| /* |
| * |
| * Copyright (c) 2020 Project CHIP Authors |
| * Copyright (c) 2019 Google LLC. |
| * Copyright (c) 2013-2018 Nest Labs, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /** |
| * @file |
| * This file defines the class <tt>Inet::IPAddress</tt> and |
| * related enumerated constants. The CHIP Inet Layer uses objects |
| * of this class to represent Internet protocol addresses of both |
| * IPv4 and IPv6 address families. (IPv4 addresses are stored |
| * internally in the V4COMPAT format, reserved for that purpose.) |
| */ |
| |
| #ifndef IPADDRESS_H |
| #define IPADDRESS_H |
| |
| #include <stdint.h> |
| |
| #include <support/DLLUtil.h> |
| |
| #include <inet/InetConfig.h> |
| |
| #include "inet/IANAConstants.h" |
| |
| #if CHIP_SYSTEM_CONFIG_USE_LWIP |
| #include <lwip/init.h> |
| #include <lwip/ip_addr.h> |
| #if INET_CONFIG_ENABLE_IPV4 |
| #include <lwip/ip4_addr.h> |
| #endif // INET_CONFIG_ENABLE_IPV4 |
| #include <lwip/inet.h> |
| #endif // CHIP_SYSTEM_CONFIG_USE_LWIP |
| |
| #if CHIP_SYSTEM_CONFIG_USE_SOCKETS |
| #include <sys/socket.h> |
| #include <netinet/in.h> |
| #endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS |
| |
| #define NL_INET_IPV6_ADDR_LEN_IN_BYTES (16) |
| #define NL_INET_IPV6_MCAST_GROUP_LEN_IN_BYTES (14) |
| |
| /** |
| * @brief Adaptation for LwIP ip4_addr_t type. |
| * |
| * @details |
| * Before LwIP 2.0.0, the \c ip_addr_t type alias referred to a structure comprising |
| * an IPv4 address. At LwIP 2.0.0 and thereafter, this type alias is renamed \c ip4_addr_t |
| * and \c ip_addr_t is replaced with an alias to a union of both. Here, the \c ip4_addr_t |
| * type alias is provided even when the LwIP version is earlier than 2.0.0 so as to prepare |
| * for the import of the new logic. |
| */ |
| #if CHIP_SYSTEM_CONFIG_USE_LWIP && INET_CONFIG_ENABLE_IPV4 && LWIP_VERSION_MAJOR < 2 && LWIP_VERSION_MINOR < 5 |
| typedef ip_addr_t ip4_addr_t; |
| #endif // CHIP_SYSTEM_CONFIG_USE_LWIP && INET_CONFIG_ENABLE_IPV4 && LWIP_VERSION_MAJOR < 2 && LWIP_VERSION_MINOR < 5 |
| |
| #if CHIP_SYSTEM_CONFIG_USE_LWIP && LWIP_VERSION_MAJOR == 1 && LWIP_VERSION_MINOR >= 5 |
| typedef u8_t lwip_ip_addr_type; |
| #endif // CHIP_SYSTEM_CONFIG_USE_LWIP && LWIP_VERSION_MAJOR == 1 && LWIP_VERSION_MINOR >= 5 |
| |
| namespace chip { |
| namespace Inet { |
| |
| /** |
| * @brief Internet protocol address family |
| * |
| * @details |
| * Values of the \c IPAddressType type are returned by the |
| * <tt>IPAddress::Type()</tt> method. They indicate the address family |
| * entailed by the use of the address. |
| */ |
| typedef enum |
| { |
| /** Not used. */ |
| kIPAddressType_Unknown = 0, |
| |
| #if INET_CONFIG_ENABLE_IPV4 |
| /** Internet protocol version 4. */ |
| kIPAddressType_IPv4 = 1, |
| #endif // INET_CONFIG_ENABLE_IPV4 |
| |
| /** Internet protocol version 6. */ |
| kIPAddressType_IPv6 = 2, |
| |
| /** The unspecified internet address (independent of protocol version) */ |
| kIPAddressType_Any = 3 |
| } IPAddressType; |
| |
| /** |
| * @brief Internet protocol v6 multicast flags |
| * |
| * @details |
| * Values of the \c IPv6MulticastFlag type are used to call the |
| * <tt>IPAddress::MakeIPv6Multicast()</tt> methods. They indicate the |
| * type of IPv6 multicast address to create. These numbers are |
| * registered by IETF with IANA. |
| */ |
| typedef enum |
| { |
| /** The multicast address is (1) transient (i.e., dynamically-assigned) rather than (0) well-known (i.e, IANA-assigned). */ |
| kIPv6MulticastFlag_Transient = 0x01, |
| |
| /** The multicast address is (1) based on a network prefix. */ |
| kIPv6MulticastFlag_Prefix = 0x02 |
