blob: a61cfd5ccd3d1eaaa728aac816c09f3e414335e0 [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* Copyright (c) 2019 Google LLC.
* Copyright (c) 2013-2018 Nest Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This file implements the class <tt>Inet::IPAddress</tt> and
* related enumerated constants. The CHIP Inet Layer uses objects
* of this class to represent Internet protocol addresses of both
* IPv4 and IPv6 address families. (IPv4 addresses are stored
* internally in the V4COMPAT format, reserved for that purpose.)
*
*/
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include <IPAddress.h>
#include <core/CHIPEncoding.h>
#include "arpa-inet-compatibility.h"
#include <stdint.h>
#include <string.h>
namespace chip {
namespace Inet {
IPAddress IPAddress::Any;
bool IPAddress::operator==(const IPAddress & other) const
{
return Addr[0] == other.Addr[0] && Addr[1] == other.Addr[1] && Addr[2] == other.Addr[2] && Addr[3] == other.Addr[3];
}
bool IPAddress::operator!=(const IPAddress & other) const
{
return Addr[0] != other.Addr[0] || Addr[1] != other.Addr[1] || Addr[2] != other.Addr[2] || Addr[3] != other.Addr[3];
}
IPAddress & IPAddress::operator=(const IPAddress & other)
{
if (this != &other)
{
Addr[0] = other.Addr[0];
Addr[1] = other.Addr[1];
Addr[2] = other.Addr[2];
Addr[3] = other.Addr[3];
}
return *this;
}
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5
ip_addr_t IPAddress::ToLwIPAddr(void) const
{
ip_addr_t ret;
switch (Type())
{
#if INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv4:
IP_SET_TYPE_VAL(ret, IPADDR_TYPE_V4);
*ip_2_ip4(&ret) = IPAddress::ToIPv4();
break;
#endif // INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv6:
IP_SET_TYPE_VAL(ret, IPADDR_TYPE_V6);
*ip_2_ip6(&ret) = IPAddress::ToIPv6();
break;
default:
ret = *IP_ADDR_ANY;
break;
}
return ret;
}
IPAddress IPAddress::FromLwIPAddr(const ip_addr_t & addr)
{
IPAddress ret;
switch (IP_GET_TYPE(&addr))
{
#if INET_CONFIG_ENABLE_IPV4
case IPADDR_TYPE_V4:
ret = IPAddress::FromIPv4(*ip_2_ip4(&addr));
break;
#endif // INET_CONFIG_ENABLE_IPV4
case IPADDR_TYPE_V6:
ret = IPAddress::FromIPv6(*ip_2_ip6(&addr));
break;
default:
ret = Any;
break;
}
return ret;
}
lwip_ip_addr_type IPAddress::ToLwIPAddrType(IPAddressType typ)
{
lwip_ip_addr_type ret;
switch (typ)
{
#if INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv4:
ret = IPADDR_TYPE_V4;
break;
#endif // INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv6:
ret = IPADDR_TYPE_V6;
break;
default:
ret = IPADDR_TYPE_ANY;
break;
}
return ret;
}
#endif // LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5
#if INET_CONFIG_ENABLE_IPV4
ip4_addr_t IPAddress::ToIPv4() const
{
return *(ip4_addr_t *) &Addr[3];
}
IPAddress IPAddress::FromIPv4(const ip4_addr_t & ipv4Addr)
{
IPAddress ipAddr;
ipAddr.Addr[0] = 0;
ipAddr.Addr[1] = 0;
ipAddr.Addr[2] = htonl(0xFFFF);
ipAddr.Addr[3] = ipv4Addr.addr;
return ipAddr;
}
#endif // INET_CONFIG_ENABLE_IPV4
ip6_addr_t IPAddress::ToIPv6() const
{
return *(ip6_addr_t *) Addr;
}
IPAddress IPAddress::FromIPv6(const ip6_addr_t & ipv6Addr)
