->mStrongPtr)); |
| VerifyOrReturn(!helper->IsCancelled()); |
| bool cancel = false; |
| // Execute callback in background thread; data must be OK with this |
| helper->mStatus = helper->mWorkCallback(helper->mData, cancel); |
| VerifyOrReturn(!cancel && !helper->IsCancelled()); |
| // Hold strong ptr to ourselves while work is outstanding |
| helper->mStrongPtr.swap(strongPtr); |
| auto status = DeviceLayer::PlatformMgr().ScheduleWork(AfterWorkHandler, reinterpret_cast<intptr_t>(helper)); |
| if (status != CHIP_NO_ERROR) |
| { |
| ChipLogError(SecureChannel, "Failed to Schedule the AfterWorkCallback on foreground thread: %" CHIP_ERROR_FORMAT, |
| status.Format()); |
| |
| // We failed to schedule after work callback, so setting mScheduleAfterWorkFailed flag to true |
| // This can be checked from foreground thread and after work callback can be retried |
| helper->mStatus = status; |
| |
| // Release strong ptr to self since scheduling failed, because nothing guarantees |
| // that AfterWorkHandler will get called at this point to release the reference, |
| // and we don't want to leak. That said, we want to ensure that "helper" stays |
| // alive through the end of this function (so we can set mScheduleAfterWorkFailed |
| // on it), but also want to avoid racing on the single SharedPtr instance in |
| // helper->mStrongPtr. That means we need to not touch helper->mStrongPtr after |
| // writing to mScheduleAfterWorkFailed. |
| // |
| // The simplest way to do this is to move the reference in helper->mStrongPtr to |
| // our stack, where it outlives all our accesses to "helper". |
| strongPtr.swap(helper->mStrongPtr); |
| |
| // helper and any of its state should not be touched after storing mScheduleAfterWorkFailed. |
| helper->mScheduleAfterWorkFailed.store(true); |
| } |
| } |
| |
| // Handler for the after work callback. |
| static void AfterWorkHandler(intptr_t arg) |
| { |
| // Ensure that this function is being called from main Matter thread |
| assertChipStackLockedByCurrentThread(); |
| |
| auto * helper = reinterpret_cast<WorkHelper *>(arg); |
| // Hold strong ptr while work is handled, and ensure that helper->mStrongPtr does not keep |
| // holding a reference. |
| auto strongPtr(std::move(helper->mStrongPtr)); |
| if (!strongPtr) |
| { |
| // This can happen if scheduling AfterWorkHandler failed. Just grab a strong ref |
| // to handler directly, to fulfill our API contract of holding a strong reference |
| // across the after-work callback. At this point, we are guaranteed that the |
| // background thread is not touching the helper anymore. |
| strongPtr = helper->mWeakPtr.lock(); |
| } |
| if (auto * session = helper->mSession.load()) |
| { |
| // Execute callback in Matter thread; session should be OK with this |
| (session->*(helper->mAfterWorkCallback))(helper->mData, helper->mStatus); |
| } |
| } |
| |
| private: |
| // Lifetime management: `ScheduleWork` sets `mStrongPtr` from `mWeakPtr`. |
| Platform::WeakPtr<WorkHelper> mWeakPtr; |
| |
| // Lifetime management: `ScheduleWork` sets `mStrongPtr` from `mWeakPtr`. |
| Platform::SharedPtr<WorkHelper> mStrongPtr; |
| |
| // Associated session, cleared by `CancelWork`. |
| std::atomic<CASESession *> mSession; |
| |
| // Work callback, called by `WorkHandler`. |
| WorkCallback mWorkCallback; |
| |
| // After work callback, called by `AfterWorkHandler`. |
| AfterWorkCallback mAfterWorkCallback; |
| |
| // Return value of `mWorkCallback`, passed to `mAfterWorkCallback`. |
| CHIP_ERROR mStatus; |
| |
| // If background thread fails to schedule AfterWorkCallback then this flag is set to true |
| // and CASEServer then can check this one and run the AfterWorkCallback for us. |
| // |
| // When this happens, the write to this boolean _must_ be the last code that touches this |
| // object on the background thread. After that, the Matter thread owns the object. |
| std::atomic<bool> mScheduleAfterWorkFailed{ false }; |
| |
| public: |
| // Data passed to `mWorkCallback` and `mAfterWorkCallback`. |
| DATA mData; |
| }; |
| |
| struct CASESession::SendSigma3Data |
| { |
| FabricIndex fabricIndex; |
| |
| // Use one or the other |
| const FabricTable * fabricTable; |
| const Crypto::OperationalKeystore * keystore; |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Signed; |
| size_t msg_r3_signed_len; |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Encrypted; |
| size_t msg_r3_encrypted_len; |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf; |
| MutableByteSpan icaCert; |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf; |
| MutableByteSpan nocCert; |
| |
| P256ECDSASignature tbsData3Signature; |
| }; |
| |
| struct CASESession::HandleSigma3Data |
| { |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Signed; |
| size_t msg_r3_signed_len; |
| |
| ByteSpan initiatorNOC; |
| ByteSpan initiatorICAC; |
| |
| uint8_t rootCertBuf[kMaxCHIPCertLength]; |
| ByteSpan fabricRCAC; |
| |
| P256ECDSASignature tbsData3Signature; |
| |
| FabricId fabricId; |
| NodeId initiatorNodeId; |
| |
| ValidationContext validContext; |
| }; |
| |
| CASESession::~CASESession() |
| { |
| // Let's clear out any security state stored in the object, before destroying it. |
| Clear(); |
| } |
| |
| void CASESession::OnSessionReleased() |
| { |
| // Call into our super-class before we clear our state. |
| PairingSession::OnSessionReleased(); |
| Clear(); |
| } |
| |
| void CASESession::Clear() |
| { |
| MATTER_TRACE_SCOPE("Clear", "CASESession"); |
| // Cancel any outstanding work. |
| if (mSendSigma3Helper) |
| { |
| mSendSigma3Helper->CancelWork(); |
| mSendSigma3Helper.reset(); |
| } |
| if (mHandleSigma3Helper) |
| { |
| mHandleSigma3Helper->CancelWork(); |
| mHandleSigma3Helper.reset(); |
| } |
| |
| // This function zeroes out and resets the memory used by the object. |
| // It's done so that no security related information will be leaked. |
| mCommissioningHash.Clear(); |
| PairingSession::Clear(); |
| |
| mState = State::kInitialized; |
| Crypto::ClearSecretData(mIPK); |
| |
| if (mFabricsTable != nullptr) |
| { |
| mFabricsTable->RemoveFabricDelegate(this); |
| |
| mFabricsTable->ReleaseEphemeralKeypair(mEphemeralKey); |
| mEphemeralKey = nullptr; |
| } |
| |
| mLocalNodeId = kUndefinedNodeId; |
| mPeerNodeId = kUndefinedNodeId; |
| mFabricsTable = nullptr; |
| mFabricIndex = kUndefinedFabricIndex; |
| #if INET_CONFIG_ENABLE_TCP_ENDPOINT |
| // Clear the context object. |
| mTCPConnCbCtxt.appContext = nullptr; |
| mTCPConnCbCtxt.connCompleteCb = nullptr; |
| mTCPConnCbCtxt.connClosedCb = nullptr; |
| mTCPConnCbCtxt.connReceivedCb = nullptr; |
| |
| if (mPeerConnState && mPeerConnState->mConnectionState != Transport::TCPState::kConnected) |
| { |
| // Abort the connection if the CASESession is being destroyed and the |
| // connection is in the middle of being set up. |
| mSessionManager->TCPDisconnect(mPeerConnState, /* shouldAbort = */ true); |
| mPeerConnState = nullptr; |
| } |
| #endif // INET_CONFIG_ENABLE_TCP_ENDPOINT |
| } |
| |
| void CASESession::InvalidateIfPendingEstablishmentOnFabric(FabricIndex fabricIndex) |
| { |
| if (mFabricIndex != fabricIndex) |
| { |
| return; |
| } |
| if (!IsSessionEstablishmentInProgress()) |
| { |
| return; |
| } |
| AbortPendingEstablish(CHIP_ERROR_CANCELLED); |
| } |
| |
| CHIP_ERROR CASESession::Init(SessionManager & sessionManager, Credentials::CertificateValidityPolicy * policy, |
| SessionEstablishmentDelegate * delegate, const ScopedNodeId & sessionEvictionHint) |
| { |
| MATTER_TRACE_SCOPE("Init", "CASESession"); |
| VerifyOrReturnError(delegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(mGroupDataProvider != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| VerifyOrReturnError(sessionManager.GetSessionKeystore() != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| Clear(); |
| |
| ReturnErrorOnFailure(mCommissioningHash.Begin()); |
| |
| mDelegate = delegate; |
| mSessionManager = &sessionManager; |
| |
| ReturnErrorOnFailure(AllocateSecureSession(sessionManager, sessionEvictionHint)); |
| |
| mValidContext.Reset(); |
| mValidContext.mRequiredKeyUsages.Set(KeyUsageFlags::kDigitalSignature); |
| mValidContext.mRequiredKeyPurposes.Set(KeyPurposeFlags::kServerAuth); |
| mValidContext.mValidityPolicy = policy; |
| |
| #if INET_CONFIG_ENABLE_TCP_ENDPOINT |
| mTCPConnCbCtxt.appContext = this; |
| mTCPConnCbCtxt.connCompleteCb = HandleConnectionAttemptComplete; |
| mTCPConnCbCtxt.connClosedCb = HandleConnectionClosed; |
| #endif // INET_CONFIG_ENABLE_TCP_ENDPOINT |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR |
| CASESession::PrepareForSessionEstablishment(SessionManager & sessionManager, FabricTable * fabricTable, |
| SessionResumptionStorage * sessionResumptionStorage, |
| Credentials::CertificateValidityPolicy * policy, |
| SessionEstablishmentDelegate * delegate, const ScopedNodeId & previouslyEstablishedPeer, |
| Optional<ReliableMessageProtocolConfig> mrpLocalConfig) |
| { |
| MATTER_TRACE_SCOPE("PrepareForSessionEstablishment", "CASESession"); |
| // Below VerifyOrReturnError is not SuccessOrExit since we only want to goto `exit:` after |
| // Init has been successfully called. |
| VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| ReturnErrorOnFailure(Init(sessionManager, policy, delegate, previouslyEstablishedPeer)); |
| |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| |
| SuccessOrExit(err = fabricTable->AddFabricDelegate(this)); |
| |
| mFabricsTable = fabricTable; |
| mRole = CryptoContext::SessionRole::kResponder; |
| mSessionResumptionStorage = sessionResumptionStorage; |
| mLocalMRPConfig = MakeOptional(mrpLocalConfig.ValueOr(GetDefaultMRPConfig())); |
| |
| ChipLogDetail(SecureChannel, "Allocated SecureSession (%p) - waiting for Sigma1 msg", |
| mSecureSessionHolder.Get().Value()->AsSecureSession()); |
| |
| exit: |
| if (err != CHIP_NO_ERROR) |
| { |
| Clear(); |
| } |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::EstablishSession(SessionManager & sessionManager, FabricTable * fabricTable, ScopedNodeId peerScopedNodeId, |
| ExchangeContext * exchangeCtxt, SessionResumptionStorage * sessionResumptionStorage, |
| Credentials::CertificateValidityPolicy * policy, SessionEstablishmentDelegate * delegate, |
| Optional<ReliableMessageProtocolConfig> mrpLocalConfig) |
| { |
| MATTER_TRACE_SCOPE("EstablishSession", "CASESession"); |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| |
| // Return early on error here, as we have not initialized any state yet |
| ReturnErrorCodeIf(exchangeCtxt == nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| ReturnErrorCodeIf(fabricTable == nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| // Use FabricTable directly to avoid situation of dangling index from stale FabricInfo |
| // until we factor-out any FabricInfo direct usage. |
| ReturnErrorCodeIf(peerScopedNodeId.GetFabricIndex() == kUndefinedFabricIndex, CHIP_ERROR_INVALID_ARGUMENT); |
| const auto * fabricInfo = fabricTable->FindFabricWithIndex(peerScopedNodeId.GetFabricIndex()); |
| ReturnErrorCodeIf(fabricInfo == nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| err = Init(sessionManager, policy, delegate, peerScopedNodeId); |
| |
| mRole = CryptoContext::SessionRole::kInitiator; |
| |
| // We are setting the exchange context specifically before checking for error. |
| // This is to make sure the exchange will get closed if Init() returned an error. |
| mExchangeCtxt.Emplace(*exchangeCtxt); |
| |
| Transport::PeerAddress peerAddress = mExchangeCtxt.Value()->GetSessionHandle()->AsUnauthenticatedSession()->GetPeerAddress(); |
| |
| // From here onwards, let's go to exit on error, as some state might have already |
| // been initialized |
| SuccessOrExit(err); |
| |
| SuccessOrExit(err = fabricTable->AddFabricDelegate(this)); |
| |
| // Set the PeerAddress in the secure session up front to indicate the |
| // Transport Type of the session that is being set up. |
| mSecureSessionHolder->AsSecureSession()->SetPeerAddress(peerAddress); |
| |
| mFabricsTable = fabricTable; |
| mFabricIndex = fabricInfo->GetFabricIndex(); |
| mSessionResumptionStorage = sessionResumptionStorage; |
| mLocalMRPConfig = MakeOptional(mrpLocalConfig.ValueOr(GetDefaultMRPConfig())); |
| |
| mExchangeCtxt.Value()->UseSuggestedResponseTimeout(kExpectedSigma1ProcessingTime); |
| mPeerNodeId = peerScopedNodeId.GetNodeId(); |
| mLocalNodeId = fabricInfo->GetNodeId(); |
| |
| ChipLogProgress(SecureChannel, "Initiating session on local FabricIndex %u from 0x" ChipLogFormatX64 " -> 0x" ChipLogFormatX64, |
| static_cast<unsigned>(mFabricIndex), ChipLogValueX64(mLocalNodeId), ChipLogValueX64(mPeerNodeId)); |
| |
| if (peerAddress.GetTransportType() == Transport::Type::kTcp) |
| { |
| #if INET_CONFIG_ENABLE_TCP_ENDPOINT |
| err = sessionManager.TCPConnect(peerAddress, &mTCPConnCbCtxt, &mPeerConnState); |
| SuccessOrExit(err); |
| #endif // INET_CONFIG_ENABLE_TCP_ENDPOINT |
| } |
| else |
| { |
| err = SendSigma1(); |
| SuccessOrExit(err); |
| } |
| |
| exit: |
| if (err != CHIP_NO_ERROR) |
| { |
| Clear(); |
| } |
| return err; |
| } |
| |
| void CASESession::OnResponseTimeout(ExchangeContext * ec) |
| { |
| MATTER_TRACE_SCOPE("OnResponseTimeout", "CASESession"); |
| VerifyOrReturn(ec != nullptr, ChipLogError(SecureChannel, "CASESession::OnResponseTimeout was called by null exchange")); |
| VerifyOrReturn(mExchangeCtxt.HasValue() && (&mExchangeCtxt.Value().Get() == ec), |
| ChipLogError(SecureChannel, "CASESession::OnResponseTimeout exchange doesn't match")); |
| ChipLogError(SecureChannel, |
| "CASESession timed out while waiting for a response from peer " ChipLogFormatScopedNodeId ". Current state was %u", |
| ChipLogValueScopedNodeId(ScopedNodeId(mPeerNodeId, mFabricIndex)), to_underlying(mState)); |
| MATTER_TRACE_COUNTER("CASETimeout"); |
| // Discard the exchange so that Clear() doesn't try aborting it. The |
| // exchange will handle that. |
| DiscardExchange(); |
| AbortPendingEstablish(CHIP_ERROR_TIMEOUT); |
| } |
| |
| void CASESession::AbortPendingEstablish(CHIP_ERROR err) |
| { |
| MATTER_TRACE_SCOPE("AbortPendingEstablish", "CASESession"); |
| // This needs to come before Clear() which will reset mState. |
| SessionEstablishmentStage state = MapCASEStateToSessionEstablishmentStage(mState); |
| Clear(); |
| // Do this last in case the delegate frees us. |
| NotifySessionEstablishmentError(err, state); |
| } |
| |
| CHIP_ERROR CASESession::DeriveSecureSession(CryptoContext & session) |
| { |
| switch (mState) |
| { |
| case State::kFinished: { |
| std::array<uint8_t, sizeof(mIPK) + kSHA256_Hash_Length> msg_salt; |
| |
| { |
| Encoding::LittleEndian::BufferWriter bbuf(msg_salt); |
| bbuf.Put(mIPK, sizeof(mIPK)); |
| bbuf.Put(mMessageDigest, sizeof(mMessageDigest)); |
| |
| VerifyOrReturnError(bbuf.Fit(), CHIP_ERROR_BUFFER_TOO_SMALL); |
| } |
| |
| ReturnErrorOnFailure(session.InitFromSecret(*mSessionManager->GetSessionKeystore(), mSharedSecret.Span(), |
| ByteSpan(msg_salt), CryptoContext::SessionInfoType::kSessionEstablishment, |
| mRole)); |
| |
| return CHIP_NO_ERROR; |
| } |
| case State::kFinishedViaResume: { |
| std::array<uint8_t, sizeof(mInitiatorRandom) + decltype(mResumeResumptionId)().size()> msg_salt; |
| |
| { |
| Encoding::LittleEndian::BufferWriter bbuf(msg_salt); |
| bbuf.Put(mInitiatorRandom, sizeof(mInitiatorRandom)); |
| bbuf.Put(mResumeResumptionId.data(), mResumeResumptionId.size()); |
| |
| VerifyOrReturnError(bbuf.Fit(), CHIP_ERROR_BUFFER_TOO_SMALL); |
| } |
| |
| ReturnErrorOnFailure(session.InitFromSecret(*mSessionManager->GetSessionKeystore(), mSharedSecret.Span(), |
| ByteSpan(msg_salt), CryptoContext::SessionInfoType::kSessionResumption, mRole)); |
| |
| return CHIP_NO_ERROR; |
| } |
| default: |
| return CHIP_ERROR_INCORRECT_STATE; |
| } |
| } |
| |
| CHIP_ERROR CASESession::RecoverInitiatorIpk() |
| { |
| Credentials::GroupDataProvider::KeySet ipkKeySet; |
| |
| CHIP_ERROR err = mGroupDataProvider->GetIpkKeySet(mFabricIndex, ipkKeySet); |
| |
| if (err != CHIP_NO_ERROR) |
| { |
| ChipLogError(SecureChannel, "Failed to obtain IPK for initiating: %" CHIP_ERROR_FORMAT, err.Format()); |
| return err; |
| } |
| if ((ipkKeySet.num_keys_used == 0) || (ipkKeySet.num_keys_used > Credentials::GroupDataProvider::KeySet::kEpochKeysMax)) |
| { |
| ChipLogError(SecureChannel, "Found invalid IPK keyset for initiator."); |
| return CHIP_ERROR_INTERNAL; |
| } |
| |
| // For the generation of the Destination Identifier, |
| // the originator SHALL use the operational group key with the second oldest |
| // EpochStartTime, if one exists, otherwise it SHALL use the single operational |
| // group key available. The EpochStartTime are already ordered |
| size_t ipkIndex = (ipkKeySet.num_keys_used > 1) ? ((ipkKeySet.num_keys_used - 1) - 1) : 0; |
| memcpy(&mIPK[0], ipkKeySet.epoch_keys[ipkIndex].key, sizeof(mIPK)); |
| |
| // Leaving this logging code for debug, but this cannot be enabled at runtime |
| // since it leaks private security material. |
| #if 0 |
| ChipLogProgress(SecureChannel, "RecoverInitiatorIpk: GroupDataProvider %p, Got IPK for FabricIndex %u", mGroupDataProvider, |
| static_cast<unsigned>(mFabricIndex)); |
| ChipLogByteSpan(SecureChannel, ByteSpan(mIPK)); |
| #endif |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| #if INET_CONFIG_ENABLE_TCP_ENDPOINT |
| void CASESession::HandleConnectionAttemptComplete(Transport::ActiveTCPConnectionState * conn, CHIP_ERROR err) |
| { |
| VerifyOrReturn(conn != nullptr); |
| // conn->mAppState should not be NULL. SessionManager has already checked |
| // before calling this callback. |
| VerifyOrDie(conn->mAppState != nullptr); |
| |
| char peerAddrBuf[chip::Transport::PeerAddress::kMaxToStringSize]; |
| conn->mPeerAddr.ToString(peerAddrBuf); |
| |
| CASESession * caseSession = reinterpret_cast<CASESession *>(conn->mAppState->appContext); |
| VerifyOrReturn(caseSession != nullptr); |
| |
| // Exit and disconnect if connection setup encountered an error. |
| SuccessOrExit(err); |
| |
| ChipLogDetail(SecureChannel, "TCP Connection established with %s before session establishment", peerAddrBuf); |
| |
| // Associate the connection with the current unauthenticated session for the |
| // CASE exchange. |
| caseSession->mExchangeCtxt.Value()->GetSessionHandle()->AsUnauthenticatedSession()->SetTCPConnection(conn); |
| |
| // Associate the connection with the current secure session that is being |
| // set up. |
| caseSession->mSecureSessionHolder.Get().Value()->AsSecureSession()->SetTCPConnection(conn); |
| |
| // Send Sigma1 after connection is established for sessions over TCP |
| err = caseSession->SendSigma1(); |
| SuccessOrExit(err); |
| |
| exit: |
| if (err != CHIP_NO_ERROR) |
| { |
| ChipLogError(SecureChannel, "Connection establishment failed with peer at %s: %" CHIP_ERROR_FORMAT, peerAddrBuf, |
| err.Format()); |
| |
| // Close the underlying connection and ensure that the CASESession is |
| // not holding on to a stale ActiveTCPConnectionState. We call |
| // TCPDisconnect() here explicitly in order to abort the connection |
| // even after it establishes successfully, but SendSigma1() fails for |
| // some reason. |
| caseSession->mSessionManager->TCPDisconnect(conn, /* shouldAbort = */ true); |
| caseSession->mPeerConnState = nullptr; |
| |
| caseSession->Clear(); |
| } |
| } |
| |
| void CASESession::HandleConnectionClosed(Transport::ActiveTCPConnectionState * conn, CHIP_ERROR conErr) |
| { |
| VerifyOrReturn(conn != nullptr); |
| // conn->mAppState should not be NULL. SessionManager has already checked |
| // before calling this callback. |
| VerifyOrDie(conn->mAppState != nullptr); |
| |
| CASESession * caseSession = reinterpret_cast<CASESession *>(conn->mAppState->appContext); |
| VerifyOrReturn(caseSession != nullptr); |
| |
| // Drop our pointer to the now-invalid connection state. |
| // |
| // Since the connection is closed, message sends over the ExchangeContext |
| // will just fail and be handled like normal send errors. |
| // |
| // Additionally, SessionManager notifies (via ExchangeMgr) all ExchangeContexts on the |
| // connection closures for the attached sessions and the ExchangeContexts |
| // can close proactively if that's appropriate. |
| caseSession->mPeerConnState = nullptr; |
| ChipLogDetail(SecureChannel, "TCP Connection for this session has closed"); |
| } |
| #endif // INET_CONFIG_ENABLE_TCP_ENDPOINT |
| |
| CHIP_ERROR CASESession::SendSigma1() |
| { |
| MATTER_TRACE_SCOPE("SendSigma1", "CASESession"); |
| size_t data_len = TLV::EstimateStructOverhead(kSigmaParamRandomNumberSize, // initiatorRandom |
| sizeof(uint16_t), // initiatorSessionId, |
| kSHA256_Hash_Length, // destinationId |
| kP256_PublicKey_Length, // InitiatorEphPubKey, |
| SessionParameters::kEstimatedTLVSize, // initiatorSessionParams |
| SessionResumptionStorage::kResumptionIdSize, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES); |
| |
| System::PacketBufferTLVWriter tlvWriter; |
| System::PacketBufferHandle msg_R1; |
| TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified; |
| uint8_t destinationIdentifier[kSHA256_Hash_Length] = { 0 }; |
| |
| // Lookup fabric info. |
| const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex); |
| ReturnErrorCodeIf(fabricInfo == nullptr, CHIP_ERROR_INCORRECT_STATE); |
| |
| // Validate that we have a session ID allocated. |
| VerifyOrReturnError(GetLocalSessionId().HasValue(), CHIP_ERROR_INCORRECT_STATE); |
| |
| // Generate an ephemeral keypair |
| mEphemeralKey = mFabricsTable->AllocateEphemeralKeypairForCASE(); |
| VerifyOrReturnError(mEphemeralKey != nullptr, CHIP_ERROR_NO_MEMORY); |
| ReturnErrorOnFailure(mEphemeralKey->Initialize(ECPKeyTarget::ECDH)); |
| |
| // Fill in the random value |
| ReturnErrorOnFailure(DRBG_get_bytes(mInitiatorRandom, sizeof(mInitiatorRandom))); |
| |
| // Construct Sigma1 Msg |
| msg_R1 = System::PacketBufferHandle::New(data_len); |
| VerifyOrReturnError(!msg_R1.IsNull(), CHIP_ERROR_NO_MEMORY); |
| |
| tlvWriter.Init(std::move(msg_R1)); |
| ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(1), ByteSpan(mInitiatorRandom))); |
| // Retrieve Session Identifier |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(2), GetLocalSessionId().Value())); |
| |
| // Generate a Destination Identifier based on the node we are attempting to reach |
| { |
| // Obtain originator IPK matching the fabric where we are trying to open a session. mIPK |
| // will be properly set thereafter. |
| ReturnErrorOnFailure(RecoverInitiatorIpk()); |
| |
| FabricId fabricId = fabricInfo->GetFabricId(); |
| Crypto::P256PublicKey rootPubKey; |
| ReturnErrorOnFailure(mFabricsTable->FetchRootPubkey(mFabricIndex, rootPubKey)); |
| Credentials::P256PublicKeySpan rootPubKeySpan{ rootPubKey.ConstBytes() }; |
| |
| MutableByteSpan destinationIdSpan(destinationIdentifier); |
| ReturnErrorOnFailure(GenerateCaseDestinationId(ByteSpan(mIPK), ByteSpan(mInitiatorRandom), rootPubKeySpan, fabricId, |
| mPeerNodeId, destinationIdSpan)); |
| } |
| ReturnErrorOnFailure(tlvWriter.PutBytes(TLV::ContextTag(3), destinationIdentifier, sizeof(destinationIdentifier))); |
| |
| ReturnErrorOnFailure( |
| tlvWriter.PutBytes(TLV::ContextTag(4), mEphemeralKey->Pubkey(), static_cast<uint32_t>(mEphemeralKey->Pubkey().Length()))); |
| |
| VerifyOrReturnError(mLocalMRPConfig.HasValue(), CHIP_ERROR_INCORRECT_STATE); |
| ReturnErrorOnFailure(EncodeSessionParameters(TLV::ContextTag(5), mLocalMRPConfig.Value(), tlvWriter)); |
| |
| // Try to find persistent session, and resume it. |
| bool resuming = false; |
| if (mSessionResumptionStorage != nullptr) |
| { |
| CHIP_ERROR err = mSessionResumptionStorage->FindByScopedNodeId(fabricInfo->GetScopedNodeIdForNode(mPeerNodeId), |
| mResumeResumptionId, mSharedSecret, mPeerCATs); |
| if (err == CHIP_NO_ERROR) |
| { |
| // Found valid resumption state, try to resume the session. |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(6), mResumeResumptionId)); |
| |
| uint8_t initiatorResume1MIC[CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES]; |
| MutableByteSpan resumeMICSpan(initiatorResume1MIC); |
| ReturnErrorOnFailure(GenerateSigmaResumeMIC(ByteSpan(mInitiatorRandom), ByteSpan(mResumeResumptionId), |
| ByteSpan(kKDFS1RKeyInfo), ByteSpan(kResume1MIC_Nonce), resumeMICSpan)); |
| |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(7), resumeMICSpan)); |
| resuming = true; |
| } |
| } |
| |
| ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Finalize(&msg_R1)); |
| |
| ReturnErrorOnFailure(mCommissioningHash.AddData(ByteSpan{ msg_R1->Start(), msg_R1->DataLength() })); |
| |
| // Call delegate to send the msg to peer |
| ReturnErrorOnFailure(mExchangeCtxt.Value()->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma1, std::move(msg_R1), |
| SendFlags(SendMessageFlags::kExpectResponse))); |
| |
| mState = resuming ? State::kSentSigma1Resume : State::kSentSigma1; |
| |
| ChipLogProgress(SecureChannel, "Sent Sigma1 msg"); |
| |
| mDelegate->OnSessionEstablishmentStarted(); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma1_and_SendSigma2(System::PacketBufferHandle && msg) |
| { |
| MATTER_TRACE_SCOPE("HandleSigma1_and_SendSigma2", "CASESession"); |
| ReturnErrorOnFailure(HandleSigma1(std::move(msg))); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::FindLocalNodeFromDestinationId(const ByteSpan & destinationId, const ByteSpan & initiatorRandom) |
| { |
| MATTER_TRACE_SCOPE("FindLocalNodeFromDestinationId", "CASESession"); |
| VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE); |
| |
| bool found = false; |
| for (const FabricInfo & fabricInfo : *mFabricsTable) |
| { |
| // Basic data for candidate fabric, used to compute candidate destination identifiers |
| FabricId fabricId = fabricInfo.GetFabricId(); |
| NodeId nodeId = fabricInfo.GetNodeId(); |
| Crypto::P256PublicKey rootPubKey; |
| ReturnErrorOnFailure(mFabricsTable->FetchRootPubkey(fabricInfo.GetFabricIndex(), rootPubKey)); |
| Credentials::P256PublicKeySpan rootPubKeySpan{ rootPubKey.ConstBytes() }; |
| |
| // Get IPK operational group key set for current candidate fabric |
| GroupDataProvider::KeySet ipkKeySet; |
| CHIP_ERROR err = mGroupDataProvider->GetIpkKeySet(fabricInfo.GetFabricIndex(), ipkKeySet); |
| if ((err != CHIP_NO_ERROR) || |
| ((ipkKeySet.num_keys_used == 0) || (ipkKeySet.num_keys_used > Credentials::GroupDataProvider::KeySet::kEpochKeysMax))) |
| { |
| continue; |
| } |
| |
| // Try every IPK candidate we have for a match |
| for (size_t keyIdx = 0; keyIdx < ipkKeySet.num_keys_used; ++keyIdx) |
| { |
| uint8_t candidateDestinationId[kSHA256_Hash_Length]; |
| MutableByteSpan candidateDestinationIdSpan(candidateDestinationId); |
| ByteSpan candidateIpkSpan(ipkKeySet.epoch_keys[keyIdx].key); |
| |
| err = GenerateCaseDestinationId(ByteSpan(candidateIpkSpan), ByteSpan(initiatorRandom), rootPubKeySpan, fabricId, nodeId, |
| candidateDestinationIdSpan); |
| if ((err == CHIP_NO_ERROR) && (candidateDestinationIdSpan.data_equal(destinationId))) |
| { |
| // Found a match, stop working, cache IPK, update local fabric context |
| found = true; |
| MutableByteSpan ipkSpan(mIPK); |
| CopySpanToMutableSpan(candidateIpkSpan, ipkSpan); |
| mFabricIndex = fabricInfo.GetFabricIndex(); |
| mLocalNodeId = nodeId; |
| break; |
| } |
| } |
| |
| if (found) |
| { |
| break; |
| } |
| } |
| |
| return found ? CHIP_NO_ERROR : CHIP_ERROR_KEY_NOT_FOUND; |
| } |
| |
| CHIP_ERROR CASESession::TryResumeSession(SessionResumptionStorage::ConstResumptionIdView resumptionId, ByteSpan resume1MIC, |
| ByteSpan initiatorRandom) |
| { |
| MATTER_TRACE_SCOPE("TryResumeSession", "CASESession"); |
| VerifyOrReturnError(mSessionResumptionStorage != nullptr, CHIP_ERROR_INCORRECT_STATE); |
| VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE); |
| |
| SessionResumptionStorage::ConstResumptionIdView resumptionIdSpan(resumptionId); |
| ScopedNodeId node; |
| ReturnErrorOnFailure(mSessionResumptionStorage->FindByResumptionId(resumptionIdSpan, node, mSharedSecret, mPeerCATs)); |
| |
| // Cross check resume1MIC with the shared secret |
| ReturnErrorOnFailure( |
| ValidateSigmaResumeMIC(resume1MIC, initiatorRandom, resumptionId, ByteSpan(kKDFS1RKeyInfo), ByteSpan(kResume1MIC_Nonce))); |
| |
| const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(node.GetFabricIndex()); |
| VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INCORRECT_STATE); |
| |
| mFabricIndex = node.GetFabricIndex(); |
| mPeerNodeId = node.GetNodeId(); |
| mLocalNodeId = fabricInfo->GetNodeId(); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma1(System::PacketBufferHandle && msg) |
| { |
| MATTER_TRACE_SCOPE("HandleSigma1", "CASESession"); |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| System::PacketBufferTLVReader tlvReader; |
| |
| uint16_t initiatorSessionId; |
| ByteSpan destinationIdentifier; |
| ByteSpan initiatorRandom; |
| |
| ChipLogProgress(SecureChannel, "Received Sigma1 msg"); |
| MATTER_TRACE_COUNTER("Sigma1"); |
| |
| bool sessionResumptionRequested = false; |
| ByteSpan resumptionId; |
| ByteSpan resume1MIC; |
| ByteSpan initiatorPubKey; |
| |
| SuccessOrExit(err = mCommissioningHash.AddData(ByteSpan{ msg->Start(), msg->DataLength() })); |
| |
| tlvReader.Init(std::move(msg)); |
| SuccessOrExit(err = ParseSigma1(tlvReader, initiatorRandom, initiatorSessionId, destinationIdentifier, initiatorPubKey, |
| sessionResumptionRequested, resumptionId, resume1MIC)); |
| |
| ChipLogDetail(SecureChannel, "Peer assigned session key ID %d", initiatorSessionId); |
| SetPeerSessionId(initiatorSessionId); |
| |
| VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE); |
| |
| if (sessionResumptionRequested && resumptionId.size() == SessionResumptionStorage::kResumptionIdSize && |
| CHIP_NO_ERROR == |
| TryResumeSession(SessionResumptionStorage::ConstResumptionIdView(resumptionId.data()), resume1MIC, initiatorRandom)) |
| { |
| std::copy(initiatorRandom.begin(), initiatorRandom.end(), mInitiatorRandom); |
| std::copy(resumptionId.begin(), resumptionId.end(), mResumeResumptionId.begin()); |
| |
| // Send Sigma2Resume message to the initiator |
| SuccessOrExit(err = SendSigma2Resume()); |
| |
| mDelegate->OnSessionEstablishmentStarted(); |
| |
| // Early returning here, since we have sent Sigma2Resume, and no further processing is needed for the Sigma1 message |
| return CHIP_NO_ERROR; |
| } |
| |
| // Attempt to match the initiator's desired destination based on local fabric table. |
| err = FindLocalNodeFromDestinationId(destinationIdentifier, initiatorRandom); |
| if (err == CHIP_NO_ERROR) |
| { |
| ChipLogProgress(SecureChannel, "CASE matched destination ID: fabricIndex %u, NodeID 0x" ChipLogFormatX64, |
| static_cast<unsigned>(mFabricIndex), ChipLogValueX64(mLocalNodeId)); |
| |
| // Side-effect of FindLocalNodeFromDestinationId success was that mFabricIndex/mLocalNodeId are now |
| // set to the local fabric and associated NodeId that was targeted by the initiator. |
| } |
| else |
| { |
| ChipLogError(SecureChannel, "CASE failed to match destination ID with local fabrics"); |
| ChipLogByteSpan(SecureChannel, destinationIdentifier); |
| } |
| SuccessOrExit(err); |
| |
| // ParseSigma1 ensures that: |
| // mRemotePubKey.Length() == initiatorPubKey.size() == kP256_PublicKey_Length. |
| memcpy(mRemotePubKey.Bytes(), initiatorPubKey.data(), mRemotePubKey.Length()); |
| |
| SuccessOrExit(err = SendSigma2()); |
| |
| mDelegate->OnSessionEstablishmentStarted(); |
| |
| exit: |
| |
| if (err == CHIP_ERROR_KEY_NOT_FOUND) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeNoSharedRoot); |
| mState = State::kInitialized; |
| } |
| else if (err != CHIP_NO_ERROR) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam); |
| mState = State::kInitialized; |
| } |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::SendSigma2Resume() |
| { |
| MATTER_TRACE_SCOPE("SendSigma2Resume", "CASESession"); |
| size_t max_sigma2_resume_data_len = |
| TLV::EstimateStructOverhead(SessionResumptionStorage::kResumptionIdSize, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, |
| sizeof(uint16_t), SessionParameters::kEstimatedTLVSize); |
| |
| System::PacketBufferTLVWriter tlvWriter; |
| System::PacketBufferHandle msg_R2_resume; |
| TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified; |
| |
| // Validate that we have a session ID allocated. |
| VerifyOrReturnError(GetLocalSessionId().HasValue(), CHIP_ERROR_INCORRECT_STATE); |
| |
| msg_R2_resume = System::PacketBufferHandle::New(max_sigma2_resume_data_len); |
| VerifyOrReturnError(!msg_R2_resume.IsNull(), CHIP_ERROR_NO_MEMORY); |
| |
| tlvWriter.Init(std::move(msg_R2_resume)); |
| |
| // Generate a new resumption ID |
| ReturnErrorOnFailure(DRBG_get_bytes(mNewResumptionId.data(), mNewResumptionId.size())); |
| |
| ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(1), mNewResumptionId)); |
| |
| uint8_t sigma2ResumeMIC[CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES]; |
| MutableByteSpan resumeMICSpan(sigma2ResumeMIC); |
| ReturnErrorOnFailure(GenerateSigmaResumeMIC(ByteSpan(mInitiatorRandom), mNewResumptionId, ByteSpan(kKDFS2RKeyInfo), |
| ByteSpan(kResume2MIC_Nonce), resumeMICSpan)); |
| |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(2), resumeMICSpan)); |
| |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(3), GetLocalSessionId().Value())); |
| |
| VerifyOrReturnError(mLocalMRPConfig.HasValue(), CHIP_ERROR_INCORRECT_STATE); |
| ReturnErrorOnFailure(EncodeSessionParameters(TLV::ContextTag(4), mLocalMRPConfig.Value(), tlvWriter)); |
| |
| ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Finalize(&msg_R2_resume)); |
| |
| // Call delegate to send the msg to peer |
| ReturnErrorOnFailure(mExchangeCtxt.Value()->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma2Resume, |
| std::move(msg_R2_resume), |
| SendFlags(SendMessageFlags::kExpectResponse))); |
| |
| mState = State::kSentSigma2Resume; |
| |
| ChipLogDetail(SecureChannel, "Sent Sigma2Resume msg"); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::SendSigma2() |
| { |
| MATTER_TRACE_SCOPE("SendSigma2", "CASESession"); |
| |
| VerifyOrReturnError(GetLocalSessionId().HasValue(), CHIP_ERROR_INCORRECT_STATE); |
| VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE); |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf; |
| VerifyOrReturnError(icacBuf.Alloc(kMaxCHIPCertLength), CHIP_ERROR_NO_MEMORY); |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf; |
| VerifyOrReturnError(nocBuf.Alloc(kMaxCHIPCertLength), CHIP_ERROR_NO_MEMORY); |
| |
| MutableByteSpan icaCert{ icacBuf.Get(), kMaxCHIPCertLength }; |
| ReturnErrorOnFailure(mFabricsTable->FetchICACert(mFabricIndex, icaCert)); |
| |
| MutableByteSpan nocCert{ nocBuf.Get(), kMaxCHIPCertLength }; |
| ReturnErrorOnFailure(mFabricsTable->FetchNOCCert(mFabricIndex, nocCert)); |
| |
| // Fill in the random value |
| uint8_t msg_rand[kSigmaParamRandomNumberSize]; |
| ReturnErrorOnFailure(DRBG_get_bytes(&msg_rand[0], sizeof(msg_rand))); |
| |
| // Generate an ephemeral keypair |
| mEphemeralKey = mFabricsTable->AllocateEphemeralKeypairForCASE(); |
| VerifyOrReturnError(mEphemeralKey != nullptr, CHIP_ERROR_NO_MEMORY); |
| ReturnErrorOnFailure(mEphemeralKey->Initialize(ECPKeyTarget::ECDH)); |
| |
| // Generate a Shared Secret |
| ReturnErrorOnFailure(mEphemeralKey->ECDH_derive_secret(mRemotePubKey, mSharedSecret)); |
| |
| uint8_t msg_salt[kIPKSize + kSigmaParamRandomNumberSize + kP256_PublicKey_Length + kSHA256_Hash_Length]; |
| |
| MutableByteSpan saltSpan(msg_salt); |
| ReturnErrorOnFailure(ConstructSaltSigma2(ByteSpan(msg_rand), mEphemeralKey->Pubkey(), ByteSpan(mIPK), saltSpan)); |
| |
| AutoReleaseSessionKey sr2k(*mSessionManager->GetSessionKeystore()); |
| ReturnErrorOnFailure(DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR2Info), sr2k)); |
| |
| // Construct Sigma2 TBS Data |
| size_t msg_r2_signed_len = |
| TLV::EstimateStructOverhead(kMaxCHIPCertLength, kMaxCHIPCertLength, kP256_PublicKey_Length, kP256_PublicKey_Length); |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Signed; |
| VerifyOrReturnError(msg_R2_Signed.Alloc(msg_r2_signed_len), CHIP_ERROR_NO_MEMORY); |
| |
| ReturnErrorOnFailure(ConstructTBSData(nocCert, icaCert, ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()), |
| ByteSpan(mRemotePubKey, mRemotePubKey.Length()), msg_R2_Signed.Get(), msg_r2_signed_len)); |
| |
| // Generate a Signature |
| P256ECDSASignature tbsData2Signature; |
| ReturnErrorOnFailure( |
| mFabricsTable->SignWithOpKeypair(mFabricIndex, ByteSpan{ msg_R2_Signed.Get(), msg_r2_signed_len }, tbsData2Signature)); |
| msg_R2_Signed.Free(); |
| |
| // Construct Sigma2 TBE Data |
| size_t msg_r2_signed_enc_len = TLV::EstimateStructOverhead(nocCert.size(), icaCert.size(), tbsData2Signature.Length(), |
| SessionResumptionStorage::kResumptionIdSize); |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Encrypted; |
| VerifyOrReturnError(msg_R2_Encrypted.Alloc(msg_r2_signed_enc_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES), CHIP_ERROR_NO_MEMORY); |
| |
| TLV::TLVWriter tlvWriter; |
| TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified; |
| |
| tlvWriter.Init(msg_R2_Encrypted.Get(), msg_r2_signed_enc_len); |
| ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderNOC), nocCert)); |
| if (!icaCert.empty()) |
| { |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderICAC), icaCert)); |
| } |
| |
| // We are now done with ICAC and NOC certs so we can release the memory. |
| { |
| icacBuf.Free(); |
| icaCert = MutableByteSpan{}; |
| |
| nocBuf.Free(); |
| nocCert = MutableByteSpan{}; |
| } |
| |
| ReturnErrorOnFailure(tlvWriter.PutBytes(TLV::ContextTag(kTag_TBEData_Signature), tbsData2Signature.ConstBytes(), |
| static_cast<uint32_t>(tbsData2Signature.Length()))); |
| |
| // Generate a new resumption ID |
| ReturnErrorOnFailure(DRBG_get_bytes(mNewResumptionId.data(), mNewResumptionId.size())); |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_ResumptionID), mNewResumptionId)); |
| |
| ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Finalize()); |
| msg_r2_signed_enc_len = static_cast<size_t>(tlvWriter.GetLengthWritten()); |
| |
| // Generate the encrypted data blob |
| ReturnErrorOnFailure(AES_CCM_encrypt(msg_R2_Encrypted.Get(), msg_r2_signed_enc_len, nullptr, 0, sr2k.KeyHandle(), |
| kTBEData2_Nonce, kTBEDataNonceLength, msg_R2_Encrypted.Get(), |
| msg_R2_Encrypted.Get() + msg_r2_signed_enc_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES)); |
| |
| // Construct Sigma2 Msg |
| size_t size_of_local_session_id = sizeof(uint16_t); |
| size_t data_len = |
| TLV::EstimateStructOverhead(kSigmaParamRandomNumberSize, size_of_local_session_id, kP256_PublicKey_Length, |
| msg_r2_signed_enc_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, SessionParameters::kEstimatedTLVSize); |
| |
| System::PacketBufferHandle msg_R2 = System::PacketBufferHandle::New(data_len); |
| VerifyOrReturnError(!msg_R2.IsNull(), CHIP_ERROR_NO_MEMORY); |
| |
| System::PacketBufferTLVWriter tlvWriterMsg2; |
| outerContainerType = TLV::kTLVType_NotSpecified; |
| |
| tlvWriterMsg2.Init(std::move(msg_R2)); |
| ReturnErrorOnFailure(tlvWriterMsg2.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType)); |
| ReturnErrorOnFailure(tlvWriterMsg2.PutBytes(TLV::ContextTag(1), &msg_rand[0], sizeof(msg_rand))); |
| ReturnErrorOnFailure(tlvWriterMsg2.Put(TLV::ContextTag(2), GetLocalSessionId().Value())); |
| ReturnErrorOnFailure(tlvWriterMsg2.PutBytes(TLV::ContextTag(3), mEphemeralKey->Pubkey(), |
| static_cast<uint32_t>(mEphemeralKey->Pubkey().Length()))); |
| ReturnErrorOnFailure(tlvWriterMsg2.PutBytes(TLV::ContextTag(4), msg_R2_Encrypted.Get(), |
| static_cast<uint32_t>(msg_r2_signed_enc_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES))); |
| |
| VerifyOrReturnError(mLocalMRPConfig.HasValue(), CHIP_ERROR_INCORRECT_STATE); |
| ReturnErrorOnFailure(EncodeSessionParameters(TLV::ContextTag(5), mLocalMRPConfig.Value(), tlvWriterMsg2)); |
| |
| ReturnErrorOnFailure(tlvWriterMsg2.EndContainer(outerContainerType)); |
| ReturnErrorOnFailure(tlvWriterMsg2.Finalize(&msg_R2)); |
| |
| ReturnErrorOnFailure(mCommissioningHash.AddData(ByteSpan{ msg_R2->Start(), msg_R2->DataLength() })); |
| |
| // Call delegate to send the msg to peer |
| ReturnErrorOnFailure(mExchangeCtxt.Value()->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma2, std::move(msg_R2), |
| SendFlags(SendMessageFlags::kExpectResponse))); |
| |
| mState = State::kSentSigma2; |
| |
| ChipLogProgress(SecureChannel, "Sent Sigma2 msg"); |
| MATTER_TRACE_COUNTER("Sigma2"); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma2Resume(System::PacketBufferHandle && msg) |
| { |
| MATTER_TRACE_SCOPE("HandleSigma2Resume", "CASESession"); |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| System::PacketBufferTLVReader tlvReader; |
| TLV::TLVType containerType = TLV::kTLVType_Structure; |
| |
| uint16_t responderSessionId; |
| |
| uint32_t decodeTagIdSeq = 0; |
| |
| ChipLogDetail(SecureChannel, "Received Sigma2Resume msg"); |
| MATTER_TRACE_COUNTER("Sigma2Resume"); |
| |
| uint8_t sigma2ResumeMIC[CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES]; |
| |
| tlvReader.Init(std::move(msg)); |
| SuccessOrExit(err = tlvReader.Next(containerType, TLV::AnonymousTag())); |
| SuccessOrExit(err = tlvReader.EnterContainer(containerType)); |
| |
| SuccessOrExit(err = tlvReader.Next()); |
| VerifyOrExit(TLV::TagNumFromTag(tlvReader.GetTag()) == ++decodeTagIdSeq, err = CHIP_ERROR_INVALID_TLV_TAG); |
| SessionResumptionStorage::ResumptionIdStorage resumptionId; |
| VerifyOrExit(tlvReader.GetLength() == resumptionId.size(), err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| SuccessOrExit(err = tlvReader.GetBytes(resumptionId.data(), resumptionId.size())); |
| |
| SuccessOrExit(err = tlvReader.Next()); |
| VerifyOrExit(TLV::TagNumFromTag(tlvReader.GetTag()) == ++decodeTagIdSeq, err = CHIP_ERROR_INVALID_TLV_TAG); |
| VerifyOrExit(tlvReader.GetLength() == CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| SuccessOrExit(err = tlvReader.GetBytes(sigma2ResumeMIC, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES)); |
| |
| SuccessOrExit(err = ValidateSigmaResumeMIC(ByteSpan(sigma2ResumeMIC), ByteSpan(mInitiatorRandom), resumptionId, |
| ByteSpan(kKDFS2RKeyInfo), ByteSpan(kResume2MIC_Nonce))); |
| |
| SuccessOrExit(err = tlvReader.Next()); |
| VerifyOrExit(TLV::TagNumFromTag(tlvReader.GetTag()) == ++decodeTagIdSeq, err = CHIP_ERROR_INVALID_TLV_TAG); |
| SuccessOrExit(err = tlvReader.Get(responderSessionId)); |
| |
| if (tlvReader.Next() != CHIP_END_OF_TLV) |
| { |
| SuccessOrExit(err = DecodeMRPParametersIfPresent(TLV::ContextTag(4), tlvReader)); |
| mExchangeCtxt.Value()->GetSessionHandle()->AsUnauthenticatedSession()->SetRemoteSessionParameters( |
| GetRemoteSessionParameters()); |
| } |
| |
| ChipLogDetail(SecureChannel, "Peer assigned session session ID %d", responderSessionId); |
| SetPeerSessionId(responderSessionId); |
| |
| if (mSessionResumptionStorage != nullptr) |
| { |
| CHIP_ERROR err2 = mSessionResumptionStorage->Save(GetPeer(), resumptionId, mSharedSecret, mPeerCATs); |
| if (err2 != CHIP_NO_ERROR) |
| ChipLogError(SecureChannel, "Unable to save session resumption state: %" CHIP_ERROR_FORMAT, err2.Format()); |
| } |
| |
| SendStatusReport(mExchangeCtxt, kProtocolCodeSuccess); |
| |
| mState = State::kFinishedViaResume; |
| Finish(); |
| |
| exit: |
| if (err != CHIP_NO_ERROR) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam); |
| } |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma2_and_SendSigma3(System::PacketBufferHandle && msg) |
| { |
| MATTER_TRACE_SCOPE("HandleSigma2_and_SendSigma3", "CASESession"); |
| ReturnErrorOnFailure(HandleSigma2(std::move(msg))); |
| ReturnErrorOnFailure(SendSigma3a()); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma2(System::PacketBufferHandle && msg) |
| { |
| MATTER_TRACE_SCOPE("HandleSigma2", "CASESession"); |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| System::PacketBufferTLVReader tlvReader; |
| TLV::TLVReader decryptedDataTlvReader; |
| TLV::TLVType containerType = TLV::kTLVType_Structure; |
| |
| const uint8_t * buf = msg->Start(); |
| size_t buflen = msg->DataLength(); |
| |
| uint8_t msg_salt[kIPKSize + kSigmaParamRandomNumberSize + kP256_PublicKey_Length + kSHA256_Hash_Length]; |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Encrypted; |
| size_t msg_r2_encrypted_len = 0; |
| size_t msg_r2_encrypted_len_with_tag = 0; |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R2_Signed; |
| size_t msg_r2_signed_len; |
| size_t max_msg_r2_signed_enc_len; |
| constexpr size_t kCaseOverheadForFutureTbeData = 128; |
| |
| AutoReleaseSessionKey sr2k(*mSessionManager->GetSessionKeystore()); |