| } IPv6MulticastFlag; |
| |
| /** |
| * @brief Internet protocol address |
| * |
| * @details |
| * The CHIP Inet Layer uses objects of this class to represent Internet |
| * protocol addresses (independent of protocol version). |
| */ |
| class DLL_EXPORT IPAddress |
| { |
| public: |
| /** |
| * @brief Opaque word array to contain IP addresses (independent of protocol version) |
| * |
| * @details |
| * IPv6 address use all 128-bits split into four 32-bit network byte |
| * ordered unsigned integers. IPv4 addresses are V4COMPAT, i.e. the |
| * first three words are zero, and the fourth word contains the IPv4 |
| * address in network byte order. |
| */ |
| uint32_t Addr[4]; |
| |
| /** |
| * @brief Test whether address is IPv6 compatible. |
| * |
| * @details |
| * Use this method to check if the address belongs to the IPv6 address |
| * family. Note well: the unspecified address is not an IPv6 address. |
| * |
| * @retval true The address is IPv6 and not the unspecified address. |
| * @retval false The address is IPv4 or the unspecified address. |
| */ |
| bool IsIPv6(void) const; |
| |
| /** |
| * @brief Test whether address is IPv6 global unicast address. |
| * |
| * @details |
| * Use this method to check if the address belongs to the IPv6 address |
| * family and has the global unicast address prefix. |
| * |
| * @retval true Address is IPv6 global unicast |
| * @retval false Otherwise |
| */ |
| bool IsIPv6GlobalUnicast(void) const; |
| |
| /** |
| * @brief Test whether address is IPv6 unique-local address (ULA). |
| * |
| * @details |
| * Use this method to check if the address belongs to the IPv6 address |
| * family and has the reserved IPv6 unique-local address prefix. |
| * |
| * @retval true Address is IPv6 unique-local |
| * @retval false Otherwise |
| */ |
| bool IsIPv6ULA(void) const; |
| |
| /** |
| * @brief Test whether address is IPv6 link-local address (LL). |
| * |
| * @details |
| * Use this method to check if the address belongs to the IPv6 address |
| * family and has the reserved IPv6 link-local address prefix. |
| * |
| * @retval true Address is IPv6 link-local |
| * @retval false Otherwise |
| */ |
| bool IsIPv6LinkLocal(void) const; |
| |
| /** |
| * @brief Test whether address is IPv6 multicast. |
| * |
| * @details |
| * Use this method to check if the address belongs to the IPv6 address |
| * family and has the reserved IPv6 multicast address prefix. |
| * |
| * @retval true Address is IPv6 multicast |
| * @retval false Otherwise |
| */ |
| bool IsIPv6Multicast(void) const; |
| |
| /** |
| * @brief Test whether address is IPv4 or IPv6 multicast. |
| * |
| * @details |
| * Use this method to check if the address belongs to the IPv4 or IPv6 address |
| * family and has the reserved IPv4 or IPv6 multicast address prefix. |
| * |
| * @retval true Address is IPv4 or IPv6 multicast |
| * @retval false Otherwise |
| */ |
| bool IsMulticast(void) const; |
| |
| /** |
| * @brief Extract the IID of an IPv6 ULA address. |
| * |
| * @details |
| * Use this method with an IPv6 unique-local address (ULA) to extract the |
| * identifier identifier (IID), which is the least significant 64 bits of |
| * the address. |
| * |
| * @return 64-bit interface identifier, or zero if the IP address is not |
| * an IPv6 unique-local address. |
| */ |
| uint64_t InterfaceId(void) const; |
| |
| /** |
| * @brief Extract the 16-bit subnet identifier of an IPv6 ULA address. |
| * |
| * @details |
| * Use this method with an IPv6 unique-local address (ULA) to extract the |
| * subnet identifier, which is the least significant 16 bits of the |
