| /* |
| * |
| * Copyright (c) 2021 Project CHIP Authors |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** |
| * @file |
| * Provides an implementation of the DiagnosticDataProvider object |
| * for EFR32 platform. |
| */ |
| |
| #include <platform/internal/CHIPDeviceLayerInternal.h> |
| |
| #include <platform/DiagnosticDataProvider.h> |
| #include <platform/EFR32/DiagnosticDataProviderImpl.h> |
| #if CHIP_DEVICE_CONFIG_ENABLE_THREAD |
| #include <platform/OpenThread/GenericThreadStackManagerImpl_OpenThread.h> |
| #endif |
| #include "AppConfig.h" |
| #include "FreeRTOS.h" |
| #include "heap_4_silabs.h" |
| #include <lib/support/CHIPMemString.h> |
| |
| using namespace ::chip::app::Clusters::GeneralDiagnostics; |
| |
| namespace chip { |
| namespace DeviceLayer { |
| |
| DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance() |
| { |
| static DiagnosticDataProviderImpl sInstance; |
| return sInstance; |
| } |
| |
| // Software Diagnostics Getters |
| /* |
| * The following Heap stats are compiled values done by the FreeRTOS Heap4 implementation. |
| * See /examples/platform/efr32/heap_4_silabs.c |
| * It keeps track of the number of calls to allocate and free memory as well as the |
| * number of free bytes remaining, but says nothing about fragmentation. |
| */ |
| CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree) |
| { |
| size_t freeHeapSize = xPortGetFreeHeapSize(); |
| currentHeapFree = static_cast<uint64_t>(freeHeapSize); |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed) |
| { |
| // Calculate the Heap used based on Total heap - Free heap |
| int64_t heapUsed = (configTOTAL_HEAP_SIZE - xPortGetFreeHeapSize()); |
| |
| // Something went wrong, this should not happen |
| VerifyOrReturnError(heapUsed >= 0, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| currentHeapUsed = static_cast<uint64_t>(heapUsed); |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark) |
| { |
| // FreeRTOS records the lowest amount of available heap during runtime |
| // currentHeapHighWatermark wants the highest heap usage point so we calculate it here |
| int64_t HighestHeapUsageRecorded = (configTOTAL_HEAP_SIZE - xPortGetMinimumEverFreeHeapSize()); |
| |
| // Something went wrong, this should not happen |
| VerifyOrReturnError(HighestHeapUsageRecorded >= 0, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| currentHeapHighWatermark = static_cast<uint64_t>(HighestHeapUsageRecorded); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks() |
| { |
| // If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the |
| // value of the CurrentHeapUsed. |
| |
| xPortResetHeapMinimumEverFreeHeapSize(); |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut) |
| { |
| /* Obtain all available task information */ |
| TaskStatus_t * taskStatusArray; |
| ThreadMetrics * head = nullptr; |
| uint32_t arraySize, x, dummy; |
| |
| arraySize = uxTaskGetNumberOfTasks(); |
| |
| taskStatusArray = static_cast<TaskStatus_t *>(chip::Platform::MemoryCalloc(arraySize, sizeof(TaskStatus_t))); |
| |
| if (taskStatusArray != NULL) |
| { |
| /* Generate raw status information about each task. */ |
| arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy); |
| /* For each populated position in the taskStatusArray array, |
| format the raw data as human readable ASCII data. */ |
| |
| for (x = 0; x < arraySize; x++) |
| { |
| ThreadMetrics * thread = new ThreadMetrics(); |
| if (thread) |
| { |
| Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName); |
| thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf)); |
| thread->id = taskStatusArray[x].xTaskNumber; |
| thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark); |
| |
| /* Unsupported metrics */ |
| // thread->stackSize |
| // thread->stackFreeCurrent |
| |
| thread->Next = head; |
| head = thread; |
| } |
| } |
| |
| *threadMetricsOut = head; |
| /* The array is no longer needed, free the memory it consumes. */ |
| chip::Platform::MemoryFree(taskStatusArray); |
| } |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics) |
| { |
| while (threadMetrics) |
| { |
| ThreadMetrics * del = threadMetrics; |
| threadMetrics = threadMetrics->Next; |
| delete del; |
| } |
| } |
| |
| // General Diagnostics Getters |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount) |
| { |
| uint32_t count = 0; |
| CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count); |
| |
| if (err == CHIP_NO_ERROR) |
| { |
| VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| rebootCount = static_cast<uint16_t>(count); |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason) |
| { |
| uint32_t reason = 0; |
| CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason); |
| |
| if (err == CHIP_NO_ERROR) |
| { |
| VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| bootReason = static_cast<BootReasonType>(reason); |
| } |
| |
| return err; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime) |
| { |
| System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp(); |
| System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime(); |
| |
| if (currentTime >= startTime) |
| { |
| upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count(); |
| return CHIP_NO_ERROR; |
| } |
| |
| return CHIP_ERROR_INVALID_TIME; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours) |
| { |
| uint64_t upTime = 0; |
| |
| if (GetUpTime(upTime) == CHIP_NO_ERROR) |
| { |
| uint32_t totalHours = 0; |
| if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR) |
| { |
| VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); |
| totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600); |
| return CHIP_NO_ERROR; |
| } |
| } |
| |
| return CHIP_ERROR_INVALID_TIME; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetActiveHardwareFaults(GeneralFaults<kMaxHardwareFaults> & hardwareFaults) |
| { |
| #if CHIP_CONFIG_TEST |
| ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_RADIO)); |
| ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_SENSOR)); |
| ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_POWER_SOURCE)); |
| ReturnErrorOnFailure(hardwareFaults.add(EMBER_ZCL_HARDWARE_FAULT_TYPE_USER_INTERFACE_FAULT)); |
| #endif |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetActiveRadioFaults(GeneralFaults<kMaxRadioFaults> & radioFaults) |
| { |
| #if CHIP_CONFIG_TEST |
| ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_TYPE_THREAD_FAULT)); |
| ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_TYPE_BLE_FAULT)); |
| #endif |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetActiveNetworkFaults(GeneralFaults<kMaxNetworkFaults> & networkFaults) |
| { |
| #if CHIP_CONFIG_TEST |
| ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_HARDWARE_FAILURE)); |
| ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_NETWORK_JAMMED)); |
| ReturnErrorOnFailure(networkFaults.add(EMBER_ZCL_NETWORK_FAULT_TYPE_CONNECTION_FAILED)); |
| #endif |
| |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp) |
| { |
| NetworkInterface * ifp = new NetworkInterface(); |
| |
| #if CHIP_DEVICE_CONFIG_ENABLE_THREAD |
| const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance()); |
| ifp->name = Span<const char>(threadNetworkName, strlen(threadNetworkName)); |
| ifp->isOperational = true; |
| ifp->offPremiseServicesReachableIPv4.SetNull(); |
| ifp->offPremiseServicesReachableIPv6.SetNull(); |
| ifp->type = InterfaceType::EMBER_ZCL_INTERFACE_TYPE_THREAD; |
| uint8_t macBuffer[ConfigurationManager::kPrimaryMACAddressLength]; |
| ConfigurationMgr().GetPrimary802154MACAddress(macBuffer); |
| ifp->hardwareAddress = ByteSpan(macBuffer, ConfigurationManager::kPrimaryMACAddressLength); |
| #else |
| NetworkInterface * head = NULL; |
| for (Inet::InterfaceIterator interfaceIterator; interfaceIterator.HasCurrent(); interfaceIterator.Next()) |
| { |
| interfaceIterator.GetInterfaceName(ifp->Name, Inet::InterfaceId::kMaxIfNameLength); |
| ifp->name = CharSpan::fromCharString(ifp->Name); |
| ifp->isOperational = true; |
| Inet::InterfaceType interfaceType; |
| CHIP_ERROR err = interfaceIterator.GetInterfaceType(interfaceType); |
| if (err == CHIP_NO_ERROR || err == CHIP_ERROR_NOT_IMPLEMENTED) |
| { |
| switch (interfaceType) |
| { |
| case Inet::InterfaceType::Unknown: |
| ifp->type = EMBER_ZCL_INTERFACE_TYPE_UNSPECIFIED; |
| break; |
| case Inet::InterfaceType::WiFi: |
| ifp->type = EMBER_ZCL_INTERFACE_TYPE_WI_FI; |
| break; |
| case Inet::InterfaceType::Ethernet: |
| ifp->type = EMBER_ZCL_INTERFACE_TYPE_ETHERNET; |
| break; |
| case Inet::InterfaceType::Thread: |
| ifp->type = EMBER_ZCL_INTERFACE_TYPE_THREAD; |
| break; |
| case Inet::InterfaceType::Cellular: |
| ifp->type = EMBER_ZCL_INTERFACE_TYPE_CELLULAR; |
| break; |
| default: |
| ifp->type = EMBER_ZCL_INTERFACE_TYPE_WI_FI; |
| break; |
| } |
| } |
| else |
| { |
| ChipLogError(DeviceLayer, "Failed to get interface type"); |
| } |
| |
| ifp->offPremiseServicesReachableIPv4.SetNull(); |
