blob: 8fab5f11fe4b00382933a8c02e91e358bd4709c4 [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "AppConfig.h"
#include "FreeRTOS.h"
#include "event_groups.h"
#include "matter_shell.h"
#include "semphr.h"
#include "task.h"
#ifdef __cplusplus
extern "C" {
#endif
#include "assert.h"
#include "em_core.h"
#include "em_usart.h"
#include "sl_board_control.h"
#include "sl_uartdrv_instances.h"
#ifdef SL_CATALOG_UARTDRV_EUSART_PRESENT
#include "sl_uartdrv_eusart_vcom_config.h"
#if (defined(EFR32MG24) && defined(WF200_WIFI))
#include "spi_multiplex.h"
#endif /* EFR32MG24 && WF200_WIFI */
#endif
#ifdef SL_CATALOG_UARTDRV_USART_PRESENT
#include "sl_uartdrv_usart_vcom_config.h"
#endif // EFR32MG24
#include "uart.h"
#include "uartdrv.h"
#include <stddef.h>
#include <string.h>
#if defined(SL_CATALOG_POWER_MANAGER_PRESENT)
#include "sl_power_manager.h"
#endif
#if !defined(MIN)
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#endif
#ifdef SL_CATALOG_UARTDRV_EUSART_PRESENT
#define HELPER1(x) EUSART##x##_RX_IRQn
#else
#define HELPER1(x) USART##x##_RX_IRQn
#endif
#define HELPER2(x) HELPER1(x)
#ifdef SL_CATALOG_UARTDRV_EUSART_PRESENT
#define HELPER3(x) EUSART##x##_RX_IRQHandler
#else
#define HELPER3(x) USART##x##_RX_IRQHandler
#endif
#define HELPER4(x) HELPER3(x)
// On MG24 boards VCOM runs on the EUSART device, MG12 uses the UART device
#ifdef SL_CATALOG_UARTDRV_EUSART_PRESENT
#define USART_IRQ HELPER2(SL_UARTDRV_EUSART_VCOM_PERIPHERAL_NO)
#define USART_IRQHandler HELPER4(SL_UARTDRV_EUSART_VCOM_PERIPHERAL_NO)
#define vcom_handle sl_uartdrv_eusart_vcom_handle
#else
#define USART_IRQ HELPER2(SL_UARTDRV_USART_VCOM_PERIPHERAL_NO)
#define USART_IRQHandler HELPER4(SL_UARTDRV_USART_VCOM_PERIPHERAL_NO)
#define vcom_handle sl_uartdrv_usart_vcom_handle
#endif // EFR32MG24
typedef struct
{
// The data buffer
uint8_t * pBuffer;
// The offset of the first item written to the list.
volatile uint16_t Head;
// The offset of the next item to be written to the list.
volatile uint16_t Tail;
// Maxium size of data that can be hold in buffer before overwriting
uint16_t MaxSize;
} Fifo_t;
#define UART_CONSOLE_ERR -1 // Negative value in case of UART Console action failed. Triggers a failure for PW_RPC
#define MAX_BUFFER_SIZE 256
#define MAX_DMA_BUFFER_SIZE (MAX_BUFFER_SIZE / 2)
// In order to reduce the probability of data loss during the dmaFull callback handler we use
// two duplicate receive buffers so we can always have one "active" receive queue.
