blob: 8ad878a2474dec47168f8209db7643ebc864532f [file] [log] [blame]
/*
* Copyright (c) 2022 Project CHIP Authors
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <lib/support/CHIPMemString.h>
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <platform/DiagnosticDataProvider.h>
#include <platform/bouffalolab/common/DiagnosticDataProviderImpl.h>
#include <FreeRTOS.h>
namespace chip {
namespace DeviceLayer {
extern "C" size_t get_heap_size(void);
#ifdef CFG_USE_PSRAM
extern "C" size_t get_heap3_size(void);
#endif
extern "C" struct netif * deviceInterface_getNetif(void);
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
#ifdef CFG_USE_PSRAM
size_t freeHeapSize = xPortGetFreeHeapSize() + xPortGetFreeHeapSizePsram();
#else
size_t freeHeapSize = xPortGetFreeHeapSize();
#endif
currentHeapFree = static_cast<uint64_t>(freeHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
#ifdef CFG_USE_PSRAM
currentHeapUsed = (get_heap_size() + get_heap3_size() - xPortGetFreeHeapSize() - xPortGetFreeHeapSizePsram());
#else
currentHeapUsed = (get_heap_size() - xPortGetFreeHeapSize());
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
#ifdef CFG_USE_PSRAM
currentHeapHighWatermark =
get_heap_size() + get_heap3_size() - xPortGetMinimumEverFreeHeapSize() - xPortGetMinimumEverFreeHeapSizePsram();
#else
currentHeapHighWatermark = get_heap_size() - xPortGetMinimumEverFreeHeapSize();
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut)
{
/* Obtain all available task information */
TaskStatus_t * taskStatusArray;
ThreadMetrics * head = nullptr;
uint32_t arraySize, x, dummy;
arraySize = uxTaskGetNumberOfTasks();
taskStatusArray = static_cast<TaskStatus_t *>(chip::Platform::MemoryCalloc(arraySize, sizeof(TaskStatus_t)));
if (taskStatusArray != NULL)
{
/* Generate raw status information about each task. */
arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy);
/* For each populated position in the taskStatusArray array,
format the raw data as human readable ASCII data. */
for (x = 0; x < arraySize; x++)
{
ThreadMetrics * thread = new ThreadMetrics();
if (thread)
{
Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName);
thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf));
thread->id = taskStatusArray[x].xTaskNumber;
thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark);
/* Unsupported metrics */
// thread->stackSize
// thread->stackFreeCurrent
thread->Next = head;
head = thread;
}
}
*threadMetricsOut = head;
/* The array is no longer needed, free the memory it consumes. */
chip::Platform::MemoryFree(taskStatusArray);
}
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics)
{
while (threadMetrics)
{
ThreadMetrics * del = threadMetrics;
threadMetrics = threadMetrics->Next;
delete del;
}
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveHardwareFaults(GeneralFaults<kMaxHardwareFaults> & hardwareFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kRadio)));
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kSensor)));
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kPowerSource)));
ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kUserInterfaceFault)));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveRadioFaults(GeneralFaults<kMaxRadioFaults> & radioFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_ENUM_THREAD_FAULT));
ReturnErrorOnFailure(radioFaults.add(EMBER_ZCL_RADIO_FAULT_ENUM_BLE_FAULT));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetActiveNetworkFaults(GeneralFaults<kMaxNetworkFaults> & networkFaults)
{
#if CHIP_CONFIG_TEST
ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kHardwareFailure)));
ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kNetworkJammed)));
ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kConnectionFailed)));
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
NetworkInterface * ifp = new NetworkInterface();
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance());
ifp->name = Span<const char>(threadNetworkName, strlen(threadNetworkName));
ifp->isOperational = true;
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
ifp->type = EMBER_ZCL_INTERFACE_TYPE_ENUM_THREAD;
uint8_t macBuffer[ConfigurationManager::kPrimaryMACAddressLength];
ConfigurationMgr().GetPrimary802154MACAddress(macBuffer);
ifp->hardwareAddress = ByteSpan(macBuffer, ConfigurationManager::kPrimaryMACAddressLength);
#else
struct netif * netif = deviceInterface_getNetif();
Platform::CopyString(ifp->Name, netif->name);
ifp->name = CharSpan::fromCharString(ifp->Name);
ifp->isOperational = true;
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI
ifp->type = EMBER_ZCL_INTERFACE_TYPE_ENUM_WI_FI;
#else
ifp->type = EMBER_ZCL_INTERFACE_TYPE_ENUM_ETHERNET;
#endif
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
memcpy(ifp->MacAddress, netif->hwaddr, sizeof(netif->hwaddr));
ifp->hardwareAddress = ByteSpan(ifp->MacAddress, sizeof(netif->hwaddr));
memcpy(ifp->Ipv4AddressesBuffer[0], netif_ip_addr4(netif), kMaxIPv4AddrSize);
ifp->Ipv4AddressSpans[0] = ByteSpan(ifp->Ipv4AddressesBuffer[0], kMaxIPv4AddrSize);
ifp->IPv4Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv4AddressSpans, 1);
int addr_count = 0;
for (size_t i = 0; (i < LWIP_IPV6_NUM_ADDRESSES) && (i < kMaxIPv6AddrCount); i++)
{
if (!ip6_addr_isany(&(netif->ip6_addr[i].u_addr.ip6)))
{
memcpy(ifp->Ipv6AddressesBuffer[addr_count], &(netif->ip6_addr[i].u_addr.ip6), sizeof(ip6_addr_t));
ifp->Ipv6AddressSpans[addr_count] = ByteSpan(ifp->Ipv6AddressesBuffer[addr_count], kMaxIPv6AddrSize);
}
}
ifp->IPv6Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv6AddressSpans, addr_count);
#endif
*netifpp = ifp;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip