blob: bfd1869710ebf6b04b0383cf756afa612c5714d9 [file] [log] [blame]
/*
* Copyright (c) 2021-2022, The OpenThread Authors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "FunctionLib.h"
#include "fsl_debug_console.h"
#include "fsl_os_abstraction.h"
#include "fwk_filesystem.h"
#include "ram_storage.h"
#ifndef RAM_STORAGE_LOG
#define RAM_STORAGE_LOG 0
#endif
#ifndef KEY_BYTE_MAX_SIZE
#define KEY_BYTE_MAX_SIZE 28
#endif
#if RAM_STORAGE_LOG
#define RAM_STORAGE_PRINTF(key, size, ...) \
PRINTF("[%s] ", __FUNCTION__); \
uint8_t printIt; \
PRINTF("[key = "); \
for (printIt = 0; printIt < size; printIt++) \
{ \
PRINTF("0x%x ", key[printIt]); \
} \
PRINTF("]"); \
PRINTF(__VA_ARGS__); \
PRINTF("\n\r");
#else
#define RAM_STORAGE_PRINTF(...)
#endif
struct settingsBlock
{
uint8_t keyBytes[KEY_BYTE_MAX_SIZE];
uint8_t keyBytesLen;
uint16_t length;
} __attribute__((packed));
static OSA_MUTEX_HANDLE_DEFINE(mRamStorageMutexId);
static rsError ramStorageAdd(ramBufferDescriptor * pBuffer, const uint8_t * pAKey, uint8_t keySize, const uint8_t * aValue,
uint16_t aValueLength)
{
rsError error;
struct settingsBlock * currentBlock;
const uint16_t newBlockLength = sizeof(struct settingsBlock) + aValueLength;
(void) OSA_MutexLock((osa_mutex_handle_t) mRamStorageMutexId, osaWaitForever_c);
if (*(pBuffer->ramBufferLen) + newBlockLength <= pBuffer->ramBufferMaxLen)
{
currentBlock = (struct settingsBlock *) &pBuffer->pRamBuffer[*(pBuffer->ramBufferLen)];
memset(currentBlock, 0x0, sizeof(struct settingsBlock));
memcpy(currentBlock->keyBytes, pAKey, keySize);
currentBlock->keyBytesLen = keySize;
currentBlock->length = aValueLength;
memcpy(&pBuffer->pRamBuffer[*(pBuffer->ramBufferLen) + sizeof(struct settingsBlock)], aValue, aValueLength);
*(pBuffer->ramBufferLen) += newBlockLength;
assert(*(pBuffer->ramBufferLen) <= pBuffer->ramBufferMaxLen);
error = RS_ERROR_NONE;
}
else
{
assert(0);
error = RS_ERROR_NO_BUFS;
}
(void) OSA_MutexUnlock((osa_mutex_handle_t) mRamStorageMutexId);
RAM_STORAGE_PRINTF(pAKey, keySize, "lengthWriten = %d err = %d, newLen = %d", aValueLength, error, *(pBuffer->ramBufferLen));
return error;
}
rsError ramStorageGet(const ramBufferDescriptor * pBuffer, const uint8_t * pAKey, uint8_t keySize, int aIndex, uint8_t * aValue,
uint16_t * aValueLength)
{
uint16_t i = 0;
uint16_t valueLength = 0;
uint16_t readLength;
int currentIndex = 0;
const struct settingsBlock * currentBlock;
rsError error = RS_ERROR_NOT_FOUND;
if (keySize <= KEY_BYTE_MAX_SIZE)
{
(void) OSA_MutexLock((osa_mutex_handle_t) mRamStorageMutexId, osaWaitForever_c);
while (i < *(pBuffer->ramBufferLen))
{
currentBlock = (struct settingsBlock *) &pBuffer->pRamBuffer[i];
/* Assert allowing to make sure that the dataset is not corrupted */
assert(currentBlock->length <= pBuffer->ramBufferMaxLen);
if (currentBlock->keyBytesLen == keySize && memcmp(pAKey, currentBlock->keyBytes, keySize) == 0)
{
if (currentIndex == aIndex)
{
readLength = currentBlock->length;
// Perform read only if an input buffer was passed in
if (aValue != NULL && aValueLength != NULL)
{
// Adjust read length if input buffer size is smaller
if (readLength > *aValueLength)
{
readLength = *aValueLength;
}
memcpy(aValue, &pBuffer->pRamBuffer[i + sizeof(struct settingsBlock)], readLength);
}
valueLength = currentBlock->length;
error = RS_ERROR_NONE;
break;
}
currentIndex++;
}
i += sizeof(struct settingsBlock) + currentBlock->length;
}
(void) OSA_MutexUnlock((osa_mutex_handle_t) mRamStorageMutexId);
}
else
{
error = RS_ERROR_WRONG_ARG;
}
if (aValueLength != NULL)
{
*aValueLength = valueLength;
}
RAM_STORAGE_PRINTF(pAKey, keySize, "err = %d", error);
return error;
}
rsError ramStorageSet(ramBufferDescriptor * pBuffer, const uint8_t * pAKey, uint8_t keySize, const uint8_t * aValue,
uint16_t aValueLength)
{
uint16_t i = 0;
uint16_t currentBlockLength;
uint16_t nextBlockStart;
const struct settingsBlock * currentBlock;
rsError error = RS_ERROR_WRONG_ARG;
assert(keySize <= KEY_BYTE_MAX_SIZE);
if (keySize <= KEY_BYTE_MAX_SIZE)
{
