blob: 4547b50a5a89ff4cf3fe1c271b3cc93b47053212 [file] [log] [blame]
/*
*
* Copyright (c) 2020-2021 Project CHIP Authors
* Copyright (c) 2018 Google LLC.
* Copyright (c) 2016-2018 Nest Labs, Inc.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This file implements a unit test suite for InetLayer EndPoint related features
*
*/
#ifndef __STDC_LIMIT_MACROS
#define __STDC_LIMIT_MACROS
#endif
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
#include <CHIPVersion.h>
#include <inet/InetError.h>
#include <inet/InetLayer.h>
#include <support/CHIPArgParser.hpp>
#include <support/CHIPMem.h>
#include <support/CodeUtils.h>
#include <support/UnitTestRegistration.h>
#include <system/SystemError.h>
#include <system/SystemTimer.h>
#include <nlunit-test.h>
#include "TestInetCommon.h"
#include "TestSetupSignalling.h"
using namespace chip;
using namespace chip::Inet;
using namespace chip::System;
#define TOOL_NAME "TestInetEndPoint"
bool callbackHandlerCalled = false;
void HandleDNSResolveComplete(void * appState, CHIP_ERROR err, uint8_t addrCount, IPAddress * addrArray)
{
callbackHandlerCalled = true;
if (addrCount > 0)
{
char destAddrStr[64];
addrArray->ToString(destAddrStr);
printf(" DNS name resolution complete: %s\n", destAddrStr);
}
else
printf(" DNS name resolution return no addresses\n");
}
void HandleTimer(Layer * aLayer, void * aAppState, CHIP_ERROR aError)
{
printf(" timer handler\n");
}
// Test before init network, Inet is not initialized
static void TestInetPre(nlTestSuite * inSuite, void * inContext)
{
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
RawEndPoint * testRawEP = nullptr;
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
UDPEndPoint * testUDPEP = nullptr;
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
TCPEndPoint * testTCPEP = nullptr;
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
CHIP_ERROR err = CHIP_NO_ERROR;
#if INET_CONFIG_ENABLE_DNS_RESOLVER
IPAddress testDestAddr = IPAddress::Any;
char testHostName[20] = "www.nest.com";
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
err = gInet.NewRawEndPoint(kIPVersion_6, kIPProtocol_ICMPv6, &testRawEP);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
err = gInet.NewUDPEndPoint(&testUDPEP);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
#if INET_CONFIG_ENABLE_TCP_ENDPOINT
err = gInet.NewTCPEndPoint(&testTCPEP);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
#endif // INET_CONFIG_ENABLE_TCP_ENDPOINT
err = gSystemLayer.StartTimer(10, HandleTimer, nullptr);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
#if INET_CONFIG_ENABLE_DNS_RESOLVER
err = gInet.ResolveHostAddress(testHostName, 1, &testDestAddr, HandleDNSResolveComplete, nullptr);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
// then init network
InitSystemLayer();
InitNetwork();
}
#if INET_CONFIG_ENABLE_DNS_RESOLVER
// Test Inet ResolveHostAddress functionality
static void TestResolveHostAddress(nlTestSuite * inSuite, void * inContext)
{
char testHostName1[20] = "www.google.com";
char testHostName2[20] = "127.0.0.1";
char testHostName3[20] = "";
char testHostName4[260];
struct timeval sleepTime;
IPAddress testDestAddr[1] = { IPAddress::Any };
CHIP_ERROR err;
sleepTime.tv_sec = 0;
sleepTime.tv_usec = 10000;