| |
| P256ECDSASignature tbsData2Signature; |
| |
| NodeId responderNodeId; |
| P256PublicKey responderPublicKey; |
| |
| uint8_t responderRandom[kSigmaParamRandomNumberSize]; |
| ByteSpan responderNOC; |
| ByteSpan responderICAC; |
| |
| uint16_t responderSessionId; |
| |
| ChipLogProgress(SecureChannel, "Received Sigma2 msg"); |
| |
| FabricId fabricId = kUndefinedFabricId; |
| { |
| VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE); |
| const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex); |
| VerifyOrExit(fabricInfo != nullptr, err = CHIP_ERROR_INCORRECT_STATE); |
| fabricId = fabricInfo->GetFabricId(); |
| } |
| |
| VerifyOrExit(mEphemeralKey != nullptr, err = CHIP_ERROR_INTERNAL); |
| VerifyOrExit(buf != nullptr, err = CHIP_ERROR_MESSAGE_INCOMPLETE); |
| |
| tlvReader.Init(std::move(msg)); |
| SuccessOrExit(err = tlvReader.Next(containerType, TLV::AnonymousTag())); |
| SuccessOrExit(err = tlvReader.EnterContainer(containerType)); |
| |
| // Retrieve Responder's Random value |
| SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma2_ResponderRandom))); |
| SuccessOrExit(err = tlvReader.GetBytes(responderRandom, sizeof(responderRandom))); |
| |
| // Assign Session ID |
| SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_UnsignedInteger, TLV::ContextTag(kTag_Sigma2_ResponderSessionId))); |
| SuccessOrExit(err = tlvReader.Get(responderSessionId)); |
| |
| ChipLogDetail(SecureChannel, "Peer assigned session session ID %d", responderSessionId); |
| SetPeerSessionId(responderSessionId); |
| |
| // Retrieve Responder's Ephemeral Pubkey |
| SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma2_ResponderEphPubKey))); |
| SuccessOrExit(err = tlvReader.GetBytes(mRemotePubKey, static_cast<uint32_t>(mRemotePubKey.Length()))); |
| |
| // Generate a Shared Secret |
| SuccessOrExit(err = mEphemeralKey->ECDH_derive_secret(mRemotePubKey, mSharedSecret)); |
| |
| // Generate the S2K key |
| { |
| MutableByteSpan saltSpan(msg_salt); |
| SuccessOrExit(err = ConstructSaltSigma2(ByteSpan(responderRandom), mRemotePubKey, ByteSpan(mIPK), saltSpan)); |
| SuccessOrExit(err = DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR2Info), sr2k)); |
| } |
| |
| SuccessOrExit(err = mCommissioningHash.AddData(ByteSpan{ buf, buflen })); |
| |
| // Generate decrypted data |
| SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma2_Encrypted2))); |
| |
| max_msg_r2_signed_enc_len = |
| TLV::EstimateStructOverhead(Credentials::kMaxCHIPCertLength, Credentials::kMaxCHIPCertLength, tbsData2Signature.Length(), |
| SessionResumptionStorage::kResumptionIdSize, kCaseOverheadForFutureTbeData); |
| msg_r2_encrypted_len_with_tag = tlvReader.GetLength(); |
| |
| // Validate we did not receive a buffer larger than legal |
| VerifyOrExit(msg_r2_encrypted_len_with_tag <= max_msg_r2_signed_enc_len, err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| VerifyOrExit(msg_r2_encrypted_len_with_tag > CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| VerifyOrExit(msg_R2_Encrypted.Alloc(msg_r2_encrypted_len_with_tag), err = CHIP_ERROR_NO_MEMORY); |
| |
| SuccessOrExit(err = tlvReader.GetBytes(msg_R2_Encrypted.Get(), static_cast<uint32_t>(msg_r2_encrypted_len_with_tag))); |
| msg_r2_encrypted_len = msg_r2_encrypted_len_with_tag - CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES; |
| |
| SuccessOrExit(err = AES_CCM_decrypt(msg_R2_Encrypted.Get(), msg_r2_encrypted_len, nullptr, 0, |
| msg_R2_Encrypted.Get() + msg_r2_encrypted_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, |
| sr2k.KeyHandle(), kTBEData2_Nonce, kTBEDataNonceLength, msg_R2_Encrypted.Get())); |
| |
| decryptedDataTlvReader.Init(msg_R2_Encrypted.Get(), msg_r2_encrypted_len); |
| containerType = TLV::kTLVType_Structure; |
| SuccessOrExit(err = decryptedDataTlvReader.Next(containerType, TLV::AnonymousTag())); |
| SuccessOrExit(err = decryptedDataTlvReader.EnterContainer(containerType)); |
| |
| SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_SenderNOC))); |
| SuccessOrExit(err = decryptedDataTlvReader.Get(responderNOC)); |
| |
| SuccessOrExit(err = decryptedDataTlvReader.Next()); |
| if (TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_SenderICAC) |
| { |
| VerifyOrExit(decryptedDataTlvReader.GetType() == TLV::kTLVType_ByteString, err = CHIP_ERROR_WRONG_TLV_TYPE); |
| SuccessOrExit(err = decryptedDataTlvReader.Get(responderICAC)); |
| SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_Signature))); |
| } |
| |
| // Validate responder identity located in msg_r2_encrypted |
| // Constructing responder identity |
| { |
| CompressedFabricId unused; |
| FabricId responderFabricId; |
| SuccessOrExit(err = SetEffectiveTime()); |
| SuccessOrExit(err = mFabricsTable->VerifyCredentials(mFabricIndex, responderNOC, responderICAC, mValidContext, unused, |
| responderFabricId, responderNodeId, responderPublicKey)); |
| VerifyOrExit(fabricId == responderFabricId, err = CHIP_ERROR_INVALID_CASE_PARAMETER); |
| // Verify that responderNodeId (from responderNOC) matches one that was included |
| // in the computation of the Destination Identifier when generating Sigma1. |
| VerifyOrExit(mPeerNodeId == responderNodeId, err = CHIP_ERROR_INVALID_CASE_PARAMETER); |
| } |
| |
| // Construct msg_R2_Signed and validate the signature in msg_r2_encrypted |
| msg_r2_signed_len = TLV::EstimateStructOverhead(sizeof(uint16_t), responderNOC.size(), responderICAC.size(), |
| kP256_PublicKey_Length, kP256_PublicKey_Length); |
| |
| VerifyOrExit(msg_R2_Signed.Alloc(msg_r2_signed_len), err = CHIP_ERROR_NO_MEMORY); |
| |
| SuccessOrExit(err = ConstructTBSData(responderNOC, responderICAC, ByteSpan(mRemotePubKey, mRemotePubKey.Length()), |
| ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()), msg_R2_Signed.Get(), |
| msg_r2_signed_len)); |
| |
| VerifyOrExit(TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_Signature, err = CHIP_ERROR_INVALID_TLV_TAG); |
| VerifyOrExit(tbsData2Signature.Capacity() >= decryptedDataTlvReader.GetLength(), err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| tbsData2Signature.SetLength(decryptedDataTlvReader.GetLength()); |
| SuccessOrExit(err = decryptedDataTlvReader.GetBytes(tbsData2Signature.Bytes(), tbsData2Signature.Length())); |
| |
| // Validate signature |
| SuccessOrExit(err = responderPublicKey.ECDSA_validate_msg_signature(msg_R2_Signed.Get(), msg_r2_signed_len, tbsData2Signature)); |
| |
| // Retrieve session resumption ID |
| SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_ResumptionID))); |
| SuccessOrExit(err = decryptedDataTlvReader.GetBytes(mNewResumptionId.data(), mNewResumptionId.size())); |
| |
| // Retrieve peer CASE Authenticated Tags (CATs) from peer's NOC. |
| SuccessOrExit(err = ExtractCATsFromOpCert(responderNOC, mPeerCATs)); |
| |
| // Retrieve responderMRPParams if present |
| if (tlvReader.Next() != CHIP_END_OF_TLV) |
| { |
| SuccessOrExit(err = DecodeMRPParametersIfPresent(TLV::ContextTag(kTag_Sigma2_ResponderMRPParams), tlvReader)); |
| mExchangeCtxt.Value()->GetSessionHandle()->AsUnauthenticatedSession()->SetRemoteSessionParameters( |
| GetRemoteSessionParameters()); |
| } |
| |
| exit: |
| if (err != CHIP_NO_ERROR) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam); |
| } |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::SendSigma3a() |
| { |
| MATTER_TRACE_SCOPE("SendSigma3", "CASESession"); |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| |
| ChipLogDetail(SecureChannel, "Sending Sigma3"); |
| |
| auto helper = WorkHelper<SendSigma3Data>::Create(*this, &SendSigma3b, &CASESession::SendSigma3c); |
| VerifyOrExit(helper, err = CHIP_ERROR_NO_MEMORY); |
| { |
| auto & data = helper->mData; |
| |
| VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE); |
| data.fabricIndex = mFabricIndex; |
| data.fabricTable = nullptr; |
| data.keystore = nullptr; |
| |
| { |
| const FabricInfo * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex); |
| VerifyOrExit(fabricInfo != nullptr, err = CHIP_ERROR_KEY_NOT_FOUND); |
| auto * keystore = mFabricsTable->GetOperationalKeystore(); |
| if (!fabricInfo->HasOperationalKey() && keystore != nullptr && keystore->SupportsSignWithOpKeypairInBackground()) |
| { |
| // NOTE: used to sign in background. |
| data.keystore = keystore; |
| } |
| else |
| { |
| // NOTE: used to sign in foreground. |
| data.fabricTable = mFabricsTable; |
| } |
| } |
| |
| VerifyOrExit(mEphemeralKey != nullptr, err = CHIP_ERROR_INTERNAL); |
| |
| VerifyOrExit(data.icacBuf.Alloc(kMaxCHIPCertLength), err = CHIP_ERROR_NO_MEMORY); |
| data.icaCert = MutableByteSpan{ data.icacBuf.Get(), kMaxCHIPCertLength }; |
| |
| VerifyOrExit(data.nocBuf.Alloc(kMaxCHIPCertLength), err = CHIP_ERROR_NO_MEMORY); |
| data.nocCert = MutableByteSpan{ data.nocBuf.Get(), kMaxCHIPCertLength }; |
| |
| SuccessOrExit(err = mFabricsTable->FetchICACert(mFabricIndex, data.icaCert)); |
| SuccessOrExit(err = mFabricsTable->FetchNOCCert(mFabricIndex, data.nocCert)); |
| |
| // Prepare Sigma3 TBS Data Blob |
| data.msg_r3_signed_len = |
| TLV::EstimateStructOverhead(data.icaCert.size(), data.nocCert.size(), kP256_PublicKey_Length, kP256_PublicKey_Length); |
| |
| VerifyOrExit(data.msg_R3_Signed.Alloc(data.msg_r3_signed_len), err = CHIP_ERROR_NO_MEMORY); |
| |
| SuccessOrExit(err = ConstructTBSData( |
| data.nocCert, data.icaCert, ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()), |
| ByteSpan(mRemotePubKey, mRemotePubKey.Length()), data.msg_R3_Signed.Get(), data.msg_r3_signed_len)); |
| |
| if (data.keystore != nullptr) |
| { |
| SuccessOrExit(err = helper->ScheduleWork()); |
| mSendSigma3Helper = helper; |
| mExchangeCtxt.Value()->WillSendMessage(); |
| mState = State::kSendSigma3Pending; |
| } |
| else |
| { |
| SuccessOrExit(err = helper->DoWork()); |
| } |
| } |
| |
| exit: |
| if (err != CHIP_NO_ERROR) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam); |
| mState = State::kInitialized; |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::SendSigma3b(SendSigma3Data & data, bool & cancel) |
| { |
| // Generate a signature |
| if (data.keystore != nullptr) |
| { |
| // Recommended case: delegate to operational keystore |
| ReturnErrorOnFailure(data.keystore->SignWithOpKeypair( |
| data.fabricIndex, ByteSpan{ data.msg_R3_Signed.Get(), data.msg_r3_signed_len }, data.tbsData3Signature)); |
| } |
| else |
| { |
| // Legacy case: delegate to fabric table fabric info |
| ReturnErrorOnFailure(data.fabricTable->SignWithOpKeypair( |
| data.fabricIndex, ByteSpan{ data.msg_R3_Signed.Get(), data.msg_r3_signed_len }, data.tbsData3Signature)); |
| } |
| |
| // Prepare Sigma3 TBE Data Blob |
| data.msg_r3_encrypted_len = |
| TLV::EstimateStructOverhead(data.nocCert.size(), data.icaCert.size(), data.tbsData3Signature.Length()); |
| |
| VerifyOrReturnError(data.msg_R3_Encrypted.Alloc(data.msg_r3_encrypted_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES), |
| CHIP_ERROR_NO_MEMORY); |
| |
| { |
| TLV::TLVWriter tlvWriter; |
| TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified; |
| |
| tlvWriter.Init(data.msg_R3_Encrypted.Get(), data.msg_r3_encrypted_len); |
| ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderNOC), data.nocCert)); |