{
IPAddress ipAddr;
ipAddr.Addr[0] = ipv6Addr.addr[0];
ipAddr.Addr[1] = ipv6Addr.addr[1];
ipAddr.Addr[2] = ipv6Addr.addr[2];
ipAddr.Addr[3] = ipv6Addr.addr[3];
return ipAddr;
}
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS || CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
#if INET_CONFIG_ENABLE_IPV4
struct in_addr IPAddress::ToIPv4() const
{
struct in_addr ipv4Addr;
ipv4Addr.s_addr = Addr[3];
return ipv4Addr;
}
IPAddress IPAddress::FromIPv4(const struct in_addr & ipv4Addr)
{
IPAddress ipAddr;
ipAddr.Addr[0] = 0;
ipAddr.Addr[1] = 0;
ipAddr.Addr[2] = htonl(0xFFFF);
ipAddr.Addr[3] = ipv4Addr.s_addr;
return ipAddr;
}
#endif // INET_CONFIG_ENABLE_IPV4
struct in6_addr IPAddress::ToIPv6() const
{
return *(struct in6_addr *) &Addr;
}
IPAddress IPAddress::FromIPv6(const struct in6_addr & ipv6Addr)
{
IPAddress ipAddr;
ipAddr.Addr[0] = htonl(((uint32_t) ipv6Addr.s6_addr[0]) << 24 | ((uint32_t) ipv6Addr.s6_addr[1]) << 16 |
((uint32_t) ipv6Addr.s6_addr[2]) << 8 | ((uint32_t) ipv6Addr.s6_addr[3]));
ipAddr.Addr[1] = htonl(((uint32_t) ipv6Addr.s6_addr[4]) << 24 | ((uint32_t) ipv6Addr.s6_addr[5]) << 16 |
((uint32_t) ipv6Addr.s6_addr[6]) << 8 | ((uint32_t) ipv6Addr.s6_addr[7]));
ipAddr.Addr[2] = htonl(((uint32_t) ipv6Addr.s6_addr[8]) << 24 | ((uint32_t) ipv6Addr.s6_addr[9]) << 16 |
((uint32_t) ipv6Addr.s6_addr[10]) << 8 | ((uint32_t) ipv6Addr.s6_addr[11]));
ipAddr.Addr[3] = htonl(((uint32_t) ipv6Addr.s6_addr[12]) << 24 | ((uint32_t) ipv6Addr.s6_addr[13]) << 16 |
((uint32_t) ipv6Addr.s6_addr[14]) << 8 | ((uint32_t) ipv6Addr.s6_addr[15]));
return ipAddr;
}
IPAddress IPAddress::FromSockAddr(const struct sockaddr & sockaddr)
{
#if INET_CONFIG_ENABLE_IPV4
if (sockaddr.sa_family == AF_INET)
return FromIPv4(((sockaddr_in *) &sockaddr)->sin_addr);
#endif // INET_CONFIG_ENABLE_IPV4
if (sockaddr.sa_family == AF_INET6)
return FromIPv6(((sockaddr_in6 *) &sockaddr)->sin6_addr);
return Any;
}
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS || CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
// Is address an IPv4 address encoded in IPv6 format?
bool IPAddress::IsIPv4() const
{
return Addr[0] == 0 && Addr[1] == 0 && Addr[2] == htonl(0xFFFF);
}
// Is address a IPv4 multicast address?
bool IPAddress::IsIPv4Multicast(void) const
{
return (IsIPv4() && ((ntohl(Addr[3]) & 0xF0000000U) == 0xE0000000U));
}
// Is address the IPv4 broadcast address?
bool IPAddress::IsIPv4Broadcast(void) const
{
return (IsIPv4() && (Addr[3] == 0xFFFFFFFFU));
}
// Is address an IPv4 or IPv6 multicast address?
bool IPAddress::IsMulticast(void) const
{
return (IsIPv6Multicast() || IsIPv4Multicast());
}
bool IPAddress::IsIPv6(void) const
{
return *this != Any && !IsIPv4();
}
// Is address an IPv6 multicast address?
bool IPAddress::IsIPv6Multicast(void) const
{
return (ntohl(Addr[0]) & 0xFF000000U) == 0xFF000000U;
}
// Is address an IPv6 Global Unicast Address?
bool IPAddress::IsIPv6GlobalUnicast(void) const
{
return (ntohl(Addr[0]) & 0xE0000000U) == 0x20000000U;
}
// Is address an IPv6 Unique Local Address?
