blob: 1efefb5fa6d4cb3f263b697a4501ddcb4d6a485c [file] [log] [blame]
/*
*
* Copyright (c) 2020-2021 Project CHIP Authors
* Copyright (c) 2018 Google LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This header file implements the <tt>Inet::IPEndPointBasis</tt>
* class, an intermediate, non-instantiable basis class
* supporting other IP-based end points.
*
*/
// define to ensure we have the IPV6_PKTINFO
#define __APPLE_USE_RFC_3542
#include "IPEndPointBasis.h"
#include <string.h>
#include <utility>
#include <inet/EndPointBasis.h>
#include <inet/InetInterface.h>
#include <inet/InetLayer.h>
#include <support/CodeUtils.h>
#include <support/SafeInt.h>
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if INET_CONFIG_ENABLE_IPV4
#include <lwip/igmp.h>
#endif // INET_CONFIG_ENABLE_IPV4
#include <lwip/init.h>
#include <lwip/ip.h>
#include <lwip/mld6.h>
#include <lwip/netif.h>
#include <lwip/raw.h>
#include <lwip/udp.h>
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
#include <errno.h>
#include <net/if.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <unistd.h>
#if HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif // HAVE_SYS_SOCKET_H
/*
* Some systems define both IPV6_{ADD,DROP}_MEMBERSHIP and
* IPV6_{JOIN,LEAVE}_GROUP while others only define
* IPV6_{JOIN,LEAVE}_GROUP. Prefer the "_MEMBERSHIP" flavor for
* parallelism with IPv4 and create the alias to the availabile
* definitions.
*/
#if defined(IPV6_ADD_MEMBERSHIP)
#define INET_IPV6_ADD_MEMBERSHIP IPV6_ADD_MEMBERSHIP
#elif defined(IPV6_JOIN_GROUP)
#define INET_IPV6_ADD_MEMBERSHIP IPV6_JOIN_GROUP
#elif !__ZEPHYR__
#error \
"Neither IPV6_ADD_MEMBERSHIP nor IPV6_JOIN_GROUP are defined which are required for generalized IPv6 multicast group support."
#endif // IPV6_ADD_MEMBERSHIP
#if defined(IPV6_DROP_MEMBERSHIP)
#define INET_IPV6_DROP_MEMBERSHIP IPV6_DROP_MEMBERSHIP
#elif defined(IPV6_LEAVE_GROUP)
#define INET_IPV6_DROP_MEMBERSHIP IPV6_LEAVE_GROUP
#elif !__ZEPHYR__
#error \
"Neither IPV6_DROP_MEMBERSHIP nor IPV6_LEAVE_GROUP are defined which are required for generalized IPv6 multicast group support."
#endif // IPV6_DROP_MEMBERSHIP
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
#if CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
#define INET_PORTSTRLEN 6
#endif // CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
#if CHIP_SYSTEM_CONFIG_USE_ZEPHYR_SOCKET_EXTENSIONS
#include "ZephyrSocket.h"
#endif // CHIP_SYSTEM_CONFIG_USE_ZEPHYR_SOCKET_EXTENSIONS
namespace chip {
namespace Inet {
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
union PeerSockAddr
{
sockaddr any;
sockaddr_in in;
sockaddr_in6 in6;
};
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
#if CHIP_SYSTEM_CONFIG_USE_PLATFORM_MULTICAST_API
IPEndPointBasis::JoinMulticastGroupHandler IPEndPointBasis::sJoinMulticastGroupHandler;
IPEndPointBasis::LeaveMulticastGroupHandler IPEndPointBasis::sLeaveMulticastGroupHandler;
#endif // CHIP_SYSTEM_CONFIG_USE_PLATFORM_MULTICAST_API
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if INET_CONFIG_ENABLE_IPV4
#define LWIP_IPV4_ADDR_T ip4_addr_t
#define IPV4_TO_LWIPADDR(aAddress) (aAddress).ToIPv4()
#endif // INET_CONFIG_ENABLE_IPV4
#define LWIP_IPV6_ADDR_T ip6_addr_t
#define IPV6_TO_LWIPADDR(aAddress) (aAddress).ToIPv6()
#if !defined(RAW_FLAGS_MULTICAST_LOOP) || !defined(UDP_FLAGS_MULTICAST_LOOP) || !defined(raw_clear_flags) || \
!defined(raw_set_flags) || !defined(udp_clear_flags) || !defined(udp_set_flags)
#define HAVE_LWIP_MULTICAST_LOOP 0
#else
#define HAVE_LWIP_MULTICAST_LOOP 1
#endif // !defined(RAW_FLAGS_MULTICAST_LOOP) || !defined(UDP_FLAGS_MULTICAST_LOOP) || !defined(raw_clear_flags) ||
// !defined(raw_set_flags) || !defined(udp_clear_flags) || !defined(udp_set_flags)
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
static INET_ERROR CheckMulticastGroupArgs(InterfaceId aInterfaceId, const IPAddress & aAddress)
{
VerifyOrReturnError(IsInterfaceIdPresent(aInterfaceId), INET_ERROR_UNKNOWN_INTERFACE);
VerifyOrReturnError(aAddress.IsMulticast(), INET_ERROR_WRONG_ADDRESS_TYPE);
return INET_NO_ERROR;
}
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if INET_CONFIG_ENABLE_IPV4
#if LWIP_IPV4 && LWIP_IGMP
static INET_ERROR LwIPIPv4JoinLeaveMulticastGroup(InterfaceId aInterfaceId, const IPAddress & aAddress,
err_t (*aMethod)(struct netif *, const LWIP_IPV4_ADDR_T *))
{
struct netif * const lNetif = IPEndPointBasis::FindNetifFromInterfaceId(aInterfaceId);
VerifyOrReturnError(lNetif != nullptr, INET_ERROR_UNKNOWN_INTERFACE);
const LWIP_IPV4_ADDR_T lIPv4Address = IPV4_TO_LWIPADDR(aAddress);
const err_t lStatus = aMethod(lNetif, &lIPv4Address);
if (lStatus == ERR_MEM)
{
return INET_ERROR_NO_MEMORY;
}
return chip::System::MapErrorLwIP(lStatus);
}
#endif // LWIP_IPV4 && LWIP_IGMP
#endif // INET_CONFIG_ENABLE_IPV4
// unusual define check for LWIP_IPV6_ND is because espressif fork
// of LWIP does not define the _ND constant.
#if LWIP_IPV6_MLD && (!defined(LWIP_IPV6_ND) || LWIP_IPV6_ND) && LWIP_IPV6
#define HAVE_IPV6_MULTICAST
#else
// Within Project CHIP multicast support is highly desirable: used for mDNS
// as well as group communication.
#undef HAVE_IPV6_MULTICAST
#endif
#ifdef HAVE_IPV6_MULTICAST
static INET_ERROR LwIPIPv6JoinLeaveMulticastGroup(InterfaceId aInterfaceId, const IPAddress & aAddress,
err_t (*aMethod)(struct netif *, const LWIP_IPV6_ADDR_T *))
{
struct netif * const lNetif = IPEndPointBasis::FindNetifFromInterfaceId(aInterfaceId);
VerifyOrReturnError(lNetif != nullptr, INET_ERROR_UNKNOWN_INTERFACE);
const LWIP_IPV6_ADDR_T lIPv6Address = IPV6_TO_LWIPADDR(aAddress);
const err_t lStatus = aMethod(lNetif, &lIPv6Address);
if (lStatus == ERR_MEM)
{
return INET_ERROR_NO_MEMORY;
}
return chip::System::MapErrorLwIP(lStatus);
}
#endif // LWIP_IPV6_MLD && LWIP_IPV6_ND && LWIP_IPV6
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
#if IP_MULTICAST_LOOP || IPV6_MULTICAST_LOOP
static INET_ERROR SocketsSetMulticastLoopback(int aSocket, bool aLoopback, int aProtocol, int aOption)
{
const unsigned int lValue = aLoopback;
if (setsockopt(aSocket, aProtocol, aOption, &lValue, sizeof(lValue)) != 0)
{
return chip::System::MapErrorPOSIX(errno);
}
return INET_NO_ERROR;
}
#endif // IP_MULTICAST_LOOP || IPV6_MULTICAST_LOOP
static INET_ERROR SocketsSetMulticastLoopback(int aSocket, IPVersion aIPVersion, bool aLoopback)
{
#ifdef IPV6_MULTICAST_LOOP
INET_ERROR lRetval;
switch (aIPVersion)
{
case kIPVersion_6:
lRetval = SocketsSetMulticastLoopback(aSocket, aLoopback, IPPROTO_IPV6, IPV6_MULTICAST_LOOP);
break;
#if INET_CONFIG_ENABLE_IPV4
case kIPVersion_4:
lRetval = SocketsSetMulticastLoopback(aSocket, aLoopback, IPPROTO_IP, IP_MULTICAST_LOOP);
break;
#endif // INET_CONFIG_ENABLE_IPV4
default:
lRetval = INET_ERROR_WRONG_ADDRESS_TYPE;
break;
}
return (lRetval);
#else // IPV6_MULTICAST_LOOP
return INET_ERROR_NOT_SUPPORTED;
#endif // IPV6_MULTICAST_LOOP
}
#if INET_CONFIG_ENABLE_IPV4
static INET_ERROR SocketsIPv4JoinLeaveMulticastGroup(int aSocket, InterfaceId aInterfaceId, const IPAddress & aAddress,
int aCommand)
{
IPAddress lInterfaceAddress;
bool lInterfaceAddressFound = false;
for (InterfaceAddressIterator lAddressIterator; lAddressIterator.HasCurrent(); lAddressIterator.Next())
{
const IPAddress lCurrentAddress = lAddressIterator.GetAddress();
if (lAddressIterator.GetInterface() == aInterfaceId)
{
if (lCurrentAddress.IsIPv4())
{
lInterfaceAddressFound = true;
lInterfaceAddress = lCurrentAddress;
break;
}
}
}
VerifyOrReturnError(lInterfaceAddressFound, INET_ERROR_ADDRESS_NOT_FOUND);
struct ip_mreq lMulticastRequest;
memset(&lMulticastRequest, 0, sizeof(lMulticastRequest));
lMulticastRequest.imr_interface = lInterfaceAddress.ToIPv4();
lMulticastRequest.imr_multiaddr = aAddress.ToIPv4();
if (setsockopt(aSocket, IPPROTO_IP, aCommand, &lMulticastRequest, sizeof(lMulticastRequest)) != 0)
{
return chip::System::MapErrorPOSIX(errno);
}
return INET_NO_ERROR;
}
#endif // INET_CONFIG_ENABLE_IPV4
#if INET_IPV6_ADD_MEMBERSHIP || INET_IPV6_DROP_MEMBERSHIP
static INET_ERROR SocketsIPv6JoinLeaveMulticastGroup(int aSocket, InterfaceId aInterfaceId, const IPAddress & aAddress,
int aCommand)
{
VerifyOrReturnError(CanCastTo<unsigned int>(aInterfaceId), INET_ERROR_UNEXPECTED_EVENT);
const unsigned int lIfIndex = static_cast<unsigned int>(aInterfaceId);
struct ipv6_mreq lMulticastRequest;
memset(&lMulticastRequest, 0, sizeof(lMulticastRequest));
VerifyOrReturnError(CanCastTo<decltype(lMulticastRequest.ipv6mr_interface)>(lIfIndex), INET_ERROR_UNEXPECTED_EVENT);
lMulticastRequest.ipv6mr_interface = static_cast<decltype(lMulticastRequest.ipv6mr_interface)>(lIfIndex);
lMulticastRequest.ipv6mr_multiaddr = aAddress.ToIPv6();
if (setsockopt(aSocket, IPPROTO_IPV6, aCommand, &lMulticastRequest, sizeof(lMulticastRequest)) != 0)
{
return chip::System::MapErrorPOSIX(errno);
}
return INET_NO_ERROR;
}
#endif // INET_IPV6_ADD_MEMBERSHIP || INET_IPV6_DROP_MEMBERSHIP
static INET_ERROR SocketsIPv6JoinMulticastGroup(int aSocket, InterfaceId aInterfaceId, const IPAddress & aAddress)
{
#if INET_IPV6_ADD_MEMBERSHIP
return SocketsIPv6JoinLeaveMulticastGroup(aSocket, aInterfaceId, aAddress, INET_IPV6_ADD_MEMBERSHIP);
#else
return INET_ERROR_NOT_SUPPORTED;
#endif
}
static INET_ERROR SocketsIPv6LeaveMulticastGroup(int aSocket, InterfaceId aInterfaceId, const IPAddress & aAddress)
{
#if INET_IPV6_DROP_MEMBERSHIP
return SocketsIPv6JoinLeaveMulticastGroup(aSocket, aInterfaceId, aAddress, INET_IPV6_DROP_MEMBERSHIP);
#else
return INET_ERROR_NOT_SUPPORTED;
#endif
}
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
/**
* @brief Set whether IP multicast traffic should be looped back.
*
* @param[in] aIPVersion
*
* @param[in] aLoopback
*
* @retval INET_NO_ERROR
* success: multicast loopback behavior set
* @retval other
* another system or platform error
*
* @details
* Set whether or not IP multicast traffic should be looped back
* to this endpoint.
