blob: 5d0f48b010680ad25f0e8a70eea2c0085a44505a [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for k32w0 platform.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <crypto/CHIPCryptoPAL.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/nxp/k32w/k32w0/DiagnosticDataProviderImpl.h>
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#include <lwip/tcpip.h>
#endif
extern "C" void xPortResetHeapMinimumEverFreeHeapSize(void);
#include <openthread/platform/entropy.h>
#include <platform/OpenThread/GenericThreadStackManagerImpl_OpenThread.h>
using namespace ::chip::app::Clusters::GeneralDiagnostics;
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
size_t freeHeapSize;
freeHeapSize = xPortGetFreeHeapSize();
currentHeapFree = static_cast<uint64_t>(freeHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
size_t freeHeapSize;
size_t usedHeapSize;
freeHeapSize = xPortGetFreeHeapSize();
usedHeapSize = HEAP_SIZE - freeHeapSize;
currentHeapUsed = static_cast<uint64_t>(usedHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
size_t highWatermarkHeapSize;
highWatermarkHeapSize = HEAP_SIZE - xPortGetMinimumEverFreeHeapSize();
currentHeapHighWatermark = static_cast<uint64_t>(highWatermarkHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks()
{
// If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the
// value of the CurrentHeapUsed.
xPortResetHeapMinimumEverFreeHeapSize();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut)
{
/* Obtain all available task information */
TaskStatus_t * taskStatusArray;
ThreadMetrics * head = nullptr;
unsigned long arraySize, x, dummy;
arraySize = uxTaskGetNumberOfTasks();
taskStatusArray = (TaskStatus_t *) pvPortMalloc(arraySize * sizeof(TaskStatus_t));
if (taskStatusArray != NULL)
{
/* Generate raw status information about each task. */
arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy);
/* For each populated position in the taskStatusArray array,
format the raw data as human readable ASCII data. */
for (x = 0; x < arraySize; x++)
{
ThreadMetrics * thread = (ThreadMetrics *) pvPortMalloc(sizeof(ThreadMetrics));
strncpy(thread->NameBuf, taskStatusArray[x].pcTaskName, kMaxThreadNameLength - 1);
thread->NameBuf[kMaxThreadNameLength] = '\0';
thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf));
thread->id = taskStatusArray[x].xTaskNumber;
thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark);
/* Unsupported metrics */
// thread->stackSize;
// thread->stackFreeCurrent;
thread->Next = head;
head = thread;
}
*threadMetricsOut = head;
/* The array is no longer needed, free the memory it consumes. */
vPortFree(taskStatusArray);
}
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics)
{
while (threadMetrics)
{
ThreadMetrics * del = threadMetrics;
threadMetrics = threadMetrics->Next;
vPortFree(del);
}
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = 0;
CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
bootReason = static_cast<BootReasonType>(reason);
}
return err;
}
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
NetworkInterface * ifp = new NetworkInterface();
const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance());
ifp->name = Span<const char>(threadNetworkName, strlen(threadNetworkName));
ifp->isOperational = true;
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
ifp->type = InterfaceTypeEnum::EMBER_ZCL_INTERFACE_TYPE_ENUM_THREAD;
uint8_t macBuffer[ConfigurationManager::kPrimaryMACAddressLength];
ConfigurationMgr().GetPrimary802154MACAddress(macBuffer);
ifp->hardwareAddress = ByteSpan(macBuffer, ConfigurationManager::kPrimaryMACAddressLength);
*netifpp = ifp;
return CHIP_NO_ERROR;
}
} // namespace DeviceLayer
} // namespace chip