blob: ba34669a51ba9423c4376912850f7f3381cd325b [file] [log] [blame]
/*
*
* Copyright (c) 2022-2023 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* PSA Crypto API based implementation of CHIP crypto primitives
*/
#include "CHIPCryptoPALPSA.h"
#include "CHIPCryptoPALmbedTLS.h"
#include <lib/core/CHIPEncoding.h>
#include <lib/core/CHIPSafeCasts.h>
#include <lib/support/BufferWriter.h>
#include <lib/support/BytesToHex.h>
#include <lib/support/CHIPArgParser.hpp>
#include <lib/support/CodeUtils.h>
#include <lib/support/SafeInt.h>
#include <lib/support/SafePointerCast.h>
#include <lib/support/logging/CHIPLogging.h>
#include <psa/crypto.h>
#include <mbedtls/bignum.h>
#include <mbedtls/ecp.h>
#include <mbedtls/error.h>
#include <mbedtls/x509_csr.h>
#include <string.h>
#include <type_traits>
namespace chip {
namespace Crypto {
namespace {
bool isBufferNonEmpty(const uint8_t * data, size_t data_length)
{
return data != nullptr && data_length > 0;
}
bool isValidTag(const uint8_t * tag, size_t tag_length)
{
return tag != nullptr && (tag_length == 8 || tag_length == 12 || tag_length == 16);
}
} // namespace
CHIP_ERROR AES_CCM_encrypt(const uint8_t * plaintext, size_t plaintext_length, const uint8_t * aad, size_t aad_length,
const Aes128KeyHandle & key, const uint8_t * nonce, size_t nonce_length, uint8_t * ciphertext,
uint8_t * tag, size_t tag_length)
{
VerifyOrReturnError(isBufferNonEmpty(nonce, nonce_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(isValidTag(tag, tag_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError((ciphertext != nullptr && plaintext != nullptr) || plaintext_length == 0, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(aad != nullptr || aad_length == 0, CHIP_ERROR_INVALID_ARGUMENT);
const psa_algorithm_t algorithm = PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length);
psa_status_t status = PSA_SUCCESS;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
size_t out_length;
size_t tag_out_length;
status = psa_aead_encrypt_setup(&operation, key.As<psa_key_id_t>(), algorithm);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
status = psa_aead_set_lengths(&operation, aad_length, plaintext_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
status = psa_aead_set_nonce(&operation, nonce, nonce_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
if (aad_length != 0)
{
status = psa_aead_update_ad(&operation, aad, aad_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
}
else
{
ChipLogDetail(Crypto, "AES_CCM_encrypt: Using aad == null path");
}
if (plaintext_length != 0)
{
status = psa_aead_update(&operation, plaintext, plaintext_length, ciphertext,
PSA_AEAD_UPDATE_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm, plaintext_length), &out_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
ciphertext += out_length;
status = psa_aead_finish(&operation, ciphertext, PSA_AEAD_FINISH_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm), &out_length, tag,
tag_length, &tag_out_length);
}
else
{
status = psa_aead_finish(&operation, nullptr, 0, &out_length, tag, tag_length, &tag_out_length);
}
VerifyOrReturnError(status == PSA_SUCCESS && tag_length == tag_out_length, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR AES_CCM_decrypt(const uint8_t * ciphertext, size_t ciphertext_length, const uint8_t * aad, size_t aad_length,
const uint8_t * tag, size_t tag_length, const Aes128KeyHandle & key, const uint8_t * nonce,
size_t nonce_length, uint8_t * plaintext)
{
VerifyOrReturnError(isBufferNonEmpty(nonce, nonce_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(isValidTag(tag, tag_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError((ciphertext != nullptr && plaintext != nullptr) || ciphertext_length == 0, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(aad != nullptr || aad_length == 0, CHIP_ERROR_INVALID_ARGUMENT);
const psa_algorithm_t algorithm = PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length);
psa_status_t status = PSA_SUCCESS;
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;
size_t outLength;
status = psa_aead_decrypt_setup(&operation, key.As<psa_key_id_t>(), algorithm);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
