blob: 85283784f9c50c4071d1575ce16284c4227de95a [file] [log] [blame]
import logging
import os
import subprocess
import pandas as pd
from slugify import slugify
error_catalog = {
"CodeQL": {
"No space left on device": {
"short": "Ran out of space",
"detail": "Exception with signature \"No space left on device\""
},
"Check that the disk containing the database directory has ample free space.": {
"short": "Ran out of space",
"detail": "Fatal internal error with message indicating that disk space most likely ran out"
}
},
"Build example": {
"Could not find a version that satisfies the requirement": {
"short": "Requirements issue",
"detail": "Unable to install a requirements in Python requirements.txt"
},
"No module named": {
"short": "Missing module",
"detail": "Expected module was missing"
}
},
"Full builds": {
"No space left on device": {
"short": "Ran out of space",
"detail": "Exception with signature \"No space left on device\""
}
}
}
def process_fail(id, pr, start_time, workflow):
logging.info(f"Processing failure in {pr}, workflow {workflow} that started at {start_time}.")
logging.info("Building output file structure.")
output_path = f"recent_fails_logs/{slugify(pr)}/{slugify(workflow)}/{slugify(start_time)}"
os.makedirs(output_path)
logging.info("Gathering raw fail logs.")
subprocess.run(f"gh run view -R project-chip/connectedhomeip {id} --log-failed > {output_path}/fail_log.txt", shell=True)
# Eventually turn this into a catalog of error messages per workflow
logging.info("Collecting info on likely cause of failure.")
root_cause = "Unknown cause"
with open(f"{output_path}/fail_log.txt") as fail_log_file:
fail_log = fail_log_file.read()
workflow_category = workflow.split(" - ")[0]
if workflow_category in error_catalog:
for error_message in error_catalog[workflow_category]:
if error_message in fail_log:
root_cause = error_catalog[workflow_category][error_message]["short"]
break
logging.info(f"Checking recent pass/fail rate of workflow {workflow}.")
workflow_fail_rate_output_path = f"workflow_pass_rate/{slugify(workflow)}"
if not os.path.exists(workflow_fail_rate_output_path):
os.makedirs(workflow_fail_rate_output_path)
subprocess.run(
f"gh run list -R project-chip/connectedhomeip -b master -w '{workflow}' --json conclusion > {workflow_fail_rate_output_path}/run_list.json", shell=True)
else:
logging.info("This workflow has already been processed.")
return [pr, workflow, root_cause]
def main():
logging.info("Gathering recent fails information into run_list.json.")
subprocess.run("gh run list -R project-chip/connectedhomeip -b master -s failure --json databaseId,displayTitle,startedAt,workflowName > run_list.json", shell=True)
logging.info("Reading run_list.json into a DataFrame.")
df = pd.read_json("run_list.json")
logging.info("Listing recent fails.")
df.columns = ["ID", "Pull Request", "Start Time", "Workflow"]
print("Recent Fails:")
print(df.to_string(columns=["Pull Request", "Workflow"], index=False))
print()
df.to_csv("recent_fails.csv", index=False)
logging.info("Listing frequency of recent fails by workflow.")
frequency = df["Workflow"].value_counts(normalize=True).mul(100).round().astype(
str).reset_index(name="Percentage") # Reformat this from "50.0" to "50%"
print("Share of Recent Fails by Workflow:")
print(frequency.to_string(index=False))
print()
frequency.to_csv("recent_workflow_fails_frequency.csv")
logging.info("Conducting fail information parsing.")
root_causes = df.apply(lambda row: process_fail(row["ID"], row["Pull Request"],
row["Start Time"], row["Workflow"]), axis=1, result_type="expand")
root_causes.columns = ["Pull Request", "Workflow", "Cause of Failure"]
print("Likely Root Cause of Recent Fails:")
print(root_causes.to_string(index=False))
print()
root_causes.to_csv("failure_cause_summary.csv")
logging.info("Listing percent fail rate of recent fails by workflow.")
fail_rate = {}
for workflow in next(os.walk("workflow_pass_rate"))[1]:
try:
info = pd.read_json(f"workflow_pass_rate/{workflow}/run_list.json")
info = info[info["conclusion"].str.len() > 0]
fail_rate[workflow] = [info.value_counts(normalize=True).mul(100).round()["failure"]]
except Exception:
logging.exception(f"Recent runs info for {workflow} was not collected.")
fail_rate = pd.DataFrame.from_dict(fail_rate, 'index', columns=["Fail Rate"])
print("Recent Fail Rate of Each Workflow:")
print(fail_rate.to_string())
fail_rate.to_csv("workflow_fail_rate.csv")
if __name__ == "__main__":
main()