*
*/
INET_ERROR IPEndPointBasis::SetMulticastLoopback(IPVersion aIPVersion, bool aLoopback)
{
INET_ERROR lRetval = INET_ERROR_NOT_IMPLEMENTED;
#if CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if !HAVE_LWIP_MULTICAST_LOOP
lRetval = INET_ERROR_NOT_SUPPORTED;
#else
if (aLoopback)
{
switch (mLwIPEndPointType)
{
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
case kLwIPEndPointType_Raw:
raw_set_flags(mRaw, RAW_FLAGS_MULTICAST_LOOP);
break;
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
case kLwIPEndPointType_UDP:
udp_set_flags(mUDP, UDP_FLAGS_MULTICAST_LOOP);
break;
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
default:
lRetval = INET_ERROR_NOT_SUPPORTED;
break;
}
}
else
{
switch (mLwIPEndPointType)
{
#if INET_CONFIG_ENABLE_RAW_ENDPOINT
case kLwIPEndPointType_Raw:
raw_clear_flags(mRaw, RAW_FLAGS_MULTICAST_LOOP);
break;
#endif // INET_CONFIG_ENABLE_RAW_ENDPOINT
#if INET_CONFIG_ENABLE_UDP_ENDPOINT
case kLwIPEndPointType_UDP:
udp_clear_flags(mUDP, UDP_FLAGS_MULTICAST_LOOP);
break;
#endif // INET_CONFIG_ENABLE_UDP_ENDPOINT
default:
lRetval = INET_ERROR_NOT_SUPPORTED;
break;
}
}
lRetval = INET_NO_ERROR;
#endif // !HAVE_LWIP_MULTICAST_LOOP
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
lRetval = SocketsSetMulticastLoopback(mSocket.GetFD(), aIPVersion, aLoopback);
SuccessOrExit(lRetval);
exit:
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
return (lRetval);
}
/**
* @brief Join an IP multicast group.
*
* @param[in] aInterfaceId the indicator of the network interface to
* add to the multicast group
*
* @param[in] aAddress the multicast group to add the
* interface to
*
* @retval INET_NO_ERROR
* success: multicast group removed
*
* @retval INET_ERROR_UNKNOWN_INTERFACE
* unknown network interface, \c aInterfaceId
*
* @retval INET_ERROR_WRONG_ADDRESS_TYPE
* \c aAddress is not \c kIPAddressType_IPv4 or
* \c kIPAddressType_IPv6 or is not multicast
*
* @retval other
* another system or platform error
*
* @details
* Join the endpoint to the supplied multicast group on the
* specified interface.
*
*/
INET_ERROR IPEndPointBasis::JoinMulticastGroup(InterfaceId aInterfaceId, const IPAddress & aAddress)
{
INET_ERROR lRetval = INET_ERROR_NOT_IMPLEMENTED;
#if CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
const IPAddressType lAddrType = aAddress.Type();
lRetval = CheckMulticastGroupArgs(aInterfaceId, aAddress);
SuccessOrExit(lRetval);
switch (lAddrType)
{
#if INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv4: {
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if LWIP_IPV4 && LWIP_IGMP
lRetval = LwIPIPv4JoinLeaveMulticastGroup(aInterfaceId, aAddress, igmp_joingroup_netif);
#else // LWIP_IPV4 && LWIP_IGMP
lRetval = INET_ERROR_NOT_SUPPORTED;
#endif // LWIP_IPV4 && LWIP_IGMP
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
lRetval = SocketsIPv4JoinLeaveMulticastGroup(mSocket.GetFD(), aInterfaceId, aAddress, IP_ADD_MEMBERSHIP);
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
}
break;
#endif // INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv6: {
#if CHIP_SYSTEM_CONFIG_USE_PLATFORM_MULTICAST_API
if (sJoinMulticastGroupHandler != nullptr)
{
return sJoinMulticastGroupHandler(aInterfaceId, aAddress);
}
#endif // CHIP_SYSTEM_CONFIG_USE_PLATFORM_MULTICAST_API
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#ifdef HAVE_IPV6_MULTICAST
lRetval = LwIPIPv6JoinLeaveMulticastGroup(aInterfaceId, aAddress, mld6_joingroup_netif);
#else // HAVE_IPV6_MULTICAST
lRetval = INET_ERROR_NOT_SUPPORTED;
#endif // HAVE_IPV6_MULTICAST
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
lRetval = SocketsIPv6JoinMulticastGroup(mSocket.GetFD(), aInterfaceId, aAddress);
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
}
break;
default:
lRetval = INET_ERROR_WRONG_ADDRESS_TYPE;
break;
}
exit:
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
return (lRetval);
}
/**
* @brief Leave an IP multicast group.
*
* @param[in] aInterfaceId the indicator of the network interface to
* remove from the multicast group
*
* @param[in] aAddress the multicast group to remove the
* interface from
*
* @retval INET_NO_ERROR
* success: multicast group removed
*
* @retval INET_ERROR_UNKNOWN_INTERFACE
* unknown network interface, \c aInterfaceId
*
* @retval INET_ERROR_WRONG_ADDRESS_TYPE
* \c aAddress is not \c kIPAddressType_IPv4 or
* \c kIPAddressType_IPv6 or is not multicast
*
* @retval other
* another system or platform error
*
* @details
* Remove the endpoint from the supplied multicast group on the
* specified interface.
*
*/
INET_ERROR IPEndPointBasis::LeaveMulticastGroup(InterfaceId aInterfaceId, const IPAddress & aAddress)
{
INET_ERROR lRetval = INET_ERROR_NOT_IMPLEMENTED;
#if CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
const IPAddressType lAddrType = aAddress.Type();
lRetval = CheckMulticastGroupArgs(aInterfaceId, aAddress);
SuccessOrExit(lRetval);
switch (lAddrType)
{
#if INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv4: {
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if LWIP_IPV4 && LWIP_IGMP
lRetval = LwIPIPv4JoinLeaveMulticastGroup(aInterfaceId, aAddress, igmp_leavegroup_netif);
#else // LWIP_IPV4 && LWIP_IGMP
lRetval = INET_ERROR_NOT_SUPPORTED;
#endif // LWIP_IPV4 && LWIP_IGMP
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
lRetval = SocketsIPv4JoinLeaveMulticastGroup(mSocket.GetFD(), aInterfaceId, aAddress, IP_DROP_MEMBERSHIP);
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
}
break;
#endif // INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv6: {
#if CHIP_SYSTEM_CONFIG_USE_PLATFORM_MULTICAST_API
if (sLeaveMulticastGroupHandler != nullptr)
{
return sLeaveMulticastGroupHandler(aInterfaceId, aAddress);
}
#endif // CHIP_SYSTEM_CONFIG_USE_PLATFORM_MULTICAST_API
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#if LWIP_IPV6_MLD && LWIP_IPV6_ND && LWIP_IPV6
lRetval = LwIPIPv6JoinLeaveMulticastGroup(aInterfaceId, aAddress, mld6_leavegroup_netif);
#else // LWIP_IPV6_MLD && LWIP_IPV6_ND && LWIP_IPV6
lRetval = INET_ERROR_NOT_SUPPORTED;
#endif // LWIP_IPV6_MLD && LWIP_IPV6_ND && LWIP_IPV6
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
lRetval = SocketsIPv6LeaveMulticastGroup(mSocket.GetFD(), aInterfaceId, aAddress);
SuccessOrExit(lRetval);
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
}
break;
default:
lRetval = INET_ERROR_WRONG_ADDRESS_TYPE;
break;
}
exit:
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_SOCKETS
return (lRetval);
}
void IPEndPointBasis::Init(InetLayer * aInetLayer)
{
InitEndPointBasis(*aInetLayer);
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
mBoundIntfId = INET_NULL_INTERFACEID;
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
}
#if CHIP_SYSTEM_CONFIG_USE_LWIP
void IPEndPointBasis::HandleDataReceived(System::PacketBufferHandle && aBuffer)
{
if ((mState == kState_Listening) && (OnMessageReceived != NULL))
{
const IPPacketInfo * pktInfo = GetPacketInfo(aBuffer);
if (pktInfo != NULL)
{
const IPPacketInfo pktInfoCopy = *pktInfo; // copy the address info so that the app can free the
// PacketBuffer without affecting access to address info.
