blob: 5158b6ac21f26df15b9935da185141596708dd5c [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
* Copyright 2023 NXP
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Provides an implementation of the DiagnosticDataProvider object
* for nxp platform.
*/
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include "DiagnosticDataProviderImpl.h"
#include <crypto/CHIPCryptoPAL.h>
#include <platform/DiagnosticDataProvider.h>
#include <inet/InetInterface.h>
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#include <lwip/tcpip.h>
#endif
#if CHIP_DEVICE_CONFIG_ENABLE_WPA
extern "C" {
#include "wlan.h"
#include <wm_net.h>
}
#endif
// Not implement into the SDK
// extern "C" void xPortResetHeapMinimumEverFreeHeapSize(void);
namespace chip {
namespace DeviceLayer {
DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance()
{
static DiagnosticDataProviderImpl sInstance;
return sInstance;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree)
{
size_t freeHeapSize;
freeHeapSize = xPortGetFreeHeapSize();
currentHeapFree = static_cast<uint64_t>(freeHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed)
{
size_t freeHeapSize;
size_t usedHeapSize;
freeHeapSize = xPortGetFreeHeapSize();
usedHeapSize = configTOTAL_HEAP_SIZE - freeHeapSize;
currentHeapUsed = static_cast<uint64_t>(usedHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark)
{
size_t highWatermarkHeapSize;
highWatermarkHeapSize = configTOTAL_HEAP_SIZE - xPortGetMinimumEverFreeHeapSize();
currentHeapHighWatermark = static_cast<uint64_t>(highWatermarkHeapSize);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks()
{
// If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the
// value of the CurrentHeapUsed.
// Not implement into the SDK
// xPortResetHeapMinimumEverFreeHeapSize();
// return CHIP_NO_ERROR;
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut)
{
/* Obtain all available task information */
TaskStatus_t * taskStatusArray;
ThreadMetrics * head = nullptr;
unsigned long arraySize, x, dummy;
arraySize = uxTaskGetNumberOfTasks();
taskStatusArray = (TaskStatus_t *) pvPortMalloc(arraySize * sizeof(TaskStatus_t));
if (taskStatusArray != NULL)
{
/* Generate raw status information about each task. */
arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy);
/* For each populated position in the taskStatusArray array,
format the raw data as human readable ASCII data. */
for (x = 0; x < arraySize; x++)
{
ThreadMetrics * thread = (ThreadMetrics *) pvPortMalloc(sizeof(ThreadMetrics));
Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName);
thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf));
thread->id = taskStatusArray[x].xTaskNumber;
thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark);
/* Unsupported metrics */
thread->stackFreeCurrent.ClearValue();
thread->stackSize.ClearValue();
thread->Next = head;
head = thread;
}
*threadMetricsOut = head;
/* The array is no longer needed, free the memory it consumes. */
vPortFree(taskStatusArray);
}
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics)
{
while (threadMetrics)
{
ThreadMetrics * del = threadMetrics;
threadMetrics = threadMetrics->Next;
vPortFree(del);
}
}
CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount)
{
uint32_t count = 0;
CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
rebootCount = static_cast<uint16_t>(count);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime)
{
System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp();
System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime();
if (currentTime >= startTime)
{
upTime = std::chrono::duration_cast<System::Clock::Seconds64>(currentTime - startTime).count();
return CHIP_NO_ERROR;
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
uint64_t upTime = 0;
if (GetUpTime(upTime) == CHIP_NO_ERROR)
{
uint32_t totalHours = 0;
if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR)
{
VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
totalOperationalHours = totalHours + static_cast<uint32_t>(upTime / 3600);
return CHIP_NO_ERROR;
}
}
return CHIP_ERROR_INVALID_TIME;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason)
{
uint32_t reason = 0;
CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason);
if (err == CHIP_NO_ERROR)
{
VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE);
bootReason = static_cast<BootReasonType>(reason);
}
return err;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp)
{
NetworkInterface * ifp = new NetworkInterface();
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance());
ifp->name = CharSpan(threadNetworkName, strlen(threadNetworkName));
ifp->isOperational = true;
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kThread;
ConfigurationMgr().GetPrimary802154MACAddress(ifp->MacAddress);
ifp->hardwareAddress = ByteSpan(ifp->MacAddress, kMaxHardwareAddrSize);
#elif CHIP_DEVICE_CONFIG_ENABLE_WPA
struct netif * netif = nullptr;
netif = static_cast<struct netif *>(net_get_mlan_handle());
strncpy(ifp->Name, "wlan0", Inet::InterfaceId::kMaxIfNameLength);