status = psa_aead_set_lengths(&operation, aad_length, ciphertext_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
status = psa_aead_set_nonce(&operation, nonce, nonce_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
if (aad_length != 0)
{
status = psa_aead_update_ad(&operation, aad, aad_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
}
else
{
ChipLogDetail(Crypto, "AES_CCM_decrypt: Using aad == null path");
}
if (ciphertext_length != 0)
{
status = psa_aead_update(&operation, ciphertext, ciphertext_length, plaintext,
PSA_AEAD_UPDATE_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm, ciphertext_length), &outLength);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
plaintext += outLength;
status = psa_aead_verify(&operation, plaintext, PSA_AEAD_VERIFY_OUTPUT_SIZE(PSA_KEY_TYPE_AES, algorithm), &outLength, tag,
tag_length);
}
else
{
status = psa_aead_verify(&operation, nullptr, 0, &outLength, tag, tag_length);
}
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR Hash_SHA256(const uint8_t * data, const size_t data_length, uint8_t * out_buffer)
{
size_t outLength = 0;
const psa_status_t status =
psa_hash_compute(PSA_ALG_SHA_256, data, data_length, out_buffer, PSA_HASH_LENGTH(PSA_ALG_SHA_256), &outLength);
return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL;
}
CHIP_ERROR Hash_SHA1(const uint8_t * data, const size_t data_length, uint8_t * out_buffer)
{
size_t outLength = 0;
const psa_status_t status =
psa_hash_compute(PSA_ALG_SHA_1, data, data_length, out_buffer, PSA_HASH_LENGTH(PSA_ALG_SHA_1), &outLength);
return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL;
}
static inline psa_hash_operation_t * toHashOperation(HashSHA256OpaqueContext * context)
{
return SafePointerCast<psa_hash_operation_t *>(context);
}
static inline psa_hash_operation_t & toHashOperation(HashSHA256OpaqueContext & context)
{
return *SafePointerCast<psa_hash_operation_t *>(&context);
}
Hash_SHA256_stream::Hash_SHA256_stream()
{
toHashOperation(mContext) = PSA_HASH_OPERATION_INIT;
}
Hash_SHA256_stream::~Hash_SHA256_stream()
{
Clear();
}
CHIP_ERROR Hash_SHA256_stream::Begin()
{
toHashOperation(mContext) = PSA_HASH_OPERATION_INIT;
const psa_status_t status = psa_hash_setup(toHashOperation(&mContext), PSA_ALG_SHA_256);
return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL;
}
CHIP_ERROR Hash_SHA256_stream::AddData(const ByteSpan data)
{
const psa_status_t status = psa_hash_update(toHashOperation(&mContext), data.data(), data.size());
return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL;
}
CHIP_ERROR Hash_SHA256_stream::GetDigest(MutableByteSpan & out_buffer)
{
VerifyOrReturnError(out_buffer.size() >= PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_BUFFER_TOO_SMALL);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
size_t outLength;
status = psa_hash_clone(toHashOperation(&mContext), &operation);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_hash_finish(&operation, out_buffer.data(), out_buffer.size(), &outLength);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
out_buffer.reduce_size(outLength);
exit:
psa_hash_abort(&operation);
return error;
}
CHIP_ERROR Hash_SHA256_stream::Finish(MutableByteSpan & out_buffer)
{
VerifyOrReturnError(out_buffer.size() >= PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_BUFFER_TOO_SMALL);
size_t outLength;
const psa_status_t status = psa_hash_finish(toHashOperation(&mContext), out_buffer.data(), out_buffer.size(), &outLength);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
out_buffer.reduce_size(outLength);
return CHIP_NO_ERROR;
}
void Hash_SHA256_stream::Clear()
{
psa_hash_abort(toHashOperation(&mContext));
}
CHIP_ERROR FindFreeKeySlotInRange(psa_key_id_t & keyId, psa_key_id_t start, uint32_t range)
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_id_t end = start + range;
VerifyOrReturnError(start >= PSA_KEY_ID_USER_MIN && end - 1 <= PSA_KEY_ID_USER_MAX, CHIP_ERROR_INVALID_ARGUMENT);
for (keyId = start; keyId < end; keyId++)
{
psa_status_t status = psa_get_key_attributes(keyId, &attributes);
if (status == PSA_ERROR_INVALID_HANDLE)
{
return CHIP_NO_ERROR;
}
else if (status != PSA_SUCCESS)
{
return CHIP_ERROR_INTERNAL;
}
}
return CHIP_ERROR_NOT_FOUND;
}