bool IPAddress::IsIPv6ULA() const
{
return (ntohl(Addr[0]) & 0xFF000000U) == 0xFD000000U;
}
// Is address an IPv6 Link-local Address?
bool IPAddress::IsIPv6LinkLocal() const
{
return (Addr[0] == htonl(0xFE800000U) && Addr[1] == 0);
}
// Extract the interface id from a IPv6 ULA address. Returns 0 if the address
// is not a ULA.
uint64_t IPAddress::InterfaceId() const
{
if (IsIPv6ULA())
return (((uint64_t) ntohl(Addr[2])) << 32) | ((uint64_t) ntohl(Addr[3]));
else
return 0;
}
// Extract the subnet id from a IPv6 ULA address. Returns 0 if the address
// is not a ULA.
uint16_t IPAddress::Subnet() const
{
if (IsIPv6ULA())
return (uint16_t) ntohl(Addr[1]);
else
return 0;
}
// Extract the global id from a IPv6 ULA address. Returns 0 if the address
// is not a ULA.
uint64_t IPAddress::GlobalId() const
{
if (IsIPv6ULA())
return (((uint64_t)(ntohl(Addr[0]) & 0xFFFFFF)) << 16) | ((uint64_t)(ntohl(Addr[1])) & 0xFFFF0000) >> 16;
else
return 0;
}
IPAddressType IPAddress::Type() const
{
if (Addr[0] == 0 && Addr[1] == 0 && Addr[2] == 0 && Addr[3] == 0)
return kIPAddressType_Any;
#if INET_CONFIG_ENABLE_IPV4
if (Addr[0] == 0 && Addr[1] == 0 && Addr[2] == htonl(0xFFFF))
return kIPAddressType_IPv4;
#endif // INET_CONFIG_ENABLE_IPV4
return kIPAddressType_IPv6;
}
// Encode IPAddress to buffer in network byte order. Buffer must have at least 128 bits of available space.
// Decoder must infer IP address type from context.
void IPAddress::WriteAddress(uint8_t *& p) const
{
// Since each of the 32bit values in the Addr array is in network byte order, a simple
// memcpy of the entire array is sufficient while copying the address.
memcpy(p, &Addr[0], NL_INET_IPV6_ADDR_LEN_IN_BYTES);
p += NL_INET_IPV6_ADDR_LEN_IN_BYTES;
}
// Decode IPAddress from buffer in network byte order. Must infer IP address type from context.
void IPAddress::ReadAddress(const uint8_t *& p, IPAddress & output)
{
// Since we want to store the address in the output array in network byte order, a simple
// memcpy of the entire array is used to retrieve from the buffer.
memcpy(&output.Addr[0], p, NL_INET_IPV6_ADDR_LEN_IN_BYTES);
p += NL_INET_IPV6_ADDR_LEN_IN_BYTES;
}
// Construct an IPv6 unique local address.