OnMessageReceived(this, std::move(aBuffer), &pktInfoCopy);
}
else
{
if (OnReceiveError != NULL)
OnReceiveError(this, INET_ERROR_INBOUND_MESSAGE_TOO_BIG, NULL);
}
}
}
/**
* @brief Get LwIP IP layer source and destination addressing information.
*
* @param[in] aBuffer the packet buffer containing the IP message
*
* @returns a pointer to the address information on success; otherwise,
* NULL if there is insufficient space in the packet for
* the address information.
*
* @details
* When using LwIP information about the packet is 'hidden' in the
* reserved space before the start of the data in the packet
* buffer. This is necessary because the system layer events only
* have two arguments, which in this case are used to convey the
* pointer to the end point and the pointer to the buffer.
*
* In most cases this trick of storing information before the data
* works because the first buffer in an LwIP IP message contains
* the space that was used for the Ethernet/IP/UDP headers. However,
* given the current size of the IPPacketInfo structure (40 bytes),
* it is possible for there to not be enough room to store the
* structure along with the payload in a single packet buffer. In
* practice, this should only happen for extremely large IPv4
* packets that arrive without an Ethernet header.
*
*/
IPPacketInfo * IPEndPointBasis::GetPacketInfo(const System::PacketBufferHandle & aBuffer)
{
uintptr_t lStart;
uintptr_t lPacketInfoStart;
IPPacketInfo * lPacketInfo = NULL;
if (!aBuffer->EnsureReservedSize(sizeof(IPPacketInfo) + 3))
goto done;
lStart = (uintptr_t) aBuffer->Start();
lPacketInfoStart = lStart - sizeof(IPPacketInfo);
// Align to a 4-byte boundary
lPacketInfo = reinterpret_cast<IPPacketInfo *>(lPacketInfoStart & ~(sizeof(uint32_t) - 1));
done:
return (lPacketInfo);
}
System::Error IPEndPointBasis::PostPacketBufferEvent(chip::System::Layer & aLayer, System::Object & aTarget,
System::EventType aEventType, System::PacketBufferHandle && aBuffer)
{
System::Error error =
aLayer.PostEvent(aTarget, aEventType, (uintptr_t) System::LwIPPacketBufferView::UnsafeGetLwIPpbuf(aBuffer));
if (error == INET_NO_ERROR)
{
// If PostEvent() succeeded, it has ownership of the buffer, so we need to release it (without freeing it).
static_cast<void>(std::move(aBuffer).UnsafeRelease());
}
return error;
}
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS
INET_ERROR IPEndPointBasis::Bind(IPAddressType aAddressType, const IPAddress & aAddress, uint16_t aPort, InterfaceId aInterfaceId)
{
INET_ERROR lRetval = INET_NO_ERROR;
if (aAddressType == kIPAddressType_IPv6)
{
struct sockaddr_in6 sa;
memset(&sa, 0, sizeof(sa));
sa.sin6_family = AF_INET6;
sa.sin6_port = htons(aPort);
sa.sin6_addr = aAddress.ToIPv6();
if (!CanCastTo<decltype(sa.sin6_scope_id)>(aInterfaceId))
{
return INET_ERROR_INCORRECT_STATE;
}
sa.sin6_scope_id = static_cast<decltype(sa.sin6_scope_id)>(aInterfaceId);
if (bind(mSocket.GetFD(), reinterpret_cast<const sockaddr *>(&sa), static_cast<unsigned>(sizeof(sa))) != 0)
lRetval = chip::System::MapErrorPOSIX(errno);
// Instruct the kernel that any messages to multicast destinations should be
// sent down the interface specified by the caller.
#ifdef IPV6_MULTICAST_IF
if (lRetval == INET_NO_ERROR)
setsockopt(mSocket.GetFD(), IPPROTO_IPV6, IPV6_MULTICAST_IF, &aInterfaceId, sizeof(aInterfaceId));
#endif // defined(IPV6_MULTICAST_IF)
// Instruct the kernel that any messages to multicast destinations should be
// set with the configured hop limit value.
#ifdef IPV6_MULTICAST_HOPS
int hops = INET_CONFIG_IP_MULTICAST_HOP_LIMIT;
setsockopt(mSocket.GetFD(), IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops, sizeof(hops));
#endif // defined(IPV6_MULTICAST_HOPS)
}
#if INET_CONFIG_ENABLE_IPV4
else if (aAddressType == kIPAddressType_IPv4)
{
struct sockaddr_in sa;
int enable = 1;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET;
sa.sin_port = htons(aPort);
sa.sin_addr = aAddress.ToIPv4();
if (bind(mSocket.GetFD(), reinterpret_cast<const sockaddr *>(&sa), static_cast<unsigned>(sizeof(sa))) != 0)
lRetval = chip::System::MapErrorPOSIX(errno);
// Instruct the kernel that any messages to multicast destinations should be
// sent down the interface to which the specified IPv4 address is bound.
#ifdef IP_MULTICAST_IF
if (lRetval == INET_NO_ERROR)
setsockopt(mSocket.GetFD(), IPPROTO_IP, IP_MULTICAST_IF, &sa, sizeof(sa));
#endif // defined(IP_MULTICAST_IF)
// Instruct the kernel that any messages to multicast destinations should be
// set with the configured hop limit value.
#ifdef IP_MULTICAST_TTL
int ttl = INET_CONFIG_IP_MULTICAST_HOP_LIMIT;
setsockopt(mSocket.GetFD(), IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));
#endif // defined(IP_MULTICAST_TTL)
// Allow socket transmitting broadcast packets.
if (lRetval == INET_NO_ERROR)
setsockopt(mSocket.GetFD(), SOL_SOCKET, SO_BROADCAST, &enable, sizeof(enable));
}
#endif // INET_CONFIG_ENABLE_IPV4
else
lRetval = INET_ERROR_WRONG_ADDRESS_TYPE;
return (lRetval);
}
INET_ERROR IPEndPointBasis::BindInterface(IPAddressType aAddressType, InterfaceId aInterfaceId)
{
INET_ERROR lRetval = INET_NO_ERROR;
#if HAVE_SO_BINDTODEVICE
if (aInterfaceId == INET_NULL_INTERFACEID)
{
// Stop interface-based filtering.
if (setsockopt(mSocket.GetFD(), SOL_SOCKET, SO_BINDTODEVICE, "", 0) == -1)
{
lRetval = chip::System::MapErrorPOSIX(errno);
}
}
else
{
// Start filtering on the passed interface.
char lInterfaceName[IF_NAMESIZE];
if (if_indextoname(aInterfaceId, lInterfaceName) == NULL)
{
lRetval = chip::System::MapErrorPOSIX(errno);
}
if (lRetval == INET_NO_ERROR &&
setsockopt(mSocket.GetFD(), SOL_SOCKET, SO_BINDTODEVICE, lInterfaceName, socklen_t(strlen(lInterfaceName))) == -1)
{
lRetval = chip::System::MapErrorPOSIX(errno);
}
}
if (lRetval == INET_NO_ERROR)
mBoundIntfId = aInterfaceId;
#else // !HAVE_SO_BINDTODEVICE
lRetval = INET_ERROR_NOT_IMPLEMENTED;
#endif // HAVE_SO_BINDTODEVICE
return (lRetval);
}
INET_ERROR IPEndPointBasis::SendMsg(const IPPacketInfo * aPktInfo, chip::System::PacketBufferHandle && aBuffer, uint16_t aSendFlags)
{
// Ensure the destination address type is compatible with the endpoint address type.
VerifyOrReturnError(mAddrType == aPktInfo->DestAddress.Type(), INET_ERROR_BAD_ARGS);
// For now the entire message must fit within a single buffer.
VerifyOrReturnError(!aBuffer->HasChainedBuffer(), INET_ERROR_MESSAGE_TOO_LONG);
struct iovec msgIOV;
msgIOV.iov_base = aBuffer->Start();
msgIOV.iov_len = aBuffer->DataLength();
struct msghdr msgHeader;
memset(&msgHeader, 0, sizeof(msgHeader));
msgHeader.msg_iov = &msgIOV;
msgHeader.msg_iovlen = 1;
// Construct a sockaddr_in/sockaddr_in6 structure containing the destination information.
PeerSockAddr peerSockAddr;
memset(&peerSockAddr, 0, sizeof(peerSockAddr));
msgHeader.msg_name = &peerSockAddr;
if (mAddrType == kIPAddressType_IPv6)
{
peerSockAddr.in6.sin6_family = AF_INET6;
peerSockAddr.in6.sin6_port = htons(aPktInfo->DestPort);
peerSockAddr.in6.sin6_addr = aPktInfo->DestAddress.ToIPv6();
VerifyOrReturnError(CanCastTo<decltype(peerSockAddr.in6.sin6_scope_id)>(aPktInfo->Interface), INET_ERROR_INCORRECT_STATE);
peerSockAddr.in6.sin6_scope_id = static_cast<decltype(peerSockAddr.in6.sin6_scope_id)>(aPktInfo->Interface);
msgHeader.msg_namelen = sizeof(sockaddr_in6);
}
#if INET_CONFIG_ENABLE_IPV4
else
{
peerSockAddr.in.sin_family = AF_INET;
peerSockAddr.in.sin_port = htons(aPktInfo->DestPort);
peerSockAddr.in.sin_addr = aPktInfo->DestAddress.ToIPv4();
msgHeader.msg_namelen = sizeof(sockaddr_in);
}
#endif // INET_CONFIG_ENABLE_IPV4
// If the endpoint has been bound to a particular interface,
// and the caller didn't supply a specific interface to send
// on, use the bound interface. This appears to be necessary
// for messages to multicast addresses, which under Linux
// don't seem to get sent out the correct interface, despite
// the socket being bound.
InterfaceId intfId = aPktInfo->Interface;
if (intfId == INET_NULL_INTERFACEID)
intfId = mBoundIntfId;
// If the packet should be sent over a specific interface, or with a specific source
// address, construct an IP_PKTINFO/IPV6_PKTINFO "control message" to that effect
// add add it to the message header. If the local OS doesn't support IP_PKTINFO/IPV6_PKTINFO
// fail with an error.
if (intfId != INET_NULL_INTERFACEID || aPktInfo->SrcAddress.Type() != kIPAddressType_Any)
{
#if defined(IP_PKTINFO) || defined(IPV6_PKTINFO)
uint8_t controlData[256];
memset(controlData, 0, sizeof(controlData));
msgHeader.msg_control = controlData;
msgHeader.msg_controllen = sizeof(controlData);
struct cmsghdr * controlHdr = CMSG_FIRSTHDR(&msgHeader);
#if INET_CONFIG_ENABLE_IPV4
if (mAddrType == kIPAddressType_IPv4)
{
#if defined(IP_PKTINFO)
controlHdr->cmsg_level = IPPROTO_IP;
controlHdr->cmsg_type = IP_PKTINFO;
controlHdr->cmsg_len = CMSG_LEN(sizeof(in_pktinfo));
struct in_pktinfo * pktInfo = reinterpret_cast<struct in_pktinfo *> CMSG_DATA(controlHdr);
if (!CanCastTo<decltype(pktInfo->ipi_ifindex)>(intfId))
{
return INET_ERROR_NOT_SUPPORTED;
}
pktInfo->ipi_ifindex = static_cast<decltype(pktInfo->ipi_ifindex)>(intfId);
pktInfo->ipi_spec_dst = aPktInfo->SrcAddress.ToIPv4();
msgHeader.msg_controllen = CMSG_SPACE(sizeof(in_pktinfo));
#else // !defined(IP_PKTINFO)
return INET_ERROR_NOT_SUPPORTED;
#endif // !defined(IP_PKTINFO)
}
#endif // INET_CONFIG_ENABLE_IPV4
if (mAddrType == kIPAddressType_IPv6)
{
#if defined(IPV6_PKTINFO)
controlHdr->cmsg_level = IPPROTO_IPV6;
controlHdr->cmsg_type = IPV6_PKTINFO;
controlHdr->cmsg_len = CMSG_LEN(sizeof(in6_pktinfo));
struct in6_pktinfo * pktInfo = reinterpret_cast<struct in6_pktinfo *> CMSG_DATA(controlHdr);
if (!CanCastTo<decltype(pktInfo->ipi6_ifindex)>(intfId))
{
return INET_ERROR_UNEXPECTED_EVENT;
}
pktInfo->ipi6_ifindex = static_cast<decltype(pktInfo->ipi6_ifindex)>(intfId);
pktInfo->ipi6_addr = aPktInfo->SrcAddress.ToIPv6();
msgHeader.msg_controllen = CMSG_SPACE(sizeof(in6_pktinfo));
#else // !defined(IPV6_PKTINFO)
return INET_ERROR_NOT_SUPPORTED;
#endif // !defined(IPV6_PKTINFO)
}
#else // !(defined(IP_PKTINFO) && defined(IPV6_PKTINFO))
return INET_ERROR_NOT_SUPPORTED;
#endif // !(defined(IP_PKTINFO) && defined(IPV6_PKTINFO))
}
// Send IP packet.
const ssize_t lenSent = sendmsg(mSocket.GetFD(), &msgHeader, 0);
if (lenSent == -1)
return chip::System::MapErrorPOSIX(errno);
if (lenSent != aBuffer->DataLength())
return INET_ERROR_OUTBOUND_MESSAGE_TRUNCATED;
return INET_NO_ERROR;
}
INET_ERROR IPEndPointBasis::GetSocket(IPAddressType aAddressType, int aType, int aProtocol)
{
INET_ERROR res = INET_NO_ERROR;
if (!mSocket.HasFD())
{
const int one = 1;
int family;
switch (aAddressType)
{
case kIPAddressType_IPv6:
family = PF_INET6;
break;
#if INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv4:
family = PF_INET;
break;
#endif // INET_CONFIG_ENABLE_IPV4
default:
return INET_ERROR_WRONG_ADDRESS_TYPE;
}
const int fd = ::socket(family, aType, aProtocol);
if (fd == -1)
return chip::System::MapErrorPOSIX(errno);
mSocket.Attach(fd);
mAddrType = aAddressType;
// NOTE WELL: the errors returned by setsockopt() here are not
// returned as Inet layer chip::System::MapErrorPOSIX(errno)
// codes because they are normally expected to fail on some
// platforms where the socket option code is defined in the
// header files but not [yet] implemented. Certainly, there is
// room to improve this by connecting the build configuration
// logic up to check for implementations of these options and
// to provide appropriate HAVE_xxxxx definitions accordingly.
res = setsockopt(mSocket.GetFD(), SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
static_cast<void>(res);
#ifdef SO_REUSEPORT
res = setsockopt(mSocket.GetFD(), SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one));
if (res != 0)
{
ChipLogError(Inet, "SO_REUSEPORT failed: %d", errno);
}
#endif // defined(SO_REUSEPORT)
// If creating an IPv6 socket, tell the kernel that it will be
// IPv6 only. This makes it posible to bind two sockets to
// the same port, one for IPv4 and one for IPv6.
#ifdef IPV6_V6ONLY
if (aAddressType == kIPAddressType_IPv6)
{
res = setsockopt(mSocket.GetFD(), IPPROTO_IPV6, IPV6_V6ONLY, &one, sizeof(one));
if (res != 0)
{
ChipLogError(Inet, "IPV6_V6ONLY failed: %d", errno);
}
}
#endif // defined(IPV6_V6ONLY)
#if INET_CONFIG_ENABLE_IPV4
#ifdef IP_PKTINFO
if (aAddressType == kIPAddressType_IPv4)
{
res = setsockopt(mSocket.GetFD(), IPPROTO_IP, IP_PKTINFO, &one, sizeof(one));
if (res != 0)
{
ChipLogError(Inet, "IP_PKTINFO failed: %d", errno);
}
}
#endif // defined(IP_PKTINFO)
#endif // INET_CONFIG_ENABLE_IPV4
#ifdef IPV6_RECVPKTINFO
if (aAddressType == kIPAddressType_IPv6)
{
res = setsockopt(mSocket.GetFD(), IPPROTO_IPV6, IPV6_RECVPKTINFO, &one, sizeof(one));
if (res != 0)
{
ChipLogError(Inet, "IPV6_PKTINFO failed: %d", errno);
}
}
#endif // defined(IPV6_RECVPKTINFO)
// On systems that support it, disable the delivery of SIGPIPE
// signals when writing to a closed socket. This is mostly
// needed on iOS which has the peculiar habit of sending
// SIGPIPEs on unconnected UDP sockets.
#ifdef SO_NOSIGPIPE
{
res = setsockopt(mSocket.GetFD(), SOL_SOCKET, SO_NOSIGPIPE, &one, sizeof(one));
if (res != 0)
{
ChipLogError(Inet, "SO_NOSIGPIPE failed: %d", errno);
}
}
#endif // defined(SO_NOSIGPIPE)
}
else if (mAddrType != aAddressType)
{
return INET_ERROR_INCORRECT_STATE;
}
return INET_NO_ERROR;
}
void IPEndPointBasis::HandlePendingIO(uint16_t aPort)
{
INET_ERROR lStatus = INET_NO_ERROR;
IPPacketInfo lPacketInfo;
System::PacketBufferHandle lBuffer;
lPacketInfo.Clear();
lPacketInfo.DestPort = aPort;
lBuffer = System::PacketBufferHandle::New(System::PacketBuffer::kMaxSizeWithoutReserve, 0);
if (!lBuffer.IsNull())
{
struct iovec msgIOV;
PeerSockAddr lPeerSockAddr;
uint8_t controlData[256];
struct msghdr msgHeader;
msgIOV.iov_base = lBuffer->Start();
msgIOV.iov_len = lBuffer->AvailableDataLength();
memset(&lPeerSockAddr, 0, sizeof(lPeerSockAddr));
memset(&msgHeader, 0, sizeof(msgHeader));
msgHeader.msg_name = &lPeerSockAddr;
msgHeader.msg_namelen = sizeof(lPeerSockAddr);
msgHeader.msg_iov = &msgIOV;
msgHeader.msg_iovlen = 1;
msgHeader.msg_control = controlData;
msgHeader.msg_controllen = sizeof(controlData);
ssize_t rcvLen = recvmsg(mSocket.GetFD(), &msgHeader, MSG_DONTWAIT);
if (rcvLen < 0)
{
lStatus = chip::System::MapErrorPOSIX(errno);
}
else if (rcvLen > lBuffer->AvailableDataLength())
{
lStatus = INET_ERROR_INBOUND_MESSAGE_TOO_BIG;
}
else
{
lBuffer->SetDataLength(static_cast<uint16_t>(rcvLen));
if (lPeerSockAddr.any.sa_family == AF_INET6)
{
lPacketInfo.SrcAddress = IPAddress::FromIPv6(lPeerSockAddr.in6.sin6_addr);
lPacketInfo.SrcPort = ntohs(lPeerSockAddr.in6.sin6_port);
}
#if INET_CONFIG_ENABLE_IPV4
else if (lPeerSockAddr.any.sa_family == AF_INET)
{
lPacketInfo.SrcAddress = IPAddress::FromIPv4(lPeerSockAddr.in.sin_addr);