CHIP_ERROR PsaKdf::Init(const ByteSpan & secret, const ByteSpan & salt, const ByteSpan & info)
{
psa_status_t status = PSA_SUCCESS;
psa_key_attributes_t attrs = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&attrs, PSA_KEY_TYPE_DERIVE);
psa_set_key_algorithm(&attrs, PSA_ALG_HKDF(PSA_ALG_SHA_256));
psa_set_key_usage_flags(&attrs, PSA_KEY_USAGE_DERIVE);
status = psa_import_key(&attrs, secret.data(), secret.size(), &mSecretKeyId);
LogPsaError(status);
psa_reset_key_attributes(&attrs);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
return InitOperation(mSecretKeyId, salt, info);
}
CHIP_ERROR PsaKdf::Init(const HkdfKeyHandle & hkdfKey, const ByteSpan & salt, const ByteSpan & info)
{
return InitOperation(hkdfKey.As<psa_key_id_t>(), salt, info);
}
CHIP_ERROR PsaKdf::InitOperation(psa_key_id_t hkdfKey, const ByteSpan & salt, const ByteSpan & info)
{
psa_status_t status = psa_key_derivation_setup(&mOperation, PSA_ALG_HKDF(PSA_ALG_SHA_256));
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
if (salt.size() > 0)
{
status = psa_key_derivation_input_bytes(&mOperation, PSA_KEY_DERIVATION_INPUT_SALT, salt.data(), salt.size());
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
}
status = psa_key_derivation_input_key(&mOperation, PSA_KEY_DERIVATION_INPUT_SECRET, hkdfKey);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
status = psa_key_derivation_input_bytes(&mOperation, PSA_KEY_DERIVATION_INPUT_INFO, info.data(), info.size());
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
void LogPsaError(psa_status_t status)
{
if (status != PSA_SUCCESS)
{
ChipLogError(Crypto, "PSA error: %d", static_cast<int>(status));
}
}
CHIP_ERROR PsaKdf::DeriveBytes(const MutableByteSpan & output)
{
psa_status_t status = psa_key_derivation_output_bytes(&mOperation, output.data(), output.size());
LogPsaError(status);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR PsaKdf::DeriveKey(const psa_key_attributes_t & attributes, psa_key_id_t & keyId)
{
psa_status_t status = psa_key_derivation_output_key(&attributes, &mOperation, &keyId);
LogPsaError(status);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR HKDF_sha::HKDF_SHA256(const uint8_t * secret, const size_t secret_length, const uint8_t * salt, const size_t salt_length,
const uint8_t * info, const size_t info_length, uint8_t * out_buffer, size_t out_length)
{
VerifyOrReturnError(isBufferNonEmpty(secret, secret_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(isBufferNonEmpty(info, info_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(isBufferNonEmpty(out_buffer, out_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(salt != nullptr || salt_length == 0, CHIP_ERROR_INVALID_ARGUMENT);
PsaKdf kdf;
ReturnErrorOnFailure(kdf.Init(ByteSpan(secret, secret_length), ByteSpan(salt, salt_length), ByteSpan(info, info_length)));
return kdf.DeriveBytes(MutableByteSpan(out_buffer, out_length));
}
CHIP_ERROR HMAC_sha::HMAC_SHA256(const uint8_t * key, size_t key_length, const uint8_t * message, size_t message_length,
uint8_t * out_buffer, size_t out_length)
{
VerifyOrReturnError(isBufferNonEmpty(key, key_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(isBufferNonEmpty(message, message_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_buffer != nullptr && out_length == PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_INVALID_ARGUMENT);
const psa_algorithm_t algorithm = PSA_ALG_HMAC(PSA_ALG_SHA_256);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_key_attributes_t attrs = PSA_KEY_ATTRIBUTES_INIT;
psa_key_id_t keyId = 0;
psa_set_key_type(&attrs, PSA_KEY_TYPE_HMAC);
psa_set_key_algorithm(&attrs, algorithm);
psa_set_key_usage_flags(&attrs, PSA_KEY_USAGE_SIGN_HASH);
status = psa_import_key(&attrs, key, key_length, &keyId);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_mac_compute(keyId, algorithm, message, message_length, out_buffer, out_length, &out_length);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
exit:
LogPsaError(status);
psa_destroy_key(keyId);
psa_reset_key_attributes(&attrs);
return CHIP_NO_ERROR;
}
CHIP_ERROR HMAC_sha::HMAC_SHA256(const Hmac128KeyHandle & key, const uint8_t * message, size_t message_length, uint8_t * out_buffer,
size_t out_length)