| if (!data.icaCert.empty()) |
| { |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBEData_SenderICAC), data.icaCert)); |
| } |
| |
| // We are now done with ICAC and NOC certs so we can release the memory. |
| { |
| data.icacBuf.Free(); |
| data.icaCert = MutableByteSpan{}; |
| |
| data.nocBuf.Free(); |
| data.nocCert = MutableByteSpan{}; |
| } |
| |
| ReturnErrorOnFailure(tlvWriter.PutBytes(TLV::ContextTag(kTag_TBEData_Signature), data.tbsData3Signature.ConstBytes(), |
| static_cast<uint32_t>(data.tbsData3Signature.Length()))); |
| ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Finalize()); |
| data.msg_r3_encrypted_len = static_cast<size_t>(tlvWriter.GetLengthWritten()); |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::SendSigma3c(SendSigma3Data & data, CHIP_ERROR status) |
| { |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| |
| System::PacketBufferHandle msg_R3; |
| size_t data_len; |
| |
| uint8_t msg_salt[kIPKSize + kSHA256_Hash_Length]; |
| |
| AutoReleaseSessionKey sr3k(*mSessionManager->GetSessionKeystore()); |
| |
| VerifyOrDieWithMsg(data.keystore == nullptr || mState == State::kSendSigma3Pending, SecureChannel, "Bad internal state."); |
| |
| SuccessOrExit(err = status); |
| |
| // Generate S3K key |
| { |
| MutableByteSpan saltSpan(msg_salt); |
| SuccessOrExit(err = ConstructSaltSigma3(ByteSpan(mIPK), saltSpan)); |
| SuccessOrExit(err = DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR3Info), sr3k)); |
| } |
| |
| // Generated Encrypted data blob |
| SuccessOrExit(err = |
| AES_CCM_encrypt(data.msg_R3_Encrypted.Get(), data.msg_r3_encrypted_len, nullptr, 0, sr3k.KeyHandle(), |
| kTBEData3_Nonce, kTBEDataNonceLength, data.msg_R3_Encrypted.Get(), |
| data.msg_R3_Encrypted.Get() + data.msg_r3_encrypted_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES)); |
| |
| // Generate Sigma3 Msg |
| data_len = TLV::EstimateStructOverhead(CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, data.msg_r3_encrypted_len); |
| |
| msg_R3 = System::PacketBufferHandle::New(data_len); |
| VerifyOrExit(!msg_R3.IsNull(), err = CHIP_ERROR_NO_MEMORY); |
| |
| { |
| System::PacketBufferTLVWriter tlvWriter; |
| TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified; |
| |
| tlvWriter.Init(std::move(msg_R3)); |
| err = tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType); |
| SuccessOrExit(err); |
| err = tlvWriter.PutBytes(TLV::ContextTag(1), data.msg_R3_Encrypted.Get(), |
| static_cast<uint32_t>(data.msg_r3_encrypted_len + CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES)); |
| SuccessOrExit(err); |
| err = tlvWriter.EndContainer(outerContainerType); |
| SuccessOrExit(err); |
| err = tlvWriter.Finalize(&msg_R3); |
| SuccessOrExit(err); |
| } |
| |
| err = mCommissioningHash.AddData(ByteSpan{ msg_R3->Start(), msg_R3->DataLength() }); |
| SuccessOrExit(err); |
| |
| // Call delegate to send the Msg3 to peer |
| err = mExchangeCtxt.Value()->SendMessage(Protocols::SecureChannel::MsgType::CASE_Sigma3, std::move(msg_R3), |
| SendFlags(SendMessageFlags::kExpectResponse)); |
| SuccessOrExit(err); |
| |
| ChipLogProgress(SecureChannel, "Sent Sigma3 msg"); |
| |
| { |
| MutableByteSpan messageDigestSpan(mMessageDigest); |
| SuccessOrExit(err = mCommissioningHash.Finish(messageDigestSpan)); |
| } |
| |
| mState = State::kSentSigma3; |
| |
| exit: |
| mSendSigma3Helper.reset(); |
| |
| // If data.keystore is set, processing occurred in the background, so if an error occurred, |
| // need to send status report (normally occurs in SendSigma3a), and discard exchange and |
| // abort pending establish (normally occurs in OnMessageReceived). |
| if (data.keystore != nullptr && err != CHIP_NO_ERROR) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam); |
| DiscardExchange(); |
| AbortPendingEstablish(err); |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma3a(System::PacketBufferHandle && msg) |
| { |
| MATTER_TRACE_SCOPE("HandleSigma3", "CASESession"); |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| System::PacketBufferTLVReader tlvReader; |
| TLV::TLVReader decryptedDataTlvReader; |
| TLV::TLVType containerType = TLV::kTLVType_Structure; |
| |
| const uint8_t * buf = msg->Start(); |
| const size_t bufLen = msg->DataLength(); |
| |
| constexpr size_t kCaseOverheadForFutureTbeData = 128; |
| |
| chip::Platform::ScopedMemoryBuffer<uint8_t> msg_R3_Encrypted; |
| size_t msg_r3_encrypted_len = 0; |
| size_t msg_r3_encrypted_len_with_tag = 0; |
| size_t max_msg_r3_signed_enc_len; |
| |
| AutoReleaseSessionKey sr3k(*mSessionManager->GetSessionKeystore()); |
| |
| uint8_t msg_salt[kIPKSize + kSHA256_Hash_Length]; |
| |
| ChipLogProgress(SecureChannel, "Received Sigma3 msg"); |
| MATTER_TRACE_COUNTER("Sigma3"); |
| |
| auto helper = WorkHelper<HandleSigma3Data>::Create(*this, &HandleSigma3b, &CASESession::HandleSigma3c); |
| VerifyOrExit(helper, err = CHIP_ERROR_NO_MEMORY); |
| { |
| auto & data = helper->mData; |
| |
| { |
| VerifyOrExit(mFabricsTable != nullptr, err = CHIP_ERROR_INCORRECT_STATE); |
| const auto * fabricInfo = mFabricsTable->FindFabricWithIndex(mFabricIndex); |
| VerifyOrExit(fabricInfo != nullptr, err = CHIP_ERROR_INCORRECT_STATE); |
| data.fabricId = fabricInfo->GetFabricId(); |
| } |
| |
| VerifyOrExit(mEphemeralKey != nullptr, err = CHIP_ERROR_INTERNAL); |
| |
| tlvReader.Init(std::move(msg)); |
| SuccessOrExit(err = tlvReader.Next(containerType, TLV::AnonymousTag())); |
| SuccessOrExit(err = tlvReader.EnterContainer(containerType)); |
| |
| // Fetch encrypted data |
| max_msg_r3_signed_enc_len = TLV::EstimateStructOverhead(Credentials::kMaxCHIPCertLength, Credentials::kMaxCHIPCertLength, |
| data.tbsData3Signature.Length(), kCaseOverheadForFutureTbeData); |
| |
| SuccessOrExit(err = tlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_Sigma3_Encrypted3))); |
| |
| msg_r3_encrypted_len_with_tag = tlvReader.GetLength(); |
| |
| // Validate we did not receive a buffer larger than legal |
| VerifyOrExit(msg_r3_encrypted_len_with_tag <= max_msg_r3_signed_enc_len, err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| VerifyOrExit(msg_r3_encrypted_len_with_tag > CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| |
| VerifyOrExit(msg_R3_Encrypted.Alloc(msg_r3_encrypted_len_with_tag), err = CHIP_ERROR_NO_MEMORY); |
| SuccessOrExit(err = tlvReader.GetBytes(msg_R3_Encrypted.Get(), static_cast<uint32_t>(msg_r3_encrypted_len_with_tag))); |
| msg_r3_encrypted_len = msg_r3_encrypted_len_with_tag - CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES; |
| |
| // Step 1 |
| { |
| MutableByteSpan saltSpan(msg_salt); |
| SuccessOrExit(err = ConstructSaltSigma3(ByteSpan(mIPK), saltSpan)); |
| SuccessOrExit(err = DeriveSigmaKey(saltSpan, ByteSpan(kKDFSR3Info), sr3k)); |
| } |
| |
| SuccessOrExit(err = mCommissioningHash.AddData(ByteSpan{ buf, bufLen })); |
| |
| // Step 2 - Decrypt data blob |
| SuccessOrExit(err = AES_CCM_decrypt(msg_R3_Encrypted.Get(), msg_r3_encrypted_len, nullptr, 0, |
| msg_R3_Encrypted.Get() + msg_r3_encrypted_len, CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, |
| sr3k.KeyHandle(), kTBEData3_Nonce, kTBEDataNonceLength, msg_R3_Encrypted.Get())); |
| |
| decryptedDataTlvReader.Init(msg_R3_Encrypted.Get(), msg_r3_encrypted_len); |
| containerType = TLV::kTLVType_Structure; |
| SuccessOrExit(err = decryptedDataTlvReader.Next(containerType, TLV::AnonymousTag())); |
| SuccessOrExit(err = decryptedDataTlvReader.EnterContainer(containerType)); |
| |
| SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_SenderNOC))); |
| SuccessOrExit(err = decryptedDataTlvReader.Get(data.initiatorNOC)); |
| |
| SuccessOrExit(err = decryptedDataTlvReader.Next()); |
| if (TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_SenderICAC) |
| { |
| VerifyOrExit(decryptedDataTlvReader.GetType() == TLV::kTLVType_ByteString, err = CHIP_ERROR_WRONG_TLV_TYPE); |
| SuccessOrExit(err = decryptedDataTlvReader.Get(data.initiatorICAC)); |
| SuccessOrExit(err = decryptedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBEData_Signature))); |
| } |
| |
| // Step 4 - Construct Sigma3 TBS Data |
| data.msg_r3_signed_len = TLV::EstimateStructOverhead(sizeof(uint16_t), data.initiatorNOC.size(), data.initiatorICAC.size(), |
| kP256_PublicKey_Length, kP256_PublicKey_Length); |
| |
| VerifyOrExit(data.msg_R3_Signed.Alloc(data.msg_r3_signed_len), err = CHIP_ERROR_NO_MEMORY); |
| |
| SuccessOrExit(err = ConstructTBSData(data.initiatorNOC, data.initiatorICAC, ByteSpan(mRemotePubKey, mRemotePubKey.Length()), |
| ByteSpan(mEphemeralKey->Pubkey(), mEphemeralKey->Pubkey().Length()), |
| data.msg_R3_Signed.Get(), data.msg_r3_signed_len)); |
| |
| VerifyOrExit(TLV::TagNumFromTag(decryptedDataTlvReader.GetTag()) == kTag_TBEData_Signature, |
| err = CHIP_ERROR_INVALID_TLV_TAG); |
| VerifyOrExit(data.tbsData3Signature.Capacity() >= decryptedDataTlvReader.GetLength(), err = CHIP_ERROR_INVALID_TLV_ELEMENT); |
| data.tbsData3Signature.SetLength(decryptedDataTlvReader.GetLength()); |
| SuccessOrExit(err = decryptedDataTlvReader.GetBytes(data.tbsData3Signature.Bytes(), data.tbsData3Signature.Length())); |
| |
| // Prepare for Step 5/6 |
| { |
| MutableByteSpan fabricRCAC{ data.rootCertBuf }; |
| SuccessOrExit(err = mFabricsTable->FetchRootCert(mFabricIndex, fabricRCAC)); |
| data.fabricRCAC = fabricRCAC; |
| // TODO probably should make SetEffectiveTime static and call closer to VerifyCredentials |
| SuccessOrExit(err = SetEffectiveTime()); |
| } |
| |
| // Copy remaining needed data into work structure |
| { |
| data.validContext = mValidContext; |
| |
| // initiatorNOC and initiatorICAC are spans into msg_R3_Encrypted |
| // which is going away, so to save memory, redirect them to their |
| // copies in msg_R3_signed, which is staying around |
| TLV::TLVReader signedDataTlvReader; |
| signedDataTlvReader.Init(data.msg_R3_Signed.Get(), data.msg_r3_signed_len); |
| SuccessOrExit(err = signedDataTlvReader.Next(TLV::kTLVType_Structure, TLV::AnonymousTag())); |
| SuccessOrExit(err = signedDataTlvReader.EnterContainer(containerType)); |
| |
| SuccessOrExit(err = signedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBSData_SenderNOC))); |
| SuccessOrExit(err = signedDataTlvReader.Get(data.initiatorNOC)); |
| |
| if (!data.initiatorICAC.empty()) |
| { |
| SuccessOrExit(err = signedDataTlvReader.Next(TLV::kTLVType_ByteString, TLV::ContextTag(kTag_TBSData_SenderICAC))); |
| SuccessOrExit(err = signedDataTlvReader.Get(data.initiatorICAC)); |
| } |
| } |
| |
| SuccessOrExit(err = helper->ScheduleWork()); |
| mHandleSigma3Helper = helper; |
| mExchangeCtxt.Value()->WillSendMessage(); |
| mState = State::kHandleSigma3Pending; |
| } |
| |
| exit: |
| if (err != CHIP_NO_ERROR) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam); |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma3b(HandleSigma3Data & data, bool & cancel) |
| { |
| // Step 5/6 |
| // Validate initiator identity located in msg->Start() |
| // Constructing responder identity |
| CompressedFabricId unused; |
| FabricId initiatorFabricId; |
| P256PublicKey initiatorPublicKey; |
| ReturnErrorOnFailure(FabricTable::VerifyCredentials(data.initiatorNOC, data.initiatorICAC, data.fabricRCAC, data.validContext, |