| ifp->offPremiseServicesReachableIPv6.SetNull(); |
| |
| uint8_t addressSize; |
| if (interfaceIterator.GetHardwareAddress(ifp->MacAddress, addressSize, sizeof(ifp->MacAddress)) != CHIP_NO_ERROR) |
| { |
| ChipLogError(DeviceLayer, "Failed to get network hardware address"); |
| } |
| else |
| { |
| ifp->hardwareAddress = ByteSpan(ifp->MacAddress, addressSize); |
| } |
| |
| // Assuming IPv6-only support |
| Inet::InterfaceAddressIterator interfaceAddressIterator; |
| uint8_t ipv6AddressesCount = 0; |
| while (interfaceAddressIterator.HasCurrent() && ipv6AddressesCount < kMaxIPv6AddrCount) |
| { |
| if (interfaceAddressIterator.GetInterfaceId() == interfaceIterator.GetInterfaceId()) |
| { |
| chip::Inet::IPAddress ipv6Address; |
| if (interfaceAddressIterator.GetAddress(ipv6Address) == CHIP_NO_ERROR) |
| { |
| memcpy(ifp->Ipv6AddressesBuffer[ipv6AddressesCount], ipv6Address.Addr, kMaxIPv6AddrSize); |
| ifp->Ipv6AddressSpans[ipv6AddressesCount] = ByteSpan(ifp->Ipv6AddressesBuffer[ipv6AddressesCount]); |
| ipv6AddressesCount++; |
| } |
| } |
| interfaceAddressIterator.Next(); |
| } |
| |
| ifp->IPv6Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv6AddressSpans, ipv6AddressesCount); |
| head = ifp; |
| } |
| *netifpp = head; |
| #endif |
| |
| *netifpp = ifp; |
| return CHIP_NO_ERROR; |
| } |
| |
| void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp) |
| { |
| while (netifp) |
| { |
| NetworkInterface * del = netifp; |
| netifp = netifp->Next; |
| delete del; |
| } |
| } |
| |
| #if SL_WIFI |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(ByteSpan & BssId) |
| { |
| wfx_wifi_scan_result_t ap; |
| int32_t err = wfx_get_ap_info(&ap); |
| static uint8_t bssid[6]; |
| if (err == 0) |
| { |
| memcpy(bssid, ap.bssid, 6); |
| BssId = ByteSpan(bssid, 6); |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(uint8_t & securityType) |
| { |
| wfx_wifi_scan_result_t ap; |
| int32_t err = wfx_get_ap_info(&ap); |
| if (err == 0) |
| { |
| securityType = ap.security; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(uint8_t & wifiVersion) |
| { |
| wifiVersion = EMBER_ZCL_WI_FI_VERSION_TYPE_802__11N; |
| return CHIP_NO_ERROR; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber) |
| { |
| wfx_wifi_scan_result_t ap; |
| int32_t err = wfx_get_ap_info(&ap); |
| if (err == 0) |
| { |
| channelNumber = ap.chan; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi) |
| { |
| wfx_wifi_scan_result_t ap; |
| int32_t err = wfx_get_ap_info(&ap); |
| if (err == 0) |
| { |
| rssi = ap.rssi; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount) |
| { |
| wfx_wifi_scan_ext_t extra_info; |
| int32_t err = wfx_get_ap_ext(&extra_info); |
| if (err == 0) |
| { |
| beaconLostCount = extra_info.beacon_lost_count; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate) |
| { |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount) |
| { |
| wfx_wifi_scan_ext_t extra_info; |
| int32_t err = wfx_get_ap_ext(&extra_info); |
| if (err == 0) |
| { |
| packetMulticastRxCount = extra_info.mcast_rx_count; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount) |
| { |
| wfx_wifi_scan_ext_t extra_info; |
| int32_t err = wfx_get_ap_ext(&extra_info); |
| if (err == 0) |
| { |
| packetMulticastTxCount = extra_info.mcast_tx_count; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount) |
| { |
| wfx_wifi_scan_ext_t extra_info; |
| int32_t err = wfx_get_ap_ext(&extra_info); |
| if (err == 0) |
| { |
| packetUnicastRxCount = extra_info.ucast_rx_count; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount) |
| { |
| wfx_wifi_scan_ext_t extra_info; |
| int32_t err = wfx_get_ap_ext(&extra_info); |
| if (err == 0) |
| { |
| packetUnicastTxCount = extra_info.ucast_tx_count; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount) |
| { |
| wfx_wifi_scan_ext_t extra_info; |
| int32_t err = wfx_get_ap_ext(&extra_info); |
| if (err == 0) |
| { |
| overrunCount = extra_info.overrun_count; |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| |
| CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts() |
| { |
| int32_t err = wfx_reset_counts(); |
| if (err == 0) |
| { |
| return CHIP_NO_ERROR; |
| } |
| return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; |
| } |
| #endif // SL_WIFI |
| |
| DiagnosticDataProvider & GetDiagnosticDataProviderImpl() |
| { |
| return DiagnosticDataProviderImpl::GetDefaultInstance(); |
| } |
| |
| } // namespace DeviceLayer |
| } // namespace chip |