memset(testHostName4, 'w', sizeof(testHostName4));
testHostName4[259] = '\0';
callbackHandlerCalled = false;
err = gInet.ResolveHostAddress(testHostName1, 1, testDestAddr, HandleDNSResolveComplete, &callbackHandlerCalled);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
if (err == CHIP_NO_ERROR)
{
while (!callbackHandlerCalled)
{
ServiceNetwork(sleepTime);
}
}
callbackHandlerCalled = false;
err = gInet.ResolveHostAddress(testHostName2, 1, testDestAddr, HandleDNSResolveComplete, &callbackHandlerCalled);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
if (err == CHIP_NO_ERROR)
{
while (!callbackHandlerCalled)
{
ServiceNetwork(sleepTime);
}
}
callbackHandlerCalled = false;
err = gInet.ResolveHostAddress(testHostName3, 1, testDestAddr, HandleDNSResolveComplete, &callbackHandlerCalled);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
if (err == CHIP_NO_ERROR)
{
while (!callbackHandlerCalled)
{
ServiceNetwork(sleepTime);
}
}
err = gInet.ResolveHostAddress(testHostName2, 0, testDestAddr, HandleDNSResolveComplete, &callbackHandlerCalled);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_NO_MEMORY);
err = gInet.ResolveHostAddress(testHostName4, 1, testDestAddr, HandleDNSResolveComplete, &callbackHandlerCalled);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_HOST_NAME_TOO_LONG);
}
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
// Test Inet ParseHostPortAndInterface
static void TestParseHost(nlTestSuite * inSuite, void * inContext)
{
char correctHostNames[7][30] = {
"10.0.0.1", "10.0.0.1:3000", "www.google.com", "www.google.com:3000", "[fd00:0:1:1::1]:3000", "[fd00:0:1:1::1]:300%wpan0",
"%wpan0"
};
char invalidHostNames[4][30] = { "[fd00::1]5", "[fd00:0:1:1::1:3000", "10.0.0.1:1234567", "10.0.0.1:er31" };
const char * host;
const char * intf;
uint16_t port, hostlen, intflen;
CHIP_ERROR err;
for (char * correctHostName : correctHostNames)
{
err = ParseHostPortAndInterface(correctHostName, uint16_t(strlen(correctHostName)), host, hostlen, port, intf, intflen);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
}
for (char * invalidHostName : invalidHostNames)
{
err = ParseHostPortAndInterface(invalidHostName, uint16_t(strlen(invalidHostName)), host, hostlen, port, intf, intflen);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_INVALID_HOST_NAME);
}
}
static void TestInetError(nlTestSuite * inSuite, void * inContext)
{
CHIP_ERROR err = CHIP_NO_ERROR;
err = MapErrorPOSIX(EPERM);
NL_TEST_ASSERT(inSuite, DescribeErrorPOSIX(err));
NL_TEST_ASSERT(inSuite, IsErrorPOSIX(err));
}
static void TestInetInterface(nlTestSuite * inSuite, void * inContext)
{
InterfaceIterator intIterator;
InterfaceAddressIterator addrIterator;
char intName[chip::Inet::InterfaceIterator::kMaxIfNameLength];
InterfaceId intId;
IPAddress addr;
IPPrefix addrWithPrefix;
CHIP_ERROR err;
err = InterfaceNameToId("0", intId);
NL_TEST_ASSERT(inSuite, err != CHIP_NO_ERROR);
err = GetInterfaceName(INET_NULL_INTERFACEID, intName, 0);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_NO_MEMORY);
err = GetInterfaceName(INET_NULL_INTERFACEID, intName, sizeof(intName));
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR && intName[0] == '\0');
err = gInet.GetInterfaceFromAddr(addr, intId);