(void) OSA_MutexLock((osa_mutex_handle_t) mRamStorageMutexId, osaWaitForever_c);
// Delete all entries of aKey
while (i < *(pBuffer->ramBufferLen))
{
currentBlock = (struct settingsBlock *) &pBuffer->pRamBuffer[i];
currentBlockLength = sizeof(struct settingsBlock) + currentBlock->length;
if (currentBlock->keyBytesLen == keySize && memcmp(pAKey, currentBlock->keyBytes, keySize) == 0)
{
nextBlockStart = i + currentBlockLength;
if (nextBlockStart < *(pBuffer->ramBufferLen))
{
memmove(&pBuffer->pRamBuffer[i], &pBuffer->pRamBuffer[nextBlockStart],
*(pBuffer->ramBufferLen) - nextBlockStart);
}
assert(*(pBuffer->ramBufferLen) >= currentBlockLength);
*(pBuffer->ramBufferLen) -= currentBlockLength;
}
else
{
i += currentBlockLength;
}
}
error = ramStorageAdd(pBuffer, pAKey, keySize, aValue, aValueLength);
(void) OSA_MutexUnlock((osa_mutex_handle_t) mRamStorageMutexId);
}
return error;
}
rsError ramStorageDelete(ramBufferDescriptor * pBuffer, const uint8_t * pAKey, uint8_t keySize, int aIndex)
{
uint16_t i = 0;
int currentIndex = 0;
uint16_t nextBlockStart;
uint16_t currentBlockLength;
const struct settingsBlock * currentBlock;
rsError error = RS_ERROR_NOT_FOUND;
if (keySize <= KEY_BYTE_MAX_SIZE)
{
(void) OSA_MutexLock((osa_mutex_handle_t) mRamStorageMutexId, osaWaitForever_c);
while (i < *(pBuffer->ramBufferLen))
{
currentBlock = (struct settingsBlock *) &pBuffer->pRamBuffer[i];
currentBlockLength = sizeof(struct settingsBlock) + currentBlock->length;
if (currentBlock->keyBytesLen == keySize && memcmp(pAKey, currentBlock->keyBytes, keySize) == 0)
{
if (currentIndex == aIndex)
{
nextBlockStart = i + currentBlockLength;
if (nextBlockStart < *(pBuffer->ramBufferLen))
{
memmove(&pBuffer->pRamBuffer[i], &pBuffer->pRamBuffer[nextBlockStart],
*(pBuffer->ramBufferLen) - nextBlockStart);
}
assert(*(pBuffer->ramBufferLen) >= currentBlockLength);
*(pBuffer->ramBufferLen) -= currentBlockLength;
error = RS_ERROR_NONE;
break;
}
else
{
currentIndex++;
}
}
i += currentBlockLength;
}
(void) OSA_MutexUnlock((osa_mutex_handle_t) mRamStorageMutexId);
}
else
{
error = RS_ERROR_WRONG_ARG;
assert(0);
}
RAM_STORAGE_PRINTF(pAKey, keySize, "err = %d", error);
return error;
}
void ramStorageInit(void)
{
/* Mutex create */
(void) OSA_MutexCreate(mRamStorageMutexId);
assert(NULL != mRamStorageMutexId);
}
int ramStorageReadFromFlash(const char * file_name, uint8_t * buffer, uint32_t buf_length)
{
int res;
(void) OSA_MutexLock((osa_mutex_handle_t) mRamStorageMutexId, osaWaitForever_c);
res = FS_ReadBufferFromFile(file_name, buffer, buf_length);
(void) OSA_MutexUnlock((osa_mutex_handle_t) mRamStorageMutexId);
return res;
}
/* Buffer size must be superior to the max ram buffer size CHIP_CONFIG_RAM_BUFFER_KEY_STRING_SIZE */
static uint8_t bufferIdleWriteToFlash[4 * 5000];
int ramStorageSavetoFlash(const char * file_name, uint8_t * buffer, uint32_t buf_length)
{
int res;
assert(sizeof(bufferIdleWriteToFlash) >= buf_length);
/**
* Copy buffer to minimise the task lock duration
* TODO : Improve ram buffer management to minimize ram buffer usage
*/
(void) OSA_MutexLock((osa_mutex_handle_t) mRamStorageMutexId, osaWaitForever_c);
memcpy(bufferIdleWriteToFlash, buffer, buf_length);
(void) OSA_MutexUnlock((osa_mutex_handle_t) mRamStorageMutexId);
res = FS_WriteBufferToFile(file_name, bufferIdleWriteToFlash, buf_length);
return res;
}
void ramStorageDump(const ramBufferDescriptor * pBuffer)
{
uint16_t i = 0;
uint16_t j = 0;
uint16_t valueLength = 0;
uint16_t readLength;
int currentIndex = 0;
const struct settingsBlock * currentBlock;
rsError error = RS_ERROR_NOT_FOUND;
(void) OSA_MutexLock((osa_mutex_handle_t) mRamStorageMutexId, osaWaitForever_c);
while (i < *(pBuffer->ramBufferLen))
{
currentBlock = (struct settingsBlock *) &pBuffer->pRamBuffer[i];
PRINTF("key = ");
for (j = 0; j < currentBlock->keyBytesLen; j++)
{
PRINTF("%c", currentBlock->keyBytes[j]);
}
PRINTF("\nlen = %d\n", currentBlock->length);
i += sizeof(struct settingsBlock) + currentBlock->length;
}
(void) OSA_MutexUnlock((osa_mutex_handle_t) mRamStorageMutexId);
}