{
VerifyOrReturnError(isBufferNonEmpty(message, message_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(out_buffer != nullptr && out_length == PSA_HASH_LENGTH(PSA_ALG_SHA_256), CHIP_ERROR_INVALID_ARGUMENT);
const psa_algorithm_t algorithm = PSA_ALG_HMAC(PSA_ALG_SHA_256);
psa_status_t status = PSA_SUCCESS;
status = psa_mac_compute(key.As<psa_key_id_t>(), algorithm, message, message_length, out_buffer, out_length, &out_length);
VerifyOrReturnError(status == PSA_SUCCESS, CHIP_ERROR_INTERNAL);
return CHIP_NO_ERROR;
}
CHIP_ERROR PBKDF2_sha256::pbkdf2_sha256(const uint8_t * pass, size_t pass_length, const uint8_t * salt, size_t salt_length,
unsigned int iteration_count, uint32_t key_length, uint8_t * key)
{
/*
TODO: Switch to the following implementation once mbedTLS gets support for PBKDF2
VerifyOrReturnError(isBufferNonEmpty(pass, pass_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(key != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(salt_length >= kSpake2p_Min_PBKDF_Salt_Length && salt_length <= kSpake2p_Max_PBKDF_Salt_Length,
CHIP_ERROR_INVALID_ARGUMENT);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;
status = psa_key_derivation_setup(&operation, PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256));
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_key_derivation_input_bytes(&operation, PSA_KEY_DERIVATION_INPUT_SALT, salt, salt_length);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_key_derivation_input_integer(&operation, PSA_KEY_DERIVATION_INPUT_COST, iteration_count);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_key_derivation_input_bytes(&operation, PSA_KEY_DERIVATION_INPUT_PASSWORD, pass, pass_length);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_key_derivation_output_bytes(&operation, key, key_length);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
exit:
psa_key_derivation_abort(&operation);
return error;
*/
VerifyOrReturnError(isBufferNonEmpty(pass, pass_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(salt != nullptr && salt_length >= kSpake2p_Min_PBKDF_Salt_Length &&
salt_length <= kSpake2p_Max_PBKDF_Salt_Length,
CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(isBufferNonEmpty(key, key_length), CHIP_ERROR_INVALID_ARGUMENT);
constexpr size_t kMacLength = PSA_MAC_LENGTH(PSA_KEY_TYPE_HMAC, pass_length * 8, PSA_ALG_HMAC(PSA_ALG_SHA_256));
const psa_algorithm_t algorithm = PSA_ALG_HMAC(PSA_ALG_SHA_256);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_key_attributes_t attrs = PSA_KEY_ATTRIBUTES_INIT;
psa_key_id_t keyId = 0;
psa_set_key_type(&attrs, PSA_KEY_TYPE_HMAC);
psa_set_key_algorithm(&attrs, algorithm);
psa_set_key_usage_flags(&attrs, PSA_KEY_USAGE_SIGN_HASH);
status = psa_import_key(&attrs, pass, pass_length, &keyId);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
for (uint32_t blockNo = 1; key_length != 0; ++blockNo)
{
uint8_t in[std::max(kMacLength, kSpake2p_Max_PBKDF_Salt_Length + 4)];
size_t inLength = salt_length + 4;
uint8_t out[kMacLength];
size_t outLength;
uint8_t result[kMacLength] = {};
memcpy(in, salt, salt_length);
Encoding::BigEndian::Put32(&in[salt_length], blockNo);
for (size_t iteration = 0; iteration < iteration_count; ++iteration)
{
status = psa_mac_compute(keyId, algorithm, in, inLength, out, sizeof(out), &outLength);
VerifyOrExit(status == PSA_SUCCESS && outLength == kMacLength, error = CHIP_ERROR_INTERNAL);
for (size_t byteNo = 0; byteNo < kMacLength; ++byteNo)
{
result[byteNo] ^= out[byteNo];
in[byteNo] = out[byteNo];
}
inLength = outLength;
}
const size_t usedKeyLength = std::min<size_t>(key_length, kMacLength);
memcpy(key, result, usedKeyLength);
key += usedKeyLength;
key_length -= usedKeyLength;
}
exit:
LogPsaError(status);
psa_destroy_key(keyId);
psa_reset_key_attributes(&attrs);
return CHIP_NO_ERROR;
}
CHIP_ERROR add_entropy_source(entropy_source /* fn_source */, void * /* p_source */, size_t /* threshold */)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
CHIP_ERROR DRBG_get_bytes(uint8_t * out_buffer, const size_t out_length)
{
VerifyOrReturnError(isBufferNonEmpty(out_buffer, out_length), CHIP_ERROR_INVALID_ARGUMENT);
const psa_status_t status = psa_generate_random(out_buffer, out_length);