NL_TEST_ASSERT(inSuite, intId == INET_NULL_INTERFACEID);
err = gInet.GetLinkLocalAddr(intId, nullptr);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_ARGUMENT);
printf(" Interfaces:\n");
for (; intIterator.HasCurrent(); intIterator.Next())
{
intId = intIterator.GetInterface();
NL_TEST_ASSERT(inSuite, intId != INET_NULL_INTERFACEID);
memset(intName, 42, sizeof(intName));
err = intIterator.GetInterfaceName(intName, sizeof(intName));
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
printf(" interface id: 0x%" PRIxPTR ", interface name: %s, interface state: %s, %s multicast, %s broadcast addr\n",
#if CHIP_SYSTEM_CONFIG_USE_LWIP
reinterpret_cast<uintptr_t>(intId),
#else
static_cast<uintptr_t>(intId),
#endif
intName, intIterator.IsUp() ? "UP" : "DOWN", intIterator.SupportsMulticast() ? "supports" : "no",
intIterator.HasBroadcastAddress() ? "has" : "no");
gInet.GetLinkLocalAddr(intId, &addr);
gInet.MatchLocalIPv6Subnet(addr);
}
NL_TEST_ASSERT(inSuite, !intIterator.Next());
NL_TEST_ASSERT(inSuite, intIterator.GetInterface() == INET_NULL_INTERFACEID);
NL_TEST_ASSERT(inSuite, intIterator.GetInterfaceName(intName, sizeof(intName)) == CHIP_ERROR_INCORRECT_STATE);
NL_TEST_ASSERT(inSuite, !intIterator.SupportsMulticast());
NL_TEST_ASSERT(inSuite, !intIterator.HasBroadcastAddress());
printf(" Addresses:\n");
for (; addrIterator.HasCurrent(); addrIterator.Next())
{
addr = addrIterator.GetAddress();
addrIterator.GetAddressWithPrefix(addrWithPrefix);
char addrStr[80];
addrWithPrefix.IPAddr.ToString(addrStr);
intId = addrIterator.GetInterfaceId();
NL_TEST_ASSERT(inSuite, intId != INET_NULL_INTERFACEID);
memset(intName, 42, sizeof(intName));
err = addrIterator.GetInterfaceName(intName, sizeof(intName));
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
NL_TEST_ASSERT(inSuite, intName[0] != '\0' && memchr(intName, '\0', sizeof(intName)) != nullptr);
printf(" %s/%d, interface id: 0x%" PRIxPTR
", interface name: %s, interface state: %s, %s multicast, %s broadcast addr\n",
addrStr, addrWithPrefix.Length,
#if CHIP_SYSTEM_CONFIG_USE_LWIP
reinterpret_cast<uintptr_t>(intId),
#else
static_cast<uintptr_t>(intId),
#endif
intName, addrIterator.IsUp() ? "UP" : "DOWN", addrIterator.SupportsMulticast() ? "supports" : "no",
addrIterator.HasBroadcastAddress() ? "has" : "no");
}
NL_TEST_ASSERT(inSuite, !addrIterator.Next());
addrIterator.GetAddressWithPrefix(addrWithPrefix);
NL_TEST_ASSERT(inSuite, addrWithPrefix.IsZero());
NL_TEST_ASSERT(inSuite, addrIterator.GetInterface() == INET_NULL_INTERFACEID);
NL_TEST_ASSERT(inSuite, addrIterator.GetInterfaceName(intName, sizeof(intName)) == CHIP_ERROR_INCORRECT_STATE);
NL_TEST_ASSERT(inSuite, !addrIterator.SupportsMulticast());
NL_TEST_ASSERT(inSuite, !addrIterator.HasBroadcastAddress());
}
static void TestInetEndPointInternal(nlTestSuite * inSuite, void * inContext)
{
CHIP_ERROR err;
IPAddress addr_any = IPAddress::Any;
IPAddress addr;
#if INET_CONFIG_ENABLE_IPV4
IPAddress addr_v4;
#endif // INET_CONFIG_ENABLE_IPV4
InterfaceId intId;
// EndPoint
RawEndPoint * testRaw6EP = nullptr;
#if INET_CONFIG_ENABLE_IPV4
RawEndPoint * testRaw4EP = nullptr;
#endif // INET_CONFIG_ENABLE_IPV4
UDPEndPoint * testUDPEP = nullptr;
TCPEndPoint * testTCPEP1 = nullptr;