static uint8_t sRxDmaBuffer[MAX_DMA_BUFFER_SIZE];
static uint8_t sRxDmaBuffer2[MAX_DMA_BUFFER_SIZE];
static uint16_t lastCount; // Nb of bytes already processed from the active dmaBuffer
// uart transmit
#if SILABS_LOG_OUT_UART
#define UART_MAX_QUEUE_SIZE 125
#else
#define UART_MAX_QUEUE_SIZE 25
#endif
#define UART_TASK_SIZE 256
#define UART_TASK_NAME "UART"
#ifdef CHIP_CONFIG_LOG_MESSAGE_MAX_SIZE
#define UART_TX_MAX_BUF_LEN (CHIP_CONFIG_LOG_MESSAGE_MAX_SIZE + 2) // \r\n
#else
#define UART_TX_MAX_BUF_LEN (258)
#endif
static TaskHandle_t sUartTaskHandle;
static StackType_t uartStack[UART_TASK_SIZE * sizeof(StackType_t)];
static StaticTask_t uartTaskStruct;
typedef struct
{
uint8_t data[UART_TX_MAX_BUF_LEN];
uint16_t length = 0;
} UartTxStruct_t;
uint8_t sUartTxQueueBuffer[UART_MAX_QUEUE_SIZE * sizeof(UartTxStruct_t)];
static StaticQueue_t sUartTxQueueStruct;
static QueueHandle_t sUartTxQueue;
// Rx buffer for the receive Fifo
static uint8_t sRxFifoBuffer[MAX_BUFFER_SIZE];
static Fifo_t sReceiveFifo;
static void UART_rx_callback(UARTDRV_Handle_t handle, Ecode_t transferStatus, uint8_t * data, UARTDRV_Count_t transferCount);
static void UART_tx_callback(struct UARTDRV_HandleData * handle, Ecode_t transferStatus, uint8_t * data,
UARTDRV_Count_t transferCount);
static void uartSendBytes(uint8_t * buffer, uint16_t nbOfBytes);
static bool InitFifo(Fifo_t * fifo, uint8_t * pDataBuffer, uint16_t bufferSize)
{
if (fifo == NULL || pDataBuffer == NULL)
{
return false;
}
fifo->pBuffer = pDataBuffer;
fifo->MaxSize = bufferSize;
fifo->Tail = fifo->Head = 0;
return true;
}
/*
* @brief Get the amount of unprocessed bytes in the fifo buffer
* @param Ptr to the fifo
* @return Nb of "unread" bytes available in the fifo
*/
static uint16_t AvailableDataCount(Fifo_t * fifo)
{
uint16_t size = 0;
// if equal there is no data return 0 directly
if (fifo->Tail != fifo->Head)
{
// determine if a wrap around occurred to get the right data size avalaible.
size = (fifo->Tail < fifo->Head) ? (fifo->MaxSize - fifo->Head + fifo->Tail) : (fifo->Tail - fifo->Head);
}
return size;
}
/*
* @brief Get the available space in the fifo buffer to insert new data
* @param Ptr to the fifo
* @return Nb of free bytes left in te buffer
*/
static uint16_t RemainingSpace(Fifo_t * fifo)
{
return fifo->MaxSize - AvailableDataCount(fifo);
}
/*
* @brief Write data in the fifo as a circular buffer
* @param Ptr to the fifo, ptr of the data to write, nb of bytes to write
*/
static void WriteToFifo(Fifo_t * fifo, uint8_t * pDataToWrite, uint16_t SizeToWrite)
{
assert(fifo);
assert(pDataToWrite);
assert(SizeToWrite <= fifo->MaxSize);
// Overwrite is not allowed
if (RemainingSpace(fifo) >= SizeToWrite)
{
uint16_t nBytesBeforWrap = (fifo->MaxSize - fifo->Tail);
if (SizeToWrite > nBytesBeforWrap)
{
// The number of bytes to write is bigger than the remaining bytes
// in the buffer, we have to wrap around
memcpy(fifo->pBuffer + fifo->Tail, pDataToWrite, nBytesBeforWrap);
memcpy(fifo->pBuffer, pDataToWrite + nBytesBeforWrap, SizeToWrite - nBytesBeforWrap);
}
else
{
memcpy(fifo->pBuffer + fifo->Tail, pDataToWrite, SizeToWrite);
}
fifo->Tail = (fifo->Tail + SizeToWrite) % fifo->MaxSize; // increment tail with wraparound
}
}
/*
* @brief Write data in the fifo as a circular buffer
* @param Ptr to the fifo, ptr to contain the data to process, nb of bytes to pull from the fifo
* @return Nb of bytes that were retrieved.