lPacketInfo.SrcPort = ntohs(lPeerSockAddr.in.sin_port);
}
#endif // INET_CONFIG_ENABLE_IPV4
else
{
lStatus = INET_ERROR_INCORRECT_STATE;
}
}
if (lStatus == INET_NO_ERROR)
{
for (struct cmsghdr * controlHdr = CMSG_FIRSTHDR(&msgHeader); controlHdr != nullptr;
controlHdr = CMSG_NXTHDR(&msgHeader, controlHdr))
{
#if INET_CONFIG_ENABLE_IPV4
#ifdef IP_PKTINFO
if (controlHdr->cmsg_level == IPPROTO_IP && controlHdr->cmsg_type == IP_PKTINFO)
{
struct in_pktinfo * inPktInfo = reinterpret_cast<struct in_pktinfo *> CMSG_DATA(controlHdr);
if (!CanCastTo<InterfaceId>(inPktInfo->ipi_ifindex))
{
lStatus = INET_ERROR_INCORRECT_STATE;
break;
}
lPacketInfo.Interface = static_cast<InterfaceId>(inPktInfo->ipi_ifindex);
lPacketInfo.DestAddress = IPAddress::FromIPv4(inPktInfo->ipi_addr);
continue;
}
#endif // defined(IP_PKTINFO)
#endif // INET_CONFIG_ENABLE_IPV4
#ifdef IPV6_PKTINFO
if (controlHdr->cmsg_level == IPPROTO_IPV6 && controlHdr->cmsg_type == IPV6_PKTINFO)
{
struct in6_pktinfo * in6PktInfo = reinterpret_cast<struct in6_pktinfo *> CMSG_DATA(controlHdr);
if (!CanCastTo<InterfaceId>(in6PktInfo->ipi6_ifindex))
{
lStatus = INET_ERROR_INCORRECT_STATE;
break;
}
lPacketInfo.Interface = static_cast<InterfaceId>(in6PktInfo->ipi6_ifindex);
lPacketInfo.DestAddress = IPAddress::FromIPv6(in6PktInfo->ipi6_addr);
continue;
}
#endif // defined(IPV6_PKTINFO)
}
}
}
else
{
lStatus = INET_ERROR_NO_MEMORY;
}
if (lStatus == INET_NO_ERROR)
{
lBuffer.RightSize();
OnMessageReceived(this, std::move(lBuffer), &lPacketInfo);
}
else
{
if (OnReceiveError != nullptr && lStatus != chip::System::MapErrorPOSIX(EAGAIN))
{
OnReceiveError(this, lStatus, nullptr);
}
}
}
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS
#if CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
INET_ERROR IPEndPointBasis::ConfigureProtocol(IPAddressType aAddressType, const nw_parameters_t & aParameters)
{
INET_ERROR res = INET_NO_ERROR;
nw_protocol_stack_t protocolStack = nw_parameters_copy_default_protocol_stack(aParameters);
nw_protocol_options_t ipOptions = nw_protocol_stack_copy_internet_protocol(protocolStack);
switch (aAddressType)
{
case kIPAddressType_IPv6:
nw_ip_options_set_version(ipOptions, nw_ip_version_6);
break;
#if INET_CONFIG_ENABLE_IPV4
case kIPAddressType_IPv4:
nw_ip_options_set_version(ipOptions, nw_ip_version_4);
break;
#endif // INET_CONFIG_ENABLE_IPV4
default:
res = INET_ERROR_WRONG_ADDRESS_TYPE;
break;
}
nw_release(ipOptions);
nw_release(protocolStack);
return res;
}
INET_ERROR IPEndPointBasis::Bind(IPAddressType aAddressType, const IPAddress & aAddress, uint16_t aPort,
const nw_parameters_t & aParameters)
{
nw_endpoint_t endpoint = nullptr;
VerifyOrReturnError(aParameters != NULL, INET_ERROR_BAD_ARGS);
ReturnErrorOnFailure(ConfigureProtocol(aAddressType, aParameters));
INET_ERROR res = GetEndPoint(endpoint, aAddressType, aAddress, aPort);
nw_parameters_set_local_endpoint(aParameters, endpoint);
nw_release(endpoint);
ReturnErrorOnFailure(res);
mDispatchQueue = dispatch_queue_create("inet_dispatch_global", DISPATCH_QUEUE_CONCURRENT);
VerifyOrReturnError(mDispatchQueue != NULL, INET_ERROR_NO_MEMORY);
dispatch_retain(mDispatchQueue);
mConnectionSemaphore = dispatch_semaphore_create(0);
VerifyOrReturnError(mConnectionSemaphore != NULL, INET_ERROR_NO_MEMORY);
dispatch_retain(mConnectionSemaphore);
mSendSemaphore = dispatch_semaphore_create(0);
VerifyOrReturnError(mSendSemaphore != NULL, INET_ERROR_NO_MEMORY);
dispatch_retain(mSendSemaphore);
mAddrType = aAddressType;
mConnection = NULL;
return INET_NO_ERROR;
}
INET_ERROR IPEndPointBasis::SendMsg(const IPPacketInfo * aPktInfo, chip::System::PacketBufferHandle && aBuffer, uint16_t aSendFlags)
{
dispatch_data_t content;
// Ensure the destination address type is compatible with the endpoint address type.
VerifyOrReturnError(mAddrType == aPktInfo->DestAddress.Type(), INET_ERROR_BAD_ARGS);
// For now the entire message must fit within a single buffer.
VerifyOrReturnError(aBuffer->Next() == NULL, INET_ERROR_MESSAGE_TOO_LONG);
ReturnErrorOnFailure(GetConnection(aPktInfo));
// Send a message, and wait for it to be dispatched.
content = dispatch_data_create(aBuffer->Start(), aBuffer->DataLength(), mDispatchQueue, DISPATCH_DATA_DESTRUCTOR_DEFAULT);
// If there is a current message pending and the state of the network connection change (e.g switch to a
// different network) the connection will enter a nw_connection_state_failed state and the completion handler
// will never be called. In such cases a signal is sent from the connection state change handler to release
// the semaphore. In this case the INET_ERROR will not update with the result of the completion handler.