| * network prefix. The network prefix is the most significant 64 bits of |
| * of the address. In other words, the subnet identifier is located in |
| * the 7th and 8th bytes of a 16-byte address. |
| * |
| * @return 16-bit subnet identifier, or zero if the IP address is not |
| * an IPv6 unique-local address. |
| */ |
| uint16_t Subnet(void) const; |
| |
| /** |
| * @brief Extract the 16-bit global network identifier of an IPv6 ULA |
| * address. |
| * |
| * @details |
| * Use this method with an IPv6 unique-local address (ULA) to extract the |
| * global network identifier, which is the 40 bits immediately following |
| * the distinguished ULA network prefix, i.e. fd00::/8. In other words, |
| * the global network identifier is located in the five bytes from the 2nd |
| * 2nd through the 6th bytes in the address. |
| * |
| * @return 40-bit global network identifier, or zero if the IP address |
| * is not an IPv6 unique-local address. |
| */ |
| uint64_t GlobalId(void) const; |
| |
| /** |
| * @brief Extract the type of the IP address. |
| * |
| * @details |
| * Use this method to return an value of the enumerated type \c |
| * IPAddressType to indicate the type of the IP address. |
| * |
| * @retval kIPAddressType_IPv4 The address is IPv4. |
| * @retval kIPAddressType_IPv6 The address is IPv6. |
| * @retval kIPAddressType_Any The address is the unspecified address. |
| */ |
| IPAddressType Type(void) const; |
| |
| /** |
| * @brief Compare this IP address with another for equivalence. |
| * |
| * @param[in] other The address to compare. |
| * |
| * @retval true If equivalent to \c other |
| * @retval false Otherwise |
| */ |
| bool operator==(const IPAddress & other) const; |
| |
| /** |
| * @brief Compare this IP address with another for inequivalence. |
| * |
| * @param[in] other The address to compare. |
| * |
| * @retval true If equivalent to \c other |
| * @retval false Otherwise |
| */ |
| bool operator!=(const IPAddress & other) const; |
| |
| /** |
| * @brief Conventional assignment operator. |
| * |
| * @param[in] other The address to copy. |
| * |
| * @return A reference to this object. |
| */ |
| IPAddress & operator=(const IPAddress & other); |
| |
| /** |
| * @brief Emit the IP address in conventional text presentation format. |
| * |
| * @param[out] buf The address of the emitted text. |
| * @param[in] bufSize The size of the buffer for the emitted text. |
| * |
| * @details |
| * Use <tt>ToString(char *buf, uint32_t bufSize) const</tt> to write the |
| * conventional text presentation form of the IP address to the memory |
| * located at \c buf and extending as much as \c bufSize bytes, including |
| * its NUL termination character. |
| * |
| * Note Well: not compliant with RFC 5952 on some platforms. Specifically, |
| * zero compression may not be applied according to section 4.2. |
| * |
| * @return The argument \c buf if no formatting error, or zero otherwise. |
| */ |
| char * ToString(char * buf, uint32_t bufSize) const; |
| |
| /** |
| * @brief Scan the IP address from its conventional presentation text. |
| * |
| * @param[in] str The address of the emitted text. |
| * @param[out] output The object to set to the scanned address. |
| * |
| * @details |
| * Use <tt>FromString(const char *str, IPAddress& output)</tt> to |
| * overwrite an IP address by scanning the conventional text presentation |
| * located at \c str. |
| * |
| * @retval true The presentation format is valid |
| * @retval false Otherwise |
| */ |
| static bool FromString(const char * str, IPAddress & output); |
| |
| /** |
| * @brief Scan the IP address from its conventional presentation text. |