PacketBufferHandle buf = PacketBufferHandle::New(PacketBuffer::kMaxSize);
bool didBind = false;
bool didListen = false;
// init all the EndPoints
err = gInet.NewRawEndPoint(kIPVersion_6, kIPProtocol_ICMPv6, &testRaw6EP);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
#if INET_CONFIG_ENABLE_IPV4
err = gInet.NewRawEndPoint(kIPVersion_4, kIPProtocol_ICMPv4, &testRaw4EP);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
#endif // INET_CONFIG_ENABLE_IPV4
err = gInet.NewUDPEndPoint(&testUDPEP);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
err = gInet.NewTCPEndPoint(&testTCPEP1);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
err = gInet.GetLinkLocalAddr(INET_NULL_INTERFACEID, &addr);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
err = gInet.GetInterfaceFromAddr(addr, intId);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
// RawEndPoint special cases to cover the error branch
uint8_t ICMP6Types[2] = { 128, 129 };
#if INET_CONFIG_ENABLE_IPV4
NL_TEST_ASSERT(inSuite, IPAddress::FromString("10.0.0.1", addr_v4));
#endif // INET_CONFIG_ENABLE_IPV4
// error bind cases
err = testRaw6EP->Bind(kIPAddressType_Unknown, addr_any);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
#if INET_CONFIG_ENABLE_IPV4
err = testRaw6EP->Bind(kIPAddressType_IPv4, addr);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
err = testRaw6EP->BindIPv6LinkLocal(intId, addr_v4);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
#endif // INET_CONFIG_ENABLE_IPV4
err = testRaw6EP->BindInterface(kIPAddressType_Unknown, INET_NULL_INTERFACEID);
NL_TEST_ASSERT(inSuite, err != CHIP_NO_ERROR);
// A bind should succeed with appropriate permissions but will
// otherwise fail.
err = testRaw6EP->BindIPv6LinkLocal(intId, addr);
NL_TEST_ASSERT(inSuite, (err == CHIP_NO_ERROR) || (err == System::MapErrorPOSIX(EPERM)));
didBind = (err == CHIP_NO_ERROR);
// Listen after bind should succeed if the prior bind succeeded.
err = testRaw6EP->Listen(nullptr /*OnMessageReceived*/, nullptr /*OnReceiveError*/);
NL_TEST_ASSERT(inSuite, (didBind && (err == CHIP_NO_ERROR)) || (!didBind && (err == CHIP_ERROR_INCORRECT_STATE)));
didListen = (err == CHIP_NO_ERROR);
// If the first listen succeeded, then the second listen should be successful.
err = testRaw6EP->Listen(nullptr /*OnMessageReceived*/, nullptr /*OnReceiveError*/);
NL_TEST_ASSERT(inSuite, (didBind && didListen && (err == CHIP_NO_ERROR)) || (!didBind && (err == CHIP_ERROR_INCORRECT_STATE)));
didListen = (err == CHIP_NO_ERROR);
// A bind-after-listen should result in an incorrect state error;
// otherwise, it will fail with a permissions error.
err = testRaw6EP->Bind(kIPAddressType_IPv6, addr);
NL_TEST_ASSERT(inSuite,
(didListen && (err == CHIP_ERROR_INCORRECT_STATE)) || (!didListen && (err == System::MapErrorPOSIX(EPERM))));
// error SetICMPFilter case
err = testRaw6EP->SetICMPFilter(0, ICMP6Types);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INVALID_ARGUMENT);
#if INET_CONFIG_ENABLE_IPV4
// We should never be able to send an IPv4-addressed message on an
// IPv6 raw socket.
//
// Ostensibly the address obtained above from
// gInet.GetLinkLocalAddr(INET_NULL_INTERFACEID, &addr) is an IPv6
// LLA; however, make sure it actually is.
NL_TEST_ASSERT(inSuite, addr.Type() == kIPAddressType_IPv6);
err = testRaw4EP->SendTo(addr, std::move(buf));
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
testRaw4EP->Free();
#endif // INET_CONFIG_ENABLE_IPV4
// UdpEndPoint special cases to cover the error branch
err = testUDPEP->Listen(nullptr /*OnMessageReceived*/, nullptr /*OnReceiveError*/);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testUDPEP->Bind(kIPAddressType_Unknown, addr_any, 3000);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
err = testUDPEP->Bind(kIPAddressType_Unknown, addr, 3000);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
#if INET_CONFIG_ENABLE_IPV4
err = testUDPEP->Bind(kIPAddressType_IPv4, addr, 3000);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
#endif // INET_CONFIG_ENABLE_IPV4
err = testUDPEP->Bind(kIPAddressType_IPv6, addr, 3000, intId);
err = testUDPEP->BindInterface(kIPAddressType_IPv6, intId);
InterfaceId id = testUDPEP->GetBoundInterface();
NL_TEST_ASSERT(inSuite, id == intId);
err = testUDPEP->Listen(nullptr /*OnMessageReceived*/, nullptr /*OnReceiveError*/);
err = testUDPEP->Listen(nullptr /*OnMessageReceived*/, nullptr /*OnReceiveError*/);
err = testUDPEP->Bind(kIPAddressType_IPv6, addr, 3000, intId);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testUDPEP->BindInterface(kIPAddressType_IPv6, intId);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
testUDPEP->Free();
err = gInet.NewUDPEndPoint(&testUDPEP);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
#if INET_CONFIG_ENABLE_IPV4
err = testUDPEP->Bind(kIPAddressType_IPv4, addr_v4, 3000, intId);
NL_TEST_ASSERT(inSuite, err != CHIP_NO_ERROR);
buf = PacketBufferHandle::New(PacketBuffer::kMaxSize);
err = testUDPEP->SendTo(addr_v4, 3000, std::move(buf));
testUDPEP->Free();
#endif // INET_CONFIG_ENABLE_IPV4
// TcpEndPoint special cases to cover the error branch
err = testTCPEP1->GetPeerInfo(nullptr, nullptr);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
buf = PacketBufferHandle::New(PacketBuffer::kMaxSize);
err = testTCPEP1->Send(std::move(buf), false);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testTCPEP1->EnableKeepAlive(10, 100);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testTCPEP1->DisableKeepAlive();
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testTCPEP1->AckReceive(10);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
NL_TEST_ASSERT(inSuite, !testTCPEP1->PendingReceiveLength());
err = testTCPEP1->Listen(4);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testTCPEP1->GetLocalInfo(nullptr, nullptr);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testTCPEP1->Bind(kIPAddressType_Unknown, addr_any, 3000, true);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
#if INET_CONFIG_ENABLE_IPV4
err = testTCPEP1->Bind(kIPAddressType_IPv4, addr, 3000, true);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
#endif // INET_CONFIG_ENABLE_IPV4
err = testTCPEP1->Bind(kIPAddressType_Unknown, addr, 3000, true);
NL_TEST_ASSERT(inSuite, err == INET_ERROR_WRONG_ADDRESS_TYPE);
err = testTCPEP1->Bind(kIPAddressType_IPv6, addr_any, 3000, true);
err = testTCPEP1->Bind(kIPAddressType_IPv6, addr_any, 3000, true);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
err = testTCPEP1->Listen(4);