ifp->name = CharSpan(ifp->Name, strlen(ifp->Name));
ifp->isOperational = true;
ifp->offPremiseServicesReachableIPv4.SetNull();
ifp->offPremiseServicesReachableIPv6.SetNull();
ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kWiFi;
ifp->hardwareAddress = ByteSpan(netif->hwaddr, netif->hwaddr_len);
#endif
// IPv6-only support
Inet::InterfaceAddressIterator interfAddrIterator;
uint8_t ipv6AddressesCount = 0;
while (interfAddrIterator.HasCurrent() && ipv6AddressesCount < kMaxIPv6AddrCount)
{
chip::Inet::IPAddress ipv6Address;
if (interfAddrIterator.GetAddress(ipv6Address) == CHIP_NO_ERROR)
{
memcpy(ifp->Ipv6AddressesBuffer[ipv6AddressesCount], ipv6Address.Addr, kMaxIPv6AddrSize);
ifp->Ipv6AddressSpans[ipv6AddressesCount] = ByteSpan(ifp->Ipv6AddressesBuffer[ipv6AddressesCount]);
ipv6AddressesCount++;
}
interfAddrIterator.Next();
}
ifp->IPv6Addresses = chip::app::DataModel::List<chip::ByteSpan>(ifp->Ipv6AddressSpans, ipv6AddressesCount);
*netifpp = ifp;
return CHIP_NO_ERROR;
}
void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp)
{
while (netifp)
{
NetworkInterface * del = netifp;
netifp = netifp->Next;
delete del;
}
}
#if CHIP_DEVICE_CONFIG_ENABLE_WPA
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & BssId)
{
constexpr size_t bssIdSize = 6;
struct wlan_network current_network;
VerifyOrReturnError(BssId.size() >= bssIdSize, CHIP_ERROR_BUFFER_TOO_SMALL);
int ret = wlan_get_current_network(&current_network);
if (ret == WM_SUCCESS)
{
memcpy(BssId.data(), current_network.bssid, bssIdSize);
BssId.reduce_size(bssIdSize);
return CHIP_NO_ERROR;
}
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType)
{
using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum;
struct wlan_network current_network;
int ret = wlan_get_current_network(&current_network);
if (ret != WM_SUCCESS)
{
// Set as no security by default
securityType = SecurityTypeEnum::kNone;
return CHIP_NO_ERROR;
}
switch (current_network.security.type)
{
case WLAN_SECURITY_WEP_OPEN:
case WLAN_SECURITY_WEP_SHARED:
securityType = SecurityTypeEnum::kWep;
break;
case WLAN_SECURITY_WPA:
securityType = SecurityTypeEnum::kWpa;
break;
case WLAN_SECURITY_WPA2:
securityType = SecurityTypeEnum::kWpa2;
break;
case WLAN_SECURITY_WPA3_SAE:
securityType = SecurityTypeEnum::kWpa3;
break;
case WLAN_SECURITY_NONE:
default: // Default: No_security
securityType = SecurityTypeEnum::kNone;
}
ChipLogProgress(DeviceLayer, "GetWiFiSecurityType: %u", to_underlying(securityType));
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wifiVersion)
{
#if defined(CONFIG_11AX)
wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kAx;
#elif defined(CONFIG_11AC)
wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kAc;
#elif defined(CONFIG_11N)
wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kN;
#endif
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber)
{
channelNumber = wlan_get_current_channel();
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi)
{
short w_rssi;
int err = wlan_get_current_rssi(&w_rssi);
if (err != 0)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
rssi = static_cast<int8_t>(w_rssi);
return CHIP_NO_ERROR;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
beaconLostCount = stats.bcn_miss_cnt - mBeaconLostCount;
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconRxCount(uint32_t & beaconRxCount)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
beaconRxCount = stats.bcn_rcv_cnt - mBeaconRxCount;
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
packetMulticastRxCount = stats.mcast_rx_frame - mPacketMulticastRxCount;
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
packetMulticastTxCount = stats.mcast_tx_frame - mPacketMulticastTxCount;
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
packetUnicastTxCount = stats.tx_frame - mPacketUnicastTxCount;
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
#if SDK_2_16_100
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
packetUnicastRxCount = stats.rx_unicast_cnt - mPacketUnicastRxCount;
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
overrunCount = (stats.tx_overrun_cnt + stats.rx_overrun_cnt) - mOverrunCount;
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
#endif
CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts(void)
{
#ifdef CONFIG_WIFI_GET_LOG
wlan_pkt_stats_t stats;
int ret = wlan_get_log(&stats);
if (ret == WM_SUCCESS)
{
mPacketUnicastTxCount = stats.tx_frame;
mPacketMulticastTxCount = stats.mcast_tx_frame;
mPacketMulticastRxCount = stats.mcast_rx_frame;
mBeaconRxCount = stats.bcn_rcv_cnt;
mBeaconLostCount = stats.bcn_miss_cnt;
#if SDK_2_16_100
mPacketUnicastRxCount = stats.rx_unicast_cnt;
mOverrunCount = stats.tx_overrun_cnt + stats.rx_overrun_cnt;
#endif
return CHIP_NO_ERROR;
}
#endif /* CONFIG_WIFI_GET_LOG */
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
#endif /* CHIP_DEVICE_CONFIG_ENABLE_WPA */
DiagnosticDataProvider & GetDiagnosticDataProviderImpl()
{
return DiagnosticDataProviderImpl::GetDefaultInstance();
}
} // namespace DeviceLayer
} // namespace chip