*/
static uint16_t RetrieveFromFifo(Fifo_t * fifo, uint8_t * pData, uint16_t SizeToRead)
{
assert(fifo);
assert(pData);
assert(SizeToRead <= fifo->MaxSize);
uint16_t ReadSize = MIN(SizeToRead, AvailableDataCount(fifo));
uint16_t nBytesBeforWrap = (fifo->MaxSize - fifo->Head);
if (ReadSize > nBytesBeforWrap)
{
memcpy(pData, fifo->pBuffer + fifo->Head, nBytesBeforWrap);
memcpy(pData + nBytesBeforWrap, fifo->pBuffer, ReadSize - nBytesBeforWrap);
}
else
{
memcpy(pData, (fifo->pBuffer + fifo->Head), ReadSize);
}
fifo->Head = (fifo->Head + ReadSize) % fifo->MaxSize; // increment tail with wraparound
return ReadSize;
}
/*
* @brief Init the the UART for serial communication, Start DMA reception
* and init Fifo to handle the received data from this uart
*
* @Note This UART is used for pigweed rpc
*/
void uartConsoleInit(void)
{
if (sUartTaskHandle != NULL)
{
// Init was already done
return;
}
sl_board_enable_vcom();
// Init a fifo for the data received on the uart
InitFifo(&sReceiveFifo, sRxFifoBuffer, MAX_BUFFER_SIZE);
// Activate 2 dma queues to always have one active
UARTDRV_Receive(vcom_handle, sRxDmaBuffer, MAX_DMA_BUFFER_SIZE, UART_rx_callback);
UARTDRV_Receive(vcom_handle, sRxDmaBuffer2, MAX_DMA_BUFFER_SIZE, UART_rx_callback);
sUartTxQueue = xQueueCreateStatic(UART_MAX_QUEUE_SIZE, sizeof(UartTxStruct_t), sUartTxQueueBuffer, &sUartTxQueueStruct);
sUartTaskHandle = xTaskCreateStatic(uartMainLoop, UART_TASK_NAME, UART_TASK_SIZE, nullptr, 30, uartStack, &uartTaskStruct);
assert(sUartTaskHandle);
assert(sUartTxQueue);
// Enable USART0/EUSART0 interrupt to wake OT task when data arrives
NVIC_ClearPendingIRQ(USART_IRQ);
NVIC_EnableIRQ(USART_IRQ);
#ifdef SL_CATALOG_UARTDRV_EUSART_PRESENT
// Clear previous RX interrupts
EUSART_IntClear(SL_UARTDRV_EUSART_VCOM_PERIPHERAL, EUSART_IF_RXFL);
// Enable RX interrupts
EUSART_IntEnable(SL_UARTDRV_EUSART_VCOM_PERIPHERAL, EUSART_IF_RXFL);
// Enable EUSART
EUSART_Enable(SL_UARTDRV_EUSART_VCOM_PERIPHERAL, eusartEnable);
#else
USART_IntEnable(SL_UARTDRV_USART_VCOM_PERIPHERAL, USART_IF_RXDATAV);
#endif // EFR32MG24
}
void USART_IRQHandler(void)
{
#ifdef ENABLE_CHIP_SHELL
chip::NotifyShellProcessFromISR();
#elif !defined(PW_RPC_ENABLED)
otSysEventSignalPending();
#endif
#ifdef SL_CATALOG_UARTDRV_EUSART_PRESENT
EUSART_IntClear(SL_UARTDRV_EUSART_VCOM_PERIPHERAL, EUSART_IF_RXFL);
#endif
}
/**
* @brief Transmit complete callback
*
* @param handle
* @param transferStatus
* @param data
* @param transferCount
*/
void UART_tx_callback(struct UARTDRV_HandleData * handle, Ecode_t transferStatus, uint8_t * data, UARTDRV_Count_t transferCount)
{
BaseType_t xHigherPriorityTaskWoken;
vTaskNotifyGiveFromISR(sUartTaskHandle, &xHigherPriorityTaskWoken) portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
/*
* @brief Callback triggered when a UARTDRV DMA buffer is full
*/
static void UART_rx_callback(UARTDRV_Handle_t handle, Ecode_t transferStatus, uint8_t * data, UARTDRV_Count_t transferCount)
{
(void) transferStatus;
uint8_t writeSize = (transferCount - lastCount);
if (RemainingSpace(&sReceiveFifo) >= writeSize)
{
WriteToFifo(&sReceiveFifo, data + lastCount, writeSize);
lastCount = 0;
}
UARTDRV_Receive(vcom_handle, data, transferCount, UART_rx_callback);
#ifdef ENABLE_CHIP_SHELL
chip::NotifyShellProcessFromISR();
#elif !defined(PW_RPC_ENABLED)
otSysEventSignalPending();
#endif
}
/**
* @brief Read the data available from the console Uart
*
* @param Buf Buffer that contains the data to write
* @param BufLength number bytes to write
* @return int16_t Amount of bytes written or ERROR (-1)
*/
int16_t uartConsoleWrite(const char * Buf, uint16_t BufLength)
{
if (Buf == NULL || BufLength < 1 || BufLength > UART_TX_MAX_BUF_LEN)
{
return UART_CONSOLE_ERR;
}
#ifdef PW_RPC_ENABLED
// Pigweed Logger is already thread safe.
UARTDRV_ForceTransmit(vcom_handle, (uint8_t *) Buf, BufLength);
return BufLength;
#endif
UartTxStruct_t workBuffer;
memcpy(workBuffer.data, Buf, BufLength);
workBuffer.length = BufLength;
if (xPortIsInsideInterrupt())
{
BaseType_t xHigherPriorityTaskWoken;
xQueueSendFromISR(sUartTxQueue, &workBuffer, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
return BufLength;
}
else
{
if (pdTRUE == xQueueSend(sUartTxQueue, &workBuffer, portMAX_DELAY))
{
return BufLength;
}
}
return UART_CONSOLE_ERR;
}
/**
* @brief Write Logs to the Uart. Appends a return character
*
* @param log pointer to the logs
* @param length number of bytes to write
* @return int16_t Amount of bytes written or ERROR (-1)
*/
int16_t uartLogWrite(const char * log, uint16_t length)
{
if (log == NULL || length < 1 || (length + 2) > UART_TX_MAX_BUF_LEN)
{
return UART_CONSOLE_ERR;
}
UartTxStruct_t workBuffer;
memcpy(workBuffer.data, log, length);
memcpy(workBuffer.data + length, "\r\n", 2);
workBuffer.length = length + 2;
if (xPortIsInsideInterrupt())
{
BaseType_t xHigherPriorityTaskWoken;
xQueueSendFromISR(sUartTxQueue, &workBuffer, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
return length;
}
else
{
if (pdTRUE == xQueueSend(sUartTxQueue, &workBuffer, 0))
{
return length;
}
}
return UART_CONSOLE_ERR;
}
/*
* @brief Read the data available from the console Uart
* @param Buffer for the data to be read, number bytes to read.
* @return Amount of bytes that was read from the rx fifo or ERROR (-1)
*/
int16_t uartConsoleRead(char * Buf, uint16_t NbBytesToRead)
{
uint8_t * data;
UARTDRV_Count_t count, remaining;
if (Buf == NULL || NbBytesToRead < 1)
{
return UART_CONSOLE_ERR;
}
if (NbBytesToRead > AvailableDataCount(&sReceiveFifo))
{
// Not enough data available in the fifo for the read size request
// If there is data available in dma buffer, get it now.
CORE_ATOMIC_SECTION(UARTDRV_GetReceiveStatus(vcom_handle, &data, &count, &remaining); if (count > lastCount) {
WriteToFifo(&sReceiveFifo, data + lastCount, count - lastCount);
lastCount = count;
})
}
return (int16_t) RetrieveFromFifo(&sReceiveFifo, (uint8_t *) Buf, NbBytesToRead);
}
void uartMainLoop(void * args)
{
UartTxStruct_t workBuffer;
while (1)
{
BaseType_t eventReceived = xQueueReceive(sUartTxQueue, &workBuffer, portMAX_DELAY);
while (eventReceived == pdTRUE)
{
uartSendBytes(workBuffer.data, workBuffer.length);
eventReceived = xQueueReceive(sUartTxQueue, &workBuffer, 0);
}
}
}
/**
* @brief Send Bytes to UART. This blocks the UART task.
*
* @param buffer pointer to the buffer containing the data
* @param nbOfBytes number of bytes to send
*/
void uartSendBytes(uint8_t * buffer, uint16_t nbOfBytes)
{
#if defined(SL_CATALOG_POWER_MANAGER_PRESENT)
sl_power_manager_add_em_requirement(SL_POWER_MANAGER_EM1);
#endif
#if (defined(EFR32MG24) && defined(WF200_WIFI))
pre_uart_transfer();
#endif /* EFR32MG24 && WF200_WIFI */
UARTDRV_Transmit(vcom_handle, (uint8_t *) buffer, nbOfBytes, UART_tx_callback);
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
#if (defined(EFR32MG24) && defined(WF200_WIFI))
post_uart_transfer();
#endif /* EFR32MG24 && WF200_WIFI */
#if defined(SL_CATALOG_POWER_MANAGER_PRESENT)
sl_power_manager_remove_em_requirement(SL_POWER_MANAGER_EM1);
#endif
}
#ifdef __cplusplus
}
#endif