// To make sure caller knows that sending a message has failed the following code consider there is an error
// _unless_ the completion handler says otherwise.
__block INET_ERROR res = INET_ERROR_UNEXPECTED_EVENT;
nw_connection_send(mConnection, content, NW_CONNECTION_DEFAULT_MESSAGE_CONTEXT, true, ^(nw_error_t error) {
if (error)
{
res = chip::System::MapErrorPOSIX(nw_error_get_error_code(error));
}
else
{
res = INET_NO_ERROR;
}
dispatch_semaphore_signal(mSendSemaphore);
});
dispatch_release(content);
dispatch_semaphore_wait(mSendSemaphore, DISPATCH_TIME_FOREVER);
return res;
}
void IPEndPointBasis::HandleDataReceived(const nw_connection_t & aConnection)
{
nw_connection_receive_completion_t handler =
^(dispatch_data_t content, nw_content_context_t context, bool is_complete, nw_error_t receive_error) {
dispatch_block_t schedule_next_receive = ^{
if (receive_error == NULL)
{
HandleDataReceived(aConnection);
}
else if (OnReceiveError != NULL)
{
nw_error_domain_t error_domain = nw_error_get_error_domain(receive_error);
errno = nw_error_get_error_code(receive_error);
if (!(error_domain == nw_error_domain_posix && errno == ECANCELED))
{
INET_ERROR error = chip::System::MapErrorPOSIX(errno);
IPPacketInfo packetInfo;
GetPacketInfo(aConnection, packetInfo);
dispatch_async(mDispatchQueue, ^{
OnReceiveError((IPEndPointBasis *) this, error, &packetInfo);
});
}
}
};
if (content != NULL && OnMessageReceived != NULL)
{
size_t count = dispatch_data_get_size(content);
System::PacketBufferHandle * packetBuffer = System::PacketBufferHandle::New(count);
dispatch_data_apply(content, ^(dispatch_data_t data, size_t offset, const void * buffer, size_t size) {
memmove(packetBuffer->Start() + offset, buffer, size);
return true;
});
packetBuffer->SetDataLength(count);
IPPacketInfo packetInfo;
GetPacketInfo(aConnection, packetInfo);
dispatch_async(mDispatchQueue, ^{
OnMessageReceived((IPEndPointBasis *) this, packetBuffer, &packetInfo);
});
}
schedule_next_receive();
};
nw_connection_receive_message(aConnection, handler);
}
void IPEndPointBasis::GetPacketInfo(const nw_connection_t & aConnection, IPPacketInfo & aPacketInfo)
{
nw_path_t path = nw_connection_copy_current_path(aConnection);
nw_endpoint_t dest_endpoint = nw_path_copy_effective_local_endpoint(path);
nw_endpoint_t src_endpoint = nw_path_copy_effective_remote_endpoint(path);
aPacketInfo.Clear();
aPacketInfo.SrcAddress = IPAddress::FromSockAddr(*nw_endpoint_get_address(src_endpoint));
aPacketInfo.DestAddress = IPAddress::FromSockAddr(*nw_endpoint_get_address(dest_endpoint));
aPacketInfo.SrcPort = nw_endpoint_get_port(src_endpoint);
aPacketInfo.DestPort = nw_endpoint_get_port(dest_endpoint);
}
INET_ERROR IPEndPointBasis::GetEndPoint(nw_endpoint_t & aEndPoint, const IPAddressType aAddressType, const IPAddress & aAddress,
uint16_t aPort)
{
char addrStr[INET6_ADDRSTRLEN];
char portStr[INET_PORTSTRLEN];
// Note: aAddress.ToString will return the IPv6 Any address if the address type is Any, but that's not what
// we want if the locale endpoint is IPv4.
if (aAddressType == kIPAddressType_IPv4 && aAddress.Type() == kIPAddressType_Any)
{
const IPAddress anyAddr = IPAddress::FromIPv4(aAddress.ToIPv4());
anyAddr.ToString(addrStr, sizeof(addrStr));
}
else
{
aAddress.ToString(addrStr, sizeof(addrStr));
}
snprintf(portStr, sizeof(portStr), "%u", aPort);
aEndPoint = nw_endpoint_create_host(addrStr, portStr);
VerifyOrReturnError(aEndPoint != NULL, INET_ERROR_BAD_ARGS);
return INET_NO_ERROR;
}
INET_ERROR IPEndPointBasis::GetConnection(const IPPacketInfo * aPktInfo)
{
VerifyOrReturnError(mParameters != NULL, INET_ERROR_INCORRECT_STATE);
nw_endpoint_t endpoint = NULL;
nw_connection_t connection = NULL;
if (mConnection)
{
nw_path_t path = nw_connection_copy_current_path(mConnection);
nw_endpoint_t remote_endpoint = nw_path_copy_effective_remote_endpoint(path);
const IPAddress remote_address = IPAddress::FromSockAddr(*nw_endpoint_get_address(remote_endpoint));
const uint16_t remote_port = nw_endpoint_get_port(remote_endpoint);
const bool isDifferentEndPoint = aPktInfo->DestPort != remote_port || aPktInfo->DestAddress != remote_address;
VerifyOrReturnError(isDifferentEndPoint, INET_NO_ERROR);
ReturnErrorOnFailure(ReleaseConnection());
}
ReturnErrorOnFailure(GetEndPoint(endpoint, mAddrType, aPktInfo->DestAddress, aPktInfo->DestPort));
connection = nw_connection_create(endpoint, mParameters);
nw_release(endpoint);
VerifyOrReturnError(connection != NULL, INET_ERROR_INCORRECT_STATE);
return StartConnection(connection);
}
INET_ERROR IPEndPointBasis::StartListener()
{
__block INET_ERROR res = INET_NO_ERROR;
nw_listener_t listener;
VerifyOrReturnError(mListener == NULL, INET_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mListenerSemaphore == NULL, INET_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mListenerQueue == NULL, INET_ERROR_INCORRECT_STATE);
listener = nw_listener_create(mParameters);
VerifyOrReturnError(listener != NULL, INET_ERROR_INCORRECT_STATE);
mListenerSemaphore = dispatch_semaphore_create(0);
VerifyOrReturnError(mListenerSemaphore != NULL, INET_ERROR_NO_MEMORY);
dispatch_retain(mListenerSemaphore);
mListenerQueue = dispatch_queue_create("inet_dispatch_listener", DISPATCH_QUEUE_CONCURRENT);
VerifyOrReturnError(mListenerQueue != NULL, INET_ERROR_NO_MEMORY);
dispatch_retain(mListenerQueue);
nw_listener_set_queue(listener, mListenerQueue);
nw_listener_set_new_connection_handler(listener, ^(nw_connection_t connection) {