IPAddress IPAddress::MakeULA(uint64_t globalId, uint16_t subnet, uint64_t interfaceId)
{
IPAddress addr;
addr.Addr[0] = 0xFD000000 | (uint32_t)((globalId & 0xFFFFFF0000ULL) >> 16);
addr.Addr[0] = htonl(addr.Addr[0]);
addr.Addr[1] = (uint32_t)((globalId & 0x000000FFFFULL) << 16) | subnet;
addr.Addr[1] = htonl(addr.Addr[1]);
addr.Addr[2] = htonl((uint32_t)(interfaceId >> 32));
addr.Addr[3] = htonl((uint32_t)(interfaceId));
return addr;
}
IPAddress IPAddress::MakeLLA(uint64_t interfaceId)
{
IPAddress addr;
addr.Addr[0] = htonl(0xFE800000);
addr.Addr[1] = 0;
addr.Addr[2] = htonl((uint32_t)(interfaceId >> 32));
addr.Addr[3] = htonl((uint32_t)(interfaceId));
return addr;
}
IPAddress IPAddress::MakeIPv6Multicast(uint8_t aFlags, uint8_t aScope,
const uint8_t aGroupId[NL_INET_IPV6_MCAST_GROUP_LEN_IN_BYTES])
{
const uint32_t lFlagsAndScope = (((aFlags & 0xF) << 20) | ((aScope & 0xF) << 16));
IPAddress addr;
addr.Addr[0] = htonl((0xFF000000U | lFlagsAndScope) | (aGroupId[0] << 8) | (aGroupId[1] << 0));
addr.Addr[1] = htonl((aGroupId[2] << 24) | (aGroupId[3] << 16) | (aGroupId[4] << 8) | (aGroupId[5] << 0));
addr.Addr[2] = htonl((aGroupId[6] << 24) | (aGroupId[7] << 16) | (aGroupId[8] << 8) | (aGroupId[9] << 0));
addr.Addr[3] = htonl((aGroupId[10] << 24) | (aGroupId[11] << 16) | (aGroupId[12] << 8) | (aGroupId[13] << 0));
return addr;
}
IPAddress IPAddress::MakeIPv6Multicast(uint8_t aFlags, uint8_t aScope, uint32_t aGroupId)
{
const uint8_t lGroupId[NL_INET_IPV6_MCAST_GROUP_LEN_IN_BYTES] = { 0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
(uint8_t)((aGroupId & 0xFF000000U) >> 24),
(uint8_t)((aGroupId & 0x00FF0000U) >> 16),
(uint8_t)((aGroupId & 0x0000FF00U) >> 8),
(uint8_t)((aGroupId & 0x000000FFU) >> 0) };
return (MakeIPv6Multicast(aFlags, aScope, lGroupId));
}
IPAddress IPAddress::MakeIPv6WellKnownMulticast(uint8_t aScope, uint32_t aGroupId)
{
const uint8_t lFlags = 0;
return (MakeIPv6Multicast(lFlags, aScope, aGroupId));
}
IPAddress IPAddress::MakeIPv6TransientMulticast(uint8_t aFlags, uint8_t aScope,
const uint8_t aGroupId[NL_INET_IPV6_MCAST_GROUP_LEN_IN_BYTES])
{
const uint8_t lFlags = (aFlags | kIPv6MulticastFlag_Transient);
return (MakeIPv6Multicast(lFlags, aScope, aGroupId));
}
IPAddress IPAddress::MakeIPv6PrefixMulticast(uint8_t aScope, uint8_t aPrefixLength, const uint64_t & aPrefix, uint32_t aGroupId)
{
const uint8_t lReserved = 0;
const uint8_t lFlags = kIPv6MulticastFlag_Prefix;
const uint8_t lGroupId[NL_INET_IPV6_MCAST_GROUP_LEN_IN_BYTES] = { lReserved,
aPrefixLength,
(uint8_t)((aPrefix & 0xFF00000000000000ULL) >> 56),
(uint8_t)((aPrefix & 0x00FF000000000000ULL) >> 48),
(uint8_t)((aPrefix & 0x0000FF0000000000ULL) >> 40),
(uint8_t)((aPrefix & 0x000000FF00000000ULL) >> 32),
(uint8_t)((aPrefix & 0x00000000FF000000ULL) >> 24),
(uint8_t)((aPrefix & 0x0000000000FF0000ULL) >> 16),
(uint8_t)((aPrefix & 0x000000000000FF00ULL) >> 8),
(uint8_t)((aPrefix & 0x00000000000000FFULL) >> 0),
(uint8_t)((aGroupId & 0xFF000000U) >> 24),
(uint8_t)((aGroupId & 0x00FF0000U) >> 16),
(uint8_t)((aGroupId & 0x0000FF00U) >> 8),
(uint8_t)((aGroupId & 0x000000FFU) >> 0) };
return (MakeIPv6TransientMulticast(lFlags, aScope, lGroupId));
}
IPAddress IPAddress::MakeIPv4Broadcast(void)
{
IPAddress ipAddr;
ipAddr.Addr[0] = 0;
ipAddr.Addr[1] = 0;
ipAddr.Addr[2] = htonl(0xFFFF);
ipAddr.Addr[3] = 0xFFFFFFFF;
return ipAddr;
}
} // namespace Inet
} // namespace chip