| * |
| * @param[in] str A pointer to the text to be scanned. |
| * @param[in] strLen The length of the text to be scanned. |
| * @param[out] output The object to set to the scanned address. |
| * |
| * @details |
| * Use <tt>FromString(const char *str, size_t strLen, IPAddress& output)</tt> to |
| * overwrite an IP address by scanning the conventional text presentation |
| * located at \c str. |
| * |
| * @retval true The presentation format is valid |
| * @retval false Otherwise |
| */ |
| static bool FromString(const char * str, size_t strLen, IPAddress & output); |
| |
| /** |
| * @brief Emit the IP address in standard network representation. |
| * |
| * @param[inout] p Reference to the cursor to use for writing. |
| * |
| * @details |
| * Use <tt>WriteAddress(uint8_t *&p)</tt> to encode the IP address in |
| * the binary format defined by RFC 4291 for IPv6 addresses. IPv4 |
| * addresses are encoded according to section 2.5.5.1 "IPv4-Compatible |
| * IPv6 Address" (V4COMPAT). |
| */ |
| void WriteAddress(uint8_t *& p) const; |
| |
| /** |
| * @brief Emit the IP address in standard network representation. |
| * |
| * @param[inout] p Reference to the cursor to use for reading. |
| * @param[out] output Object to receive decoded IP address. |
| * |
| * @details |
| * Use <tt>ReadAddress(uint8_t *&p, IPAddress &output)</tt> to decode |
| * the IP address at \c p to the object \c output. |
| */ |
| static void ReadAddress(const uint8_t *& p, IPAddress & output); |
| |
| /** |
| * @brief Test whether address is IPv4 compatible. |
| * |
| * @details |
| * Use this method to check if the address belongs to the IPv4 address |
| * family. Note well: the unspecified address is not an IPv4 address. |
| * |
| * @retval true The address is IPv4 and not the unspecified address. |
| * @retval false The address is IPv6 or the unspecified address. |
| */ |
| bool IsIPv4(void) const; |
| |
| /** |
| * @brief Test whether address is IPv4 multicast. |
| * |
| * @details |
| * Use this method to check if the address is an IPv4 multicast |
| * address. |
| * |
| * @retval true Address is the IPv4 multicast |
| * @retval false Otherwise |
| */ |
| bool IsIPv4Multicast(void) const; |
| |
| /** |
| * @brief Test whether address is IPv4 broadcast. |
| * |
| * @details |
| * Use this method to check if the address is the special purpose IPv4 |
| * broadcast address. |
| * |
| * @retval true Address is the IPv4 broadcast |
| * @retval false Otherwise |
| */ |
| bool IsIPv4Broadcast(void) const; |
| |
| /** |
| * @fn ToIPv4() const |
| * |
| * @brief Extract the IPv4 address as a platform data structure. |
| * |
| * @details |
| * Use <tt>ToIPv4() const</tt> to extract the content as an IPv4 address, |
| * if possible. IPv6 addresses and the unspecified address are |
| * extracted as <tt>0.0.0.0</tt>. |
| * |
| * The result is either of type <tt>struct in_addr</tt> (on POSIX) or |
| * <tt>ip4_addr_t</tt> (on LwIP). |
| * |
| * @return The encapsulated IPv4 address, or \c 0.0.0.0 if the address is |
| * either unspecified or not an IPv4 address. |
| */ |
| |
| /** |
| * @fn ToIPv6() const |
| * |
| * @brief Extract the IPv6 address as a platform data structure. |
| * |
| * @details |
| * Use <tt>ToIPv6() const</tt> to extract the content as an IPv6 address, |
| * if possible. IPv4 addresses and the unspecified address are extracted |
| * as <tt>[::]</tt>. |
| * |
| * The result is either of type <tt>struct in6_addr</tt> (on POSIX) or |
| * <tt>ip6_addr_t</tt> (on LwIP). |
| * |
| * @return The encapsulated IPv4 address, or \c [::] if the address is |
| * either unspecified or not an IPv4 address. |
| */ |
| |
| /** |
| * @fn static IPAddress FromIPv4(const struct in_addr & addr) |
| * |
| * @brief Inject the IPv4 address from a platform data structure. |
| * |
| * @details |
| * Use <tt>FromIPv4(const ip4_addr_t &addr)</tt> to inject \c addr as an |
| * IPv4 address. |
| * |
| * The argument \c addr is either of type <tt>const struct in_addr&</tt> |
| * (on POSIX) or <tt>const ip4_addr_t&</tt> (on LwIP). |
| * |
| * @return The constructed IP address. |
| */ |
| /** |
| * @overload static IPAddress FromIPv4(const ip4_addr_t &addr) |
| */ |
| |
| /** |
| * @fn static IPAddress FromIPv6(const struct in6_addr& addr) |
| * |
| * @brief Inject the IPv6 address from a platform data structure. |
| * |
| * @details |
| * Use <tt>FromIPv6(const ip6_addr_t &addr)</tt> to inject \c addr as an |
| * IPv6 address. |
| * |
| * The argument \c addr is either of type <tt>const struct in6_addr&</tt> |
| * (on POSIX) or <tt>const ip6_addr_t&</tt> (on LwIP). |
| * |
| * @return The constructed IP address. |
| */ |
| /** |
| * @overload static IPAddress FromIPv6(const ip6_addr_t &addr) |
| */ |
| |
| #if CHIP_SYSTEM_CONFIG_USE_LWIP |
| |
| #if LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5 |
| /** |
| * @fn ToLwIPAddr() const |
| * |
| * @brief Extract the IP address as a LwIP ip_addr_t structure. |
| * |
| * @details |
| * Use <tt>ToLwIPAddr() const</tt> to extract the content as an IP address, |
| * if possible. |
| * |
| * @return An LwIP ip_addr_t structure corresponding to the IP address. |
| */ |
| ip_addr_t ToLwIPAddr(void) const; |
| |
| /** |
| * @fn static IPAddress FromLwIPAddr(const ip_addr_t& addr) |
| * |
| * @brief Inject the IP address from an LwIP ip_addr_t structure. |
| * |
| * @details |
| * Use <tt>FromLwIPAddr(const ip_addr_t &addr)</tt> to inject \c addr as an |
| * Inet layer IP address. |
| * |
| * The argument \c addr is of type <tt>const ip_addr_t&</tt> (on LwIP). |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress FromLwIPAddr(const ip_addr_t & addr); |
| |
| /** |
| * @brief Convert the INET layer address type to its underlying LwIP type. |
| * |
| * @details |
| * Use <tt>ToLwIPAddrType(IPAddressType)</tt> to convert the IP address type |
| * to its underlying LwIP address type code. (LWIP_VERSION_MAJOR > 1 only). |
| */ |
| static lwip_ip_addr_type ToLwIPAddrType(IPAddressType); |
| #endif // LWIP_VERSION_MAJOR > 1 || LWIP_VERSION_MINOR >= 5 |
| |
| ip6_addr_t ToIPv6(void) const; |
| static IPAddress FromIPv6(const ip6_addr_t & addr); |
| |
| #if INET_CONFIG_ENABLE_IPV4 |
| ip4_addr_t ToIPv4(void) const; |
| static IPAddress FromIPv4(const ip4_addr_t & addr); |
| #endif // INET_CONFIG_ENABLE_IPV4 |
| |
| #endif // CHIP_SYSTEM_CONFIG_USE_LWIP |
| |
| #if CHIP_SYSTEM_CONFIG_USE_SOCKETS |
| |
| struct in6_addr ToIPv6(void) const; |
| static IPAddress FromIPv6(const struct in6_addr & addr); |
| |
| #if INET_CONFIG_ENABLE_IPV4 |
| struct in_addr ToIPv4(void) const; |
| static IPAddress FromIPv4(const struct in_addr & addr); |
| #endif // INET_CONFIG_ENABLE_IPV4 |
| |
| /** |
| * @brief Inject the IPv6 address from a POSIX <tt>struct sockaddr&</tt> |
| * |
| * @details |
| * Use <tt>FromSockAddr(const struct sockaddr& sockaddr)</tt> to inject |
| * <tt>sockaddr.sa_addr</tt> as an IPv6 address. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress FromSockAddr(const struct sockaddr & sockaddr); |
| |
| #endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS |
| |
| /** |
| * @brief Construct an IPv6 unique-local address (ULA) from its parts. |
| * |
| * @details |
| * Use <tt>MakeULA(uint64_t globalId, uint16_t subnet, uint64_t |
| * interfaceId)</tt> to construct a unique-local address (ULA) with global |
| * network identifier \c globalId, subnet identifier \c subnet and |
| * interface identifier (IID) \c interfaceId. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeULA(uint64_t globalId, uint16_t subnet, uint64_t interfaceId); |
| |
| /** |
| * @brief Construct an IPv6 link-local address (LL) from its IID. |
| * |
| * @details |
| * Use <tt>MakeLLA(uint64_t interfaceId)</tt> to construct an IPv6 |
| * link-local address (LL) with interface identifier \c interfaceId. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeLLA(uint64_t interfaceId); |
| |
| /** |
| * @brief Construct an IPv6 multicast address from its parts. |
| * |
| * @details |
| * Use <tt>MakeIPv6Multicast(uint8_t flags, uint8_t scope, |
| * uint8_t groupId[14])</tt> to construct an IPv6 multicast |
| * address with \c flags for routing scope \c scope and group |
| * identifier octets \c groupId. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeIPv6Multicast(uint8_t aFlags, uint8_t aScope, |
| const uint8_t aGroupId[NL_INET_IPV6_MCAST_GROUP_LEN_IN_BYTES]); |
| |
| /** |
| * @brief Construct an IPv6 multicast address from its parts. |
| * |
| * @details |
| * Use <tt>MakeIPv6Multicast(uint8_t flags, uint8_t scope, |
| * uint32_t groupId)</tt> to construct an IPv6 multicast |
| * address with \c flags for routing scope \c scope and group |
| * identifier \c groupId. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeIPv6Multicast(uint8_t aFlags, uint8_t aScope, uint32_t aGroupId); |
| |
| /** |
| * @brief Construct a well-known IPv6 multicast address from its parts. |
| * |
| * @details |
| * Use <tt>MakeIPv6WellKnownMulticast(uint8_t scope, uint32_t |
| * groupId)</tt> to construct an IPv6 multicast address for |
| * routing scope \c scope and group identifier \c groupId. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeIPv6WellKnownMulticast(uint8_t aScope, uint32_t aGroupId); |
| |
| /** |
| * @brief Construct a transient IPv6 multicast address from its parts. |
| * |
| * @details |
| * Use <tt>MakeIPv6TransientMulticast(uint8_t flags, uint8_t scope, |
| * uint8_t groupId[14])</tt> to construct a transient IPv6 |
| * multicast address with \c flags for routing scope \c scope and |
| * group identifier octets \c groupId. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeIPv6TransientMulticast(uint8_t aFlags, uint8_t aScope, |
| const uint8_t aGroupId[NL_INET_IPV6_MCAST_GROUP_LEN_IN_BYTES]); |
| |
| /** |
| * @brief Construct a transient, prefix IPv6 multicast address from its parts. |
| * |
| * @details |
| * Use <tt>MakeIPv6PrefixMulticast(uint8_t scope, uint8_t |
| * prefixlen, const uint64_t prefix, uint32_t groupId)</tt> to |
| * construct a transient, prefix IPv6 multicast address with for |
| * routing scope \c scope and group identifier octets \c groupId, |
| * qualified by the prefix \c prefix of length \c prefixlen bits. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeIPv6PrefixMulticast(uint8_t aScope, uint8_t aPrefixLength, const uint64_t & aPrefix, uint32_t aGroupId); |
| |
| /** |
| * @brief Construct an IPv4 broadcast address. |
| * |
| * @return The constructed IP address. |
| */ |
| static IPAddress MakeIPv4Broadcast(void); |
| |
| /** |
| * @brief The distinguished unspecified IP address object. |
| * |
| * @details |
| * This object is used as a constant for equivalence comparisons. It must |
| * not be modified by users of the CHIP Inet Layer. |
| */ |
| static IPAddress Any; |
| }; |
| |
| } // namespace Inet |
| } // namespace chip |
| |
| #endif // !defined(IPADDRESS_H) |