#if INET_CONFIG_ENABLE_IPV4
err = testTCPEP1->Connect(addr_v4, 4000, intId);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_INCORRECT_STATE);
#endif // INET_CONFIG_ENABLE_IPV4
testTCPEP1->Shutdown();
}
// Test the InetLayer resource limitation
static void TestInetEndPointLimit(nlTestSuite * inSuite, void * inContext)
{
RawEndPoint * testRawEP = nullptr;
UDPEndPoint * testUDPEP = nullptr;
TCPEndPoint * testTCPEP = nullptr;
CHIP_ERROR err;
char numTimersTest[CHIP_SYSTEM_CONFIG_NUM_TIMERS + 1];
for (int i = 0; i < INET_CONFIG_NUM_RAW_ENDPOINTS + 1; i++)
err = gInet.NewRawEndPoint(kIPVersion_6, kIPProtocol_ICMPv6, &testRawEP);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_ENDPOINT_POOL_FULL);
for (int i = 0; i < INET_CONFIG_NUM_UDP_ENDPOINTS + 1; i++)
err = gInet.NewUDPEndPoint(&testUDPEP);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_ENDPOINT_POOL_FULL);
for (int i = 0; i < INET_CONFIG_NUM_TCP_ENDPOINTS + 1; i++)
err = gInet.NewTCPEndPoint(&testTCPEP);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_ENDPOINT_POOL_FULL);
// Verify same aComplete and aAppState args do not exhaust timer pool
for (int i = 0; i < CHIP_SYSTEM_CONFIG_NUM_TIMERS + 1; i++)
{
err = gSystemLayer.StartTimer(10, HandleTimer, nullptr);
NL_TEST_ASSERT(inSuite, err == CHIP_NO_ERROR);
}
for (int i = 0; i < CHIP_SYSTEM_CONFIG_NUM_TIMERS + 1; i++)
err = gSystemLayer.StartTimer(10, HandleTimer, &numTimersTest[i]);
NL_TEST_ASSERT(inSuite, err == CHIP_ERROR_NO_MEMORY);
ShutdownNetwork();
ShutdownSystemLayer();
}
// Test Suite
/**
* Test Suite. It lists all the test functions.
*/
static const nlTest sTests[] = { NL_TEST_DEF("InetEndPoint::PreTest", TestInetPre),
#if INET_CONFIG_ENABLE_DNS_RESOLVER
NL_TEST_DEF("InetEndPoint::ResolveHostAddress", TestResolveHostAddress),
#endif // INET_CONFIG_ENABLE_DNS_RESOLVER
NL_TEST_DEF("InetEndPoint::TestParseHost", TestParseHost),
NL_TEST_DEF("InetEndPoint::TestInetError", TestInetError),
NL_TEST_DEF("InetEndPoint::TestInetInterface", TestInetInterface),
NL_TEST_DEF("InetEndPoint::TestInetEndPoint", TestInetEndPointInternal),
NL_TEST_DEF("InetEndPoint::TestEndPointLimit", TestInetEndPointLimit),
NL_TEST_SENTINEL() };
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
/**
* Set up the test suite.
*/
static int TestSetup(void * inContext)
{
CHIP_ERROR error = chip::Platform::MemoryInit();
if (error != CHIP_NO_ERROR)
return FAILURE;
return SUCCESS;
}
/**
* Tear down the test suite.
*/
static int TestTeardown(void * inContext)
{
chip::Platform::MemoryShutdown();
return SUCCESS;
}
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
int TestInetEndPointInternal()
{
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
// clang-format off
nlTestSuite theSuite =
{
"inet-endpoint",
&sTests[0],
TestSetup,
TestTeardown
};
// clang-format on
// Run test suite against one context.
nlTestRunner(&theSuite, nullptr);
return nlTestRunnerStats(&theSuite);
#else // !CHIP_SYSTEM_CONFIG_USE_SOCKETS
return (0);
#endif // !CHIP_SYSTEM_CONFIG_USE_SOCKETS
}
CHIP_REGISTER_TEST_SUITE(TestInetEndPointInternal)
int TestInetEndPoint()
{
SetSIGUSR1Handler();
// Generate machine-readable, comma-separated value (CSV) output.
nlTestSetOutputStyle(OUTPUT_CSV);
return (TestInetEndPointInternal());
}