return status == PSA_SUCCESS ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL;
}
static int CryptoRNG(void * ctxt, uint8_t * out_buffer, size_t out_length)
{
return (chip::Crypto::DRBG_get_bytes(out_buffer, out_length) == CHIP_NO_ERROR) ? 0 : 1;
}
CHIP_ERROR P256Keypair::ECDSA_sign_msg(const uint8_t * msg, const size_t msg_length, P256ECDSASignature & out_signature) const
{
VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED);
VerifyOrReturnError(isBufferNonEmpty(msg, msg_length), CHIP_ERROR_INVALID_ARGUMENT);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
size_t outputLen = 0;
const PsaP256KeypairContext & context = ToConstPsaContext(mKeypair);
status = psa_sign_message(context.key_id, PSA_ALG_ECDSA(PSA_ALG_SHA_256), msg, msg_length, out_signature.Bytes(),
out_signature.Capacity(), &outputLen);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(outputLen == kP256_ECDSA_Signature_Length_Raw, error = CHIP_ERROR_INTERNAL);
error = out_signature.SetLength(outputLen);
exit:
LogPsaError(status);
return error;
}
CHIP_ERROR P256PublicKey::ECDSA_validate_msg_signature(const uint8_t * msg, const size_t msg_length,
const P256ECDSASignature & signature) const
{
VerifyOrReturnError(isBufferNonEmpty(msg, msg_length), CHIP_ERROR_INVALID_ARGUMENT);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_key_id_t keyId = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_SECP_R1));
psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256));
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_MESSAGE);
status = psa_import_key(&attributes, ConstBytes(), Length(), &keyId);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_verify_message(keyId, PSA_ALG_ECDSA(PSA_ALG_SHA_256), msg, msg_length, signature.ConstBytes(), signature.Length());
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INVALID_SIGNATURE);
exit:
LogPsaError(status);
psa_destroy_key(keyId);
psa_reset_key_attributes(&attributes);
return error;
}
CHIP_ERROR P256PublicKey::ECDSA_validate_hash_signature(const uint8_t * hash, const size_t hash_length,
const P256ECDSASignature & signature) const
{
VerifyOrReturnError(hash != nullptr && hash_length == kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(signature.Length() == kP256_ECDSA_Signature_Length_Raw, CHIP_ERROR_INVALID_ARGUMENT);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_key_id_t keyId = 0;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_SECP_R1));
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256));
status = psa_import_key(&attributes, ConstBytes(), Length(), &keyId);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_verify_hash(keyId, PSA_ALG_ECDSA(PSA_ALG_SHA_256), hash, hash_length, signature.ConstBytes(), signature.Length());
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INVALID_SIGNATURE);
exit:
LogPsaError(status);
psa_destroy_key(keyId);
psa_reset_key_attributes(&attributes);
return error;
}
CHIP_ERROR P256Keypair::ECDH_derive_secret(const P256PublicKey & remote_public_key, P256ECDHDerivedSecret & out_secret) const
{
VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
const PsaP256KeypairContext & context = ToConstPsaContext(mKeypair);
const size_t outputSize = (out_secret.Length() == 0) ? out_secret.Capacity() : out_secret.Length();
size_t outputLength;
status = psa_raw_key_agreement(PSA_ALG_ECDH, context.key_id, remote_public_key.ConstBytes(), remote_public_key.Length(),
out_secret.Bytes(), outputSize, &outputLength);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
SuccessOrExit(error = out_secret.SetLength(outputLength));
exit:
LogPsaError(status);
return error;
}
void ClearSecretData(uint8_t * buf, size_t len)
{
mbedtls_platform_zeroize(buf, len);
}
// THE BELOW IS FROM `third_party/openthread/repo/third_party/mbedtls/repo/library/constant_time.c` since
// mbedtls_ct_memcmp is not available on Linux somehow :(
int mbedtls_ct_memcmp_copy(const void * a, const void * b, size_t n)
{
size_t i;
volatile const unsigned char * A = (volatile const unsigned char *) a;
volatile const unsigned char * B = (volatile const unsigned char *) b;
volatile unsigned char diff = 0;
for (i = 0; i < n; i++)
{
/* Read volatile data in order before computing diff.
* This avoids IAR compiler warning:
* 'the order of volatile accesses is undefined ..' */
unsigned char x = A[i], y = B[i];
diff |= x ^ y;
}
return ((int) diff);
}
bool IsBufferContentEqualConstantTime(const void * a, const void * b, size_t n)
{
return mbedtls_ct_memcmp_copy(a, b, n) == 0;
}
CHIP_ERROR P256Keypair::Initialize(ECPKeyTarget key_target)
{
VerifyOrReturnError(!mInitialized, CHIP_ERROR_INCORRECT_STATE);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PsaP256KeypairContext & context = ToPsaContext(mKeypair);
size_t publicKeyLength = 0;
// Type based on ECC with the elliptic curve SECP256r1 -> PSA_ECC_FAMILY_SECP_R1
psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1));
psa_set_key_bits(&attributes, kP256_PrivateKey_Length * 8);
if (key_target == ECPKeyTarget::ECDH)
{
psa_set_key_algorithm(&attributes, PSA_ALG_ECDH);
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DERIVE);
}
else if (key_target == ECPKeyTarget::ECDSA)
{
psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256));
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT | PSA_KEY_USAGE_SIGN_MESSAGE);
}
else
{
ExitNow(error = CHIP_ERROR_UNKNOWN_KEY_TYPE);
}
status = psa_generate_key(&attributes, &context.key_id);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
status = psa_export_public_key(context.key_id, mPublicKey.Bytes(), mPublicKey.Length(), &publicKeyLength);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(publicKeyLength == kP256_PublicKey_Length, error = CHIP_ERROR_INTERNAL);
mInitialized = true;
exit:
LogPsaError(status);
psa_reset_key_attributes(&attributes);
return error;
}
CHIP_ERROR P256Keypair::Serialize(P256SerializedKeypair & output) const
{
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
const PsaP256KeypairContext & context = ToConstPsaContext(mKeypair);
const size_t outputSize = output.Length() == 0 ? output.Capacity() : output.Length();
Encoding::BufferWriter bbuf(output.Bytes(), outputSize);
uint8_t privateKey[kP256_PrivateKey_Length];
size_t privateKeyLength = 0;
status = psa_export_key(context.key_id, privateKey, sizeof(privateKey), &privateKeyLength);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(privateKeyLength == kP256_PrivateKey_Length, error = CHIP_ERROR_INTERNAL);
bbuf.Put(mPublicKey, mPublicKey.Length());
bbuf.Put(privateKey, privateKeyLength);
VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_BUFFER_TOO_SMALL);
error = output.SetLength(bbuf.Needed());
exit:
LogPsaError(status);
return error;
}
CHIP_ERROR P256Keypair::Deserialize(P256SerializedKeypair & input)
{
VerifyOrReturnError(input.Length() == mPublicKey.Length() + kP256_PrivateKey_Length, CHIP_ERROR_INVALID_ARGUMENT);
CHIP_ERROR error = CHIP_NO_ERROR;
psa_status_t status = PSA_SUCCESS;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PsaP256KeypairContext & context = ToPsaContext(mKeypair);
Encoding::BufferWriter bbuf(mPublicKey, mPublicKey.Length());
Clear();
psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1));
psa_set_key_bits(&attributes, kP256_PrivateKey_Length * 8);
psa_set_key_algorithm(&attributes, PSA_ALG_ECDSA(PSA_ALG_SHA_256));
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_EXPORT | PSA_KEY_USAGE_SIGN_MESSAGE);
status = psa_import_key(&attributes, input.ConstBytes() + mPublicKey.Length(), kP256_PrivateKey_Length, &context.key_id);
VerifyOrExit(status == PSA_SUCCESS, error = CHIP_ERROR_INTERNAL);
bbuf.Put(input.ConstBytes(), mPublicKey.Length());
VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_NO_MEMORY);
mInitialized = true;
exit:
LogPsaError(status);
return error;
}
void P256Keypair::Clear()
{
if (mInitialized)
{
PsaP256KeypairContext & context = ToPsaContext(mKeypair);
psa_destroy_key(context.key_id);
memset(&context, 0, sizeof(context));
mInitialized = false;
}
}
P256Keypair::~P256Keypair()
{
Clear();
}
CHIP_ERROR P256Keypair::NewCertificateSigningRequest(uint8_t * out_csr, size_t & csr_length) const
{
VerifyOrReturnError(isBufferNonEmpty(out_csr, csr_length), CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED);
MutableByteSpan csr(out_csr, csr_length);
ReturnErrorOnFailure(GenerateCertificateSigningRequest(this, csr));
csr_length = csr.size();
return CHIP_NO_ERROR;
}
typedef struct Spake2p_Context
{
mbedtls_ecp_group curve;
mbedtls_ecp_point M;
mbedtls_ecp_point N;
mbedtls_ecp_point X;
mbedtls_ecp_point Y;
mbedtls_ecp_point L;
mbedtls_ecp_point Z;
mbedtls_ecp_point V;
mbedtls_mpi w0;
mbedtls_mpi w1;
mbedtls_mpi xy;
mbedtls_mpi tempbn;
} Spake2p_Context;
static inline Spake2p_Context * to_inner_spake2p_context(Spake2pOpaqueContext * context)
{
return SafePointerCast<Spake2p_Context *>(context);
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::InitInternal(void)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
memset(context, 0, sizeof(Spake2p_Context));
mbedtls_ecp_group_init(&context->curve);
result = mbedtls_ecp_group_load(&context->curve, MBEDTLS_ECP_DP_SECP256R1);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256) != nullptr, error = CHIP_ERROR_INTERNAL);
mbedtls_ecp_point_init(&context->M);
mbedtls_ecp_point_init(&context->N);
mbedtls_ecp_point_init(&context->X);
mbedtls_ecp_point_init(&context->Y);
mbedtls_ecp_point_init(&context->L);
mbedtls_ecp_point_init(&context->V);
mbedtls_ecp_point_init(&context->Z);
M = &context->M;
N = &context->N;
X = &context->X;
Y = &context->Y;
L = &context->L;
V = &context->V;
Z = &context->Z;
mbedtls_mpi_init(&context->w0);
mbedtls_mpi_init(&context->w1);
mbedtls_mpi_init(&context->xy);
mbedtls_mpi_init(&context->tempbn);
w0 = &context->w0;
w1 = &context->w1;
xy = &context->xy;
tempbn = &context->tempbn;
G = &context->curve.G;
order = &context->curve.N;
return error;
exit:
_log_mbedTLS_error(result);
Clear();
return error;
}
void Spake2p_P256_SHA256_HKDF_HMAC::Clear()
{
VerifyOrReturn(state != CHIP_SPAKE2P_STATE::PREINIT);
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
mbedtls_ecp_point_free(&context->M);
mbedtls_ecp_point_free(&context->N);
mbedtls_ecp_point_free(&context->X);
mbedtls_ecp_point_free(&context->Y);
mbedtls_ecp_point_free(&context->L);
mbedtls_ecp_point_free(&context->Z);
mbedtls_ecp_point_free(&context->V);
mbedtls_mpi_free(&context->w0);
mbedtls_mpi_free(&context->w1);
mbedtls_mpi_free(&context->xy);
mbedtls_mpi_free(&context->tempbn);
mbedtls_ecp_group_free(&context->curve);
state = CHIP_SPAKE2P_STATE::PREINIT;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::Mac(const uint8_t * key, size_t key_len, const uint8_t * in, size_t in_len,
MutableByteSpan & out_span)
{
HMAC_sha hmac;
VerifyOrReturnError(out_span.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL);
ReturnErrorOnFailure(hmac.HMAC_SHA256(key, key_len, in, in_len, out_span.data(), kSHA256_Hash_Length));
out_span = out_span.SubSpan(0, kSHA256_Hash_Length);
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::MacVerify(const uint8_t * key, size_t key_len, const uint8_t * mac, size_t mac_len,
const uint8_t * in, size_t in_len)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
uint8_t computed_mac[kSHA256_Hash_Length];
MutableByteSpan computed_mac_span{ computed_mac };
VerifyOrExit(mac_len == kSHA256_Hash_Length, error = CHIP_ERROR_INVALID_ARGUMENT);
SuccessOrExit(error = Mac(key, key_len, in, in_len, computed_mac_span));
VerifyOrExit(computed_mac_span.size() == mac_len, error = CHIP_ERROR_INTERNAL);
VerifyOrExit(IsBufferContentEqualConstantTime(mac, computed_mac, kSHA256_Hash_Length), error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FELoad(const uint8_t * in, size_t in_len, void * fe)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
result = mbedtls_mpi_read_binary((mbedtls_mpi *) fe, Uint8::to_const_uchar(in), in_len);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fe, (mbedtls_mpi *) fe, (const mbedtls_mpi *) order);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEWrite(const void * fe, uint8_t * out, size_t out_len)
{
if (mbedtls_mpi_write_binary((const mbedtls_mpi *) fe, Uint8::to_uchar(out), out_len) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEGenerate(void * fe)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
result = mbedtls_ecp_gen_privkey(&context->curve, (mbedtls_mpi *) fe, CryptoRNG, nullptr);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEMul(void * fer, const void * fe1, const void * fe2)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
result = mbedtls_mpi_mul_mpi((mbedtls_mpi *) fer, (const mbedtls_mpi *) fe1, (const mbedtls_mpi *) fe2);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fer, (mbedtls_mpi *) fer, (const mbedtls_mpi *) order);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointLoad(const uint8_t * in, size_t in_len, void * R)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_point_read_binary(&context->curve, (mbedtls_ecp_point *) R, Uint8::to_const_uchar(in), in_len) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointWrite(const void * R, uint8_t * out, size_t out_len)
{
memset(out, 0, out_len);
size_t mbedtls_out_len = out_len;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_point_write_binary(&context->curve, (const mbedtls_ecp_point *) R, MBEDTLS_ECP_PF_UNCOMPRESSED,
&mbedtls_out_len, Uint8::to_uchar(out), out_len) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointMul(void * R, const void * P1, const void * fe1)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_mul(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1,
CryptoRNG, nullptr) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointAddMul(void * R, const void * P1, const void * fe1, const void * P2,
const void * fe2)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_muladd(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1,
(const mbedtls_mpi *) fe2, (const mbedtls_ecp_point *) P2) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointInvert(void * R)
{
mbedtls_ecp_point * Rp = (mbedtls_ecp_point *) R;
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_mpi_sub_mpi(&Rp->CHIP_CRYPTO_PAL_PRIVATE(Y), &context->curve.P, &Rp->CHIP_CRYPTO_PAL_PRIVATE(Y)) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointCofactorMul(void * R)
{
return CHIP_NO_ERROR;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::ComputeL(uint8_t * Lout, size_t * L_len, const uint8_t * w1in, size_t w1in_len)
{
CHIP_ERROR error = CHIP_NO_ERROR;
int result = 0;
mbedtls_ecp_group curve;
mbedtls_mpi w1_bn;
mbedtls_ecp_point Ltemp;
mbedtls_ecp_group_init(&curve);
mbedtls_mpi_init(&w1_bn);
mbedtls_ecp_point_init(&Ltemp);
result = mbedtls_ecp_group_load(&curve, MBEDTLS_ECP_DP_SECP256R1);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_read_binary(&w1_bn, Uint8::to_const_uchar(w1in), w1in_len);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_mpi_mod_mpi(&w1_bn, &w1_bn, &curve.N);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
result = mbedtls_ecp_mul(&curve, &Ltemp, &w1_bn, &curve.G, CryptoRNG, nullptr);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
memset(Lout, 0, *L_len);
result = mbedtls_ecp_point_write_binary(&curve, &Ltemp, MBEDTLS_ECP_PF_UNCOMPRESSED, L_len, Uint8::to_uchar(Lout), *L_len);
VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL);
exit:
_log_mbedTLS_error(result);
mbedtls_ecp_point_free(&Ltemp);
mbedtls_mpi_free(&w1_bn);
mbedtls_ecp_group_free(&curve);
return error;
}
CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointIsValid(void * R)
{
Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext);
if (mbedtls_ecp_check_pubkey(&context->curve, (mbedtls_ecp_point *) R) != 0)
{
return CHIP_ERROR_INTERNAL;
}
return CHIP_NO_ERROR;
}
} // namespace Crypto
} // namespace chip