| unused, initiatorFabricId, data.initiatorNodeId, initiatorPublicKey)); |
| VerifyOrReturnError(data.fabricId == initiatorFabricId, CHIP_ERROR_INVALID_CASE_PARAMETER); |
| |
| // TODO - Validate message signature prior to validating the received operational credentials. |
| // The op cert check requires traversal of cert chain, that is a more expensive operation. |
| // If message signature check fails, the cert chain check will be unnecessary, but with the |
| // current flow of code, a malicious node can trigger a DoS style attack on the device. |
| // The same change should be made in Sigma2 processing. |
| // Step 7 - Validate Signature |
| ReturnErrorOnFailure( |
| initiatorPublicKey.ECDSA_validate_msg_signature(data.msg_R3_Signed.Get(), data.msg_r3_signed_len, data.tbsData3Signature)); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::HandleSigma3c(HandleSigma3Data & data, CHIP_ERROR status) |
| { |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| |
| VerifyOrExit(mState == State::kHandleSigma3Pending, err = CHIP_ERROR_INCORRECT_STATE); |
| |
| SuccessOrExit(err = status); |
| |
| mPeerNodeId = data.initiatorNodeId; |
| |
| { |
| MutableByteSpan messageDigestSpan(mMessageDigest); |
| SuccessOrExit(err = mCommissioningHash.Finish(messageDigestSpan)); |
| } |
| |
| // Retrieve peer CASE Authenticated Tags (CATs) from peer's NOC. |
| { |
| SuccessOrExit(err = ExtractCATsFromOpCert(data.initiatorNOC, mPeerCATs)); |
| } |
| |
| if (mSessionResumptionStorage != nullptr) |
| { |
| CHIP_ERROR err2 = mSessionResumptionStorage->Save(GetPeer(), mNewResumptionId, mSharedSecret, mPeerCATs); |
| if (err2 != CHIP_NO_ERROR) |
| { |
| ChipLogError(SecureChannel, "Unable to save session resumption state: %" CHIP_ERROR_FORMAT, err2.Format()); |
| } |
| } |
| |
| SendStatusReport(mExchangeCtxt, kProtocolCodeSuccess); |
| |
| mState = State::kFinished; |
| Finish(); |
| |
| exit: |
| mHandleSigma3Helper.reset(); |
| |
| if (err != CHIP_NO_ERROR) |
| { |
| SendStatusReport(mExchangeCtxt, kProtocolCodeInvalidParam); |
| // Abort the pending establish, which is normally done by CASESession::OnMessageReceived, |
| // but in the background processing case must be done here. |
| DiscardExchange(); |
| AbortPendingEstablish(err); |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::DeriveSigmaKey(const ByteSpan & salt, const ByteSpan & info, AutoReleaseSessionKey & key) const |
| { |
| return mSessionManager->GetSessionKeystore()->DeriveKey(mSharedSecret, salt, info, key.KeyHandle()); |
| } |
| |
| CHIP_ERROR CASESession::ConstructSaltSigma2(const ByteSpan & rand, const Crypto::P256PublicKey & pubkey, const ByteSpan & ipk, |
| MutableByteSpan & salt) |
| { |
| uint8_t md[kSHA256_Hash_Length]; |
| memset(salt.data(), 0, salt.size()); |
| Encoding::LittleEndian::BufferWriter bbuf(salt.data(), salt.size()); |
| |
| bbuf.Put(ipk.data(), ipk.size()); |
| bbuf.Put(rand.data(), kSigmaParamRandomNumberSize); |
| bbuf.Put(pubkey, pubkey.Length()); |
| MutableByteSpan messageDigestSpan(md); |
| ReturnErrorOnFailure(mCommissioningHash.GetDigest(messageDigestSpan)); |
| bbuf.Put(messageDigestSpan.data(), messageDigestSpan.size()); |
| |
| size_t saltWritten = 0; |
| VerifyOrReturnError(bbuf.Fit(saltWritten), CHIP_ERROR_BUFFER_TOO_SMALL); |
| salt = salt.SubSpan(0, saltWritten); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::ConstructSaltSigma3(const ByteSpan & ipk, MutableByteSpan & salt) |
| { |
| uint8_t md[kSHA256_Hash_Length]; |
| memset(salt.data(), 0, salt.size()); |
| Encoding::LittleEndian::BufferWriter bbuf(salt.data(), salt.size()); |
| |
| bbuf.Put(ipk.data(), ipk.size()); |
| MutableByteSpan messageDigestSpan(md); |
| ReturnErrorOnFailure(mCommissioningHash.GetDigest(messageDigestSpan)); |
| bbuf.Put(messageDigestSpan.data(), messageDigestSpan.size()); |
| |
| size_t saltWritten = 0; |
| VerifyOrReturnError(bbuf.Fit(saltWritten), CHIP_ERROR_BUFFER_TOO_SMALL); |
| salt = salt.SubSpan(0, saltWritten); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::ConstructSigmaResumeKey(const ByteSpan & initiatorRandom, const ByteSpan & resumptionID, |
| const ByteSpan & skInfo, const ByteSpan & nonce, AutoReleaseSessionKey & resumeKey) |
| { |
| constexpr size_t saltSize = kSigmaParamRandomNumberSize + SessionResumptionStorage::kResumptionIdSize; |
| uint8_t salt[saltSize]; |
| |
| memset(salt, 0, saltSize); |
| Encoding::LittleEndian::BufferWriter bbuf(salt, saltSize); |
| |
| bbuf.Put(initiatorRandom.data(), initiatorRandom.size()); |
| bbuf.Put(resumptionID.data(), resumptionID.size()); |
| |
| size_t saltWritten = 0; |
| VerifyOrReturnError(bbuf.Fit(saltWritten), CHIP_ERROR_BUFFER_TOO_SMALL); |
| |
| return DeriveSigmaKey(ByteSpan(salt, saltWritten), skInfo, resumeKey); |
| } |
| |
| CHIP_ERROR CASESession::GenerateSigmaResumeMIC(const ByteSpan & initiatorRandom, const ByteSpan & resumptionID, |
| const ByteSpan & skInfo, const ByteSpan & nonce, MutableByteSpan & resumeMIC) |
| { |
| VerifyOrReturnError(resumeMIC.size() >= CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, CHIP_ERROR_BUFFER_TOO_SMALL); |
| |
| AutoReleaseSessionKey srk(*mSessionManager->GetSessionKeystore()); |
| ReturnErrorOnFailure(ConstructSigmaResumeKey(initiatorRandom, resumptionID, skInfo, nonce, srk)); |
| ReturnErrorOnFailure(AES_CCM_encrypt(nullptr, 0, nullptr, 0, srk.KeyHandle(), nonce.data(), nonce.size(), nullptr, |
| resumeMIC.data(), CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES)); |
| resumeMIC.reduce_size(CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::ValidateSigmaResumeMIC(const ByteSpan & resumeMIC, const ByteSpan & initiatorRandom, |
| const ByteSpan & resumptionID, const ByteSpan & skInfo, const ByteSpan & nonce) |
| { |
| VerifyOrReturnError(resumeMIC.size() == CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, CHIP_ERROR_BUFFER_TOO_SMALL); |
| |
| AutoReleaseSessionKey srk(*mSessionManager->GetSessionKeystore()); |
| ReturnErrorOnFailure(ConstructSigmaResumeKey(initiatorRandom, resumptionID, skInfo, nonce, srk)); |
| ReturnErrorOnFailure(AES_CCM_decrypt(nullptr, 0, nullptr, 0, resumeMIC.data(), resumeMIC.size(), srk.KeyHandle(), nonce.data(), |
| nonce.size(), nullptr)); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::ConstructTBSData(const ByteSpan & senderNOC, const ByteSpan & senderICAC, const ByteSpan & senderPubKey, |
| const ByteSpan & receiverPubKey, uint8_t * tbsData, size_t & tbsDataLen) |
| { |
| TLV::TLVWriter tlvWriter; |
| TLV::TLVType outerContainerType = TLV::kTLVType_NotSpecified; |
| |
| tlvWriter.Init(tbsData, tbsDataLen); |
| ReturnErrorOnFailure(tlvWriter.StartContainer(TLV::AnonymousTag(), TLV::kTLVType_Structure, outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_SenderNOC), senderNOC)); |
| if (!senderICAC.empty()) |
| { |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_SenderICAC), senderICAC)); |
| } |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_SenderPubKey), senderPubKey)); |
| ReturnErrorOnFailure(tlvWriter.Put(TLV::ContextTag(kTag_TBSData_ReceiverPubKey), receiverPubKey)); |
| ReturnErrorOnFailure(tlvWriter.EndContainer(outerContainerType)); |
| ReturnErrorOnFailure(tlvWriter.Finalize()); |
| tbsDataLen = static_cast<size_t>(tlvWriter.GetLengthWritten()); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::SetEffectiveTime() |
| { |
| System::Clock::Milliseconds64 currentUnixTimeMS; |
| CHIP_ERROR err = System::SystemClock().GetClock_RealTimeMS(currentUnixTimeMS); |
| |
| if (err == CHIP_NO_ERROR) |
| { |
| // If the system has given us a wall clock time, we must use it or |
| // fail. Conversion failures here are therefore always an error. |
| System::Clock::Seconds32 currentUnixTime = std::chrono::duration_cast<System::Clock::Seconds32>(currentUnixTimeMS); |
| ReturnErrorOnFailure(mValidContext.SetEffectiveTimeFromUnixTime<CurrentChipEpochTime>(currentUnixTime)); |
| } |
| else |
| { |
| // If we don't have wall clock time, the spec dictates that we should |
| // fall back to Last Known Good Time. Ultimately, the calling application's |
| // validity policy will determine whether this is permissible. |
| System::Clock::Seconds32 lastKnownGoodChipEpochTime; |
| ChipLogError(SecureChannel, |
| "The device does not support GetClock_RealTimeMS() API: %" CHIP_ERROR_FORMAT |
| ". Falling back to Last Known Good UTC Time", |
| err.Format()); |
| VerifyOrReturnError(mFabricsTable != nullptr, CHIP_ERROR_INCORRECT_STATE); |
| err = mFabricsTable->GetLastKnownGoodChipEpochTime(lastKnownGoodChipEpochTime); |
| if (err != CHIP_NO_ERROR) |
| { |
| // If we have no time available, the Validity Policy will |
| // determine what to do. |
| ChipLogError(SecureChannel, "Failed to retrieve Last Known Good UTC Time"); |
| } |
| else |
| { |
| mValidContext.SetEffectiveTime<LastKnownGoodChipEpochTime>(lastKnownGoodChipEpochTime); |
| } |
| } |
| return CHIP_NO_ERROR; |
| } |
| |
| void CASESession::OnSuccessStatusReport() |
| { |
| ChipLogProgress(SecureChannel, "Success status report received. Session was established"); |
| |
| if (mSessionResumptionStorage != nullptr) |
| { |
| CHIP_ERROR err2 = mSessionResumptionStorage->Save(GetPeer(), mNewResumptionId, mSharedSecret, mPeerCATs); |
| if (err2 != CHIP_NO_ERROR) |
| ChipLogError(SecureChannel, "Unable to save session resumption state: %" CHIP_ERROR_FORMAT, err2.Format()); |
| } |
| |
| switch (mState) |
| { |
| case State::kSentSigma3: |
| mState = State::kFinished; |
| break; |
| case State::kSentSigma2Resume: |
| mState = State::kFinishedViaResume; |
| break; |
| default: |
| VerifyOrDie(false && "Reached invalid internal state keeping in CASE session"); |
| break; |
| } |
| |
| Finish(); |
| } |
| |
| CHIP_ERROR CASESession::OnFailureStatusReport(Protocols::SecureChannel::GeneralStatusCode generalCode, uint16_t protocolCode, |
| Optional<uintptr_t> protocolData) |
| { |
| CHIP_ERROR err = CHIP_NO_ERROR; |
| switch (protocolCode) |
| { |
| case kProtocolCodeInvalidParam: |
| err = CHIP_ERROR_INVALID_CASE_PARAMETER; |
| break; |
| |
| case kProtocolCodeNoSharedRoot: |
| err = CHIP_ERROR_NO_SHARED_TRUSTED_ROOT; |
| break; |
| |
| case kProtocolCodeBusy: |
| err = CHIP_ERROR_BUSY; |
| if (protocolData.HasValue()) |
| { |
| mDelegate->OnResponderBusy(System::Clock::Milliseconds16(static_cast<uint16_t>(protocolData.Value()))); |
| } |
| break; |
| |
| default: |
| err = CHIP_ERROR_INTERNAL; |
| break; |
| }; |
| mState = State::kInitialized; |
| ChipLogError(SecureChannel, "Received error (protocol code %d) during pairing process: %" CHIP_ERROR_FORMAT, protocolCode, |
| err.Format()); |
| return err; |
| } |
| |
| CHIP_ERROR CASESession::ParseSigma1(TLV::ContiguousBufferTLVReader & tlvReader, ByteSpan & initiatorRandom, |
| uint16_t & initiatorSessionId, ByteSpan & destinationId, ByteSpan & initiatorEphPubKey, |
| bool & resumptionRequested, ByteSpan & resumptionId, ByteSpan & initiatorResumeMIC) |
| { |
| using namespace TLV; |
| |
| constexpr uint8_t kInitiatorRandomTag = 1; |
| constexpr uint8_t kInitiatorSessionIdTag = 2; |
| constexpr uint8_t kDestinationIdTag = 3; |
| constexpr uint8_t kInitiatorPubKeyTag = 4; |
| constexpr uint8_t kInitiatorMRPParamsTag = 5; |
| constexpr uint8_t kResumptionIDTag = 6; |
| constexpr uint8_t kResume1MICTag = 7; |
| |
| TLVType containerType = kTLVType_Structure; |
| ReturnErrorOnFailure(tlvReader.Next(containerType, AnonymousTag())); |
| ReturnErrorOnFailure(tlvReader.EnterContainer(containerType)); |
| |
| ReturnErrorOnFailure(tlvReader.Next(ContextTag(kInitiatorRandomTag))); |
| ReturnErrorOnFailure(tlvReader.GetByteView(initiatorRandom)); |
| VerifyOrReturnError(initiatorRandom.size() == kSigmaParamRandomNumberSize, CHIP_ERROR_INVALID_CASE_PARAMETER); |
| |
| ReturnErrorOnFailure(tlvReader.Next(ContextTag(kInitiatorSessionIdTag))); |
| ReturnErrorOnFailure(tlvReader.Get(initiatorSessionId)); |
| |
| ReturnErrorOnFailure(tlvReader.Next(ContextTag(kDestinationIdTag))); |
| ReturnErrorOnFailure(tlvReader.GetByteView(destinationId)); |
| VerifyOrReturnError(destinationId.size() == kSHA256_Hash_Length, CHIP_ERROR_INVALID_CASE_PARAMETER); |
| |
| ReturnErrorOnFailure(tlvReader.Next(ContextTag(kInitiatorPubKeyTag))); |
| ReturnErrorOnFailure(tlvReader.GetByteView(initiatorEphPubKey)); |
| VerifyOrReturnError(initiatorEphPubKey.size() == kP256_PublicKey_Length, CHIP_ERROR_INVALID_CASE_PARAMETER); |
| |
| // Optional members start here. |
| CHIP_ERROR err = tlvReader.Next(); |
| if (err == CHIP_NO_ERROR && tlvReader.GetTag() == ContextTag(kInitiatorMRPParamsTag)) |
| { |
| ReturnErrorOnFailure(DecodeMRPParametersIfPresent(TLV::ContextTag(kInitiatorMRPParamsTag), tlvReader)); |
| mExchangeCtxt.Value()->GetSessionHandle()->AsUnauthenticatedSession()->SetRemoteSessionParameters( |
| GetRemoteSessionParameters()); |
| err = tlvReader.Next(); |
| } |
| |
| bool resumptionIDTagFound = false; |
| bool resume1MICTagFound = false; |
| |
| if (err == CHIP_NO_ERROR && tlvReader.GetTag() == ContextTag(kResumptionIDTag)) |
| { |
| resumptionIDTagFound = true; |
| ReturnErrorOnFailure(tlvReader.GetByteView(resumptionId)); |
| VerifyOrReturnError(resumptionId.size() == SessionResumptionStorage::kResumptionIdSize, CHIP_ERROR_INVALID_CASE_PARAMETER); |
| err = tlvReader.Next(); |
| } |
| |
| if (err == CHIP_NO_ERROR && tlvReader.GetTag() == ContextTag(kResume1MICTag)) |
| { |
| resume1MICTagFound = true; |
| ReturnErrorOnFailure(tlvReader.GetByteView(initiatorResumeMIC)); |
| VerifyOrReturnError(initiatorResumeMIC.size() == CHIP_CRYPTO_AEAD_MIC_LENGTH_BYTES, CHIP_ERROR_INVALID_CASE_PARAMETER); |
| err = tlvReader.Next(); |
| } |
| |
| if (err == CHIP_END_OF_TLV) |
| { |
| // We ran out of struct members, but that's OK, because they were optional. |
| err = CHIP_NO_ERROR; |
| } |
| |
| ReturnErrorOnFailure(err); |
| ReturnErrorOnFailure(tlvReader.ExitContainer(containerType)); |
| |
| if (resumptionIDTagFound && resume1MICTagFound) |
| { |
| resumptionRequested = true; |
| } |
| else if (!resumptionIDTagFound && !resume1MICTagFound) |
| { |
| resumptionRequested = false; |
| } |
| else |
| { |
| return CHIP_ERROR_UNEXPECTED_TLV_ELEMENT; |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::ValidateReceivedMessage(ExchangeContext * ec, const PayloadHeader & payloadHeader, |
| const System::PacketBufferHandle & msg) |
| { |
| VerifyOrReturnError(ec != nullptr, CHIP_ERROR_INVALID_ARGUMENT); |
| |
| // mExchangeCtxt can be nullptr if this is the first message (CASE_Sigma1) received by CASESession |
| // via UnsolicitedMessageHandler. The exchange context is allocated by exchange manager and provided |
| // to the handler (CASESession object). |
| if (mExchangeCtxt.HasValue()) |
| { |
| if (&mExchangeCtxt.Value().Get() != ec) |
| { |
| ReturnErrorOnFailure(CHIP_ERROR_INVALID_ARGUMENT); |
| } |
| } |
| else |
| { |
| mExchangeCtxt.Emplace(*ec); |
| } |
| mExchangeCtxt.Value()->UseSuggestedResponseTimeout(kExpectedHighProcessingTime); |
| |
| VerifyOrReturnError(!msg.IsNull(), CHIP_ERROR_INVALID_ARGUMENT); |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR CASESession::OnMessageReceived(ExchangeContext * ec, const PayloadHeader & payloadHeader, |
| System::PacketBufferHandle && msg) |
| { |
| MATTER_TRACE_SCOPE("OnMessageReceived", "CASESession"); |
| CHIP_ERROR err = ValidateReceivedMessage(ec, payloadHeader, msg); |
| Protocols::SecureChannel::MsgType msgType = static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType()); |
| SuccessOrExit(err); |
| |
| #if CONFIG_BUILD_FOR_HOST_UNIT_TEST |
| if (mStopHandshakeAtState.HasValue() && mState == mStopHandshakeAtState.Value()) |
| { |
| mStopHandshakeAtState = Optional<State>::Missing(); |
| // For testing purposes we are trying to stop a successful CASESession from happening by dropping part of the |
| // handshake in the middle. We are trying to keep both sides of the CASESession establishment in an active |
| // pending state. In order to keep this side open we have to tell the exchange context that we will send an |
| // async message. |
| // |
| // Should you need to resume the CASESession, you could theoretically pass along the msg to a callback that gets |
| // registered when setting mStopHandshakeAtState. |
| mExchangeCtxt.Value()->WillSendMessage(); |
| return CHIP_NO_ERROR; |
| } |
| #endif // CONFIG_BUILD_FOR_HOST_UNIT_TEST |
| |
| #if CHIP_CONFIG_SLOW_CRYPTO |
| if ((msgType == Protocols::SecureChannel::MsgType::CASE_Sigma1 || msgType == Protocols::SecureChannel::MsgType::CASE_Sigma2 || |
| msgType == Protocols::SecureChannel::MsgType::CASE_Sigma2Resume || |
| msgType == Protocols::SecureChannel::MsgType::CASE_Sigma3) && |
| mExchangeCtxt.Value()->GetSessionHandle()->AsUnauthenticatedSession()->GetPeerAddress().GetTransportType() != |
| Transport::Type::kTcp) |
| { |
| // TODO: Rename FlushAcks() to something more semantically correct and |
| // call unconditionally for TCP or MRP from here. Inside, the |
| // PeerAddress type could be consulted to selectively flush MRP Acks |
| // when transport is not TCP. Issue #33183 |
| SuccessOrExit(err = mExchangeCtxt.Value()->FlushAcks()); |
| } |
| #endif // CHIP_CONFIG_SLOW_CRYPTO |
| |
| // By default, CHIP_ERROR_INVALID_MESSAGE_TYPE is returned if in the current state |
| // a message handler is not defined for the received message type. |
| err = CHIP_ERROR_INVALID_MESSAGE_TYPE; |
| |
| switch (mState) |
| { |
| case State::kInitialized: |
| if (msgType == Protocols::SecureChannel::MsgType::CASE_Sigma1) |
| { |
| err = HandleSigma1_and_SendSigma2(std::move(msg)); |
| } |
| break; |
| case State::kSentSigma1: |
| switch (static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType())) |
| { |
| case Protocols::SecureChannel::MsgType::CASE_Sigma2: |
| err = HandleSigma2_and_SendSigma3(std::move(msg)); |
| break; |
| |
| case MsgType::StatusReport: |
| err = HandleStatusReport(std::move(msg), /* successExpected*/ false); |
| break; |
| |
| default: |
| // Return the default error that was set above |
| break; |
| }; |
| break; |
| case State::kSentSigma1Resume: |
| switch (static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType())) |
| { |
| case Protocols::SecureChannel::MsgType::CASE_Sigma2: |
| err = HandleSigma2_and_SendSigma3(std::move(msg)); |
| break; |
| |
| case Protocols::SecureChannel::MsgType::CASE_Sigma2Resume: |
| err = HandleSigma2Resume(std::move(msg)); |
| break; |
| |
| case MsgType::StatusReport: |
| err = HandleStatusReport(std::move(msg), /* successExpected*/ false); |
| break; |
| |
| default: |
| // Return the default error that was set above |
| break; |
| }; |
| break; |
| case State::kSentSigma2: |
| switch (static_cast<Protocols::SecureChannel::MsgType>(payloadHeader.GetMessageType())) |
| { |
| case Protocols::SecureChannel::MsgType::CASE_Sigma3: |
| err = HandleSigma3a(std::move(msg)); |
| break; |
| |
| case MsgType::StatusReport: |
| err = HandleStatusReport(std::move(msg), /* successExpected*/ false); |
| break; |
| |
| default: |
| // Return the default error that was set above |
| break; |
| }; |
| break; |
| case State::kSentSigma3: |
| case State::kSentSigma2Resume: |
| if (msgType == Protocols::SecureChannel::MsgType::StatusReport) |
| { |
| err = HandleStatusReport(std::move(msg), /* successExpected*/ true); |
| } |
| break; |
| default: |
| // Return the default error that was set above |
| break; |
| }; |
| |
| exit: |
| |
| if (err == CHIP_ERROR_INVALID_MESSAGE_TYPE) |
| { |
| ChipLogError(SecureChannel, "Received message (type %d) cannot be handled in %d state.", to_underlying(msgType), |
| to_underlying(mState)); |
| } |
| |
| // Call delegate to indicate session establishment failure. |
| if (err != CHIP_NO_ERROR) |
| { |
| // Discard the exchange so that Clear() doesn't try aborting it. The |
| // exchange will handle that. |
| DiscardExchange(); |
| AbortPendingEstablish(err); |
| } |
| return err; |
| } |
| |
| System::Clock::Timeout CASESession::ComputeSigma1ResponseTimeout(const ReliableMessageProtocolConfig & remoteMrpConfig) |
| { |
| return GetRetransmissionTimeout(remoteMrpConfig.mActiveRetransTimeout, remoteMrpConfig.mIdleRetransTimeout, |
| // Assume peer is idle, since that's what we |
| // will assume for our initial message. |
| System::Clock::kZero, remoteMrpConfig.mActiveThresholdTime) + |
| kExpectedSigma1ProcessingTime; |
| } |
| |
| System::Clock::Timeout CASESession::ComputeSigma2ResponseTimeout(const ReliableMessageProtocolConfig & remoteMrpConfig) |
| { |
| return GetRetransmissionTimeout(remoteMrpConfig.mActiveRetransTimeout, remoteMrpConfig.mIdleRetransTimeout, |
| // Assume peer is idle, as a worst-case assumption. |
| System::Clock::kZero, remoteMrpConfig.mActiveThresholdTime) + |
| kExpectedHighProcessingTime; |
| } |
| |
| bool CASESession::InvokeBackgroundWorkWatchdog() |
| { |
| bool watchdogFired = false; |
| |
| if (mSendSigma3Helper && mSendSigma3Helper->UnableToScheduleAfterWorkCallback()) |
| { |
| ChipLogError(SecureChannel, "SendSigma3Helper was unable to schedule the AfterWorkCallback"); |
| mSendSigma3Helper->DoAfterWork(); |
| watchdogFired = true; |
| } |
| |
| if (mHandleSigma3Helper && mHandleSigma3Helper->UnableToScheduleAfterWorkCallback()) |
| { |
| ChipLogError(SecureChannel, "HandleSigma3Helper was unable to schedule the AfterWorkCallback"); |
| mHandleSigma3Helper->DoAfterWork(); |
| watchdogFired = true; |
| } |
| |
| return watchdogFired; |
| } |
| |
| // Helper function to map CASESession::State to SessionEstablishmentStage |
| SessionEstablishmentStage CASESession::MapCASEStateToSessionEstablishmentStage(State caseState) |
| { |
| switch (caseState) |
| { |
| case State::kInitialized: |
| return SessionEstablishmentStage::kNotInKeyExchange; |
| case State::kSentSigma1: |
| case State::kSentSigma1Resume: |
| return SessionEstablishmentStage::kSentSigma1; |
| case State::kSentSigma2: |
| case State::kSentSigma2Resume: |
| return SessionEstablishmentStage::kSentSigma2; |
| case State::kSendSigma3Pending: |
| return SessionEstablishmentStage::kReceivedSigma2; |
| case State::kSentSigma3: |
| return SessionEstablishmentStage::kSentSigma3; |
| case State::kHandleSigma3Pending: |
| return SessionEstablishmentStage::kReceivedSigma3; |
| // Add more mappings here for other states |
| default: |
| return SessionEstablishmentStage::kUnknown; // Default mapping |
| } |
| } |
| |
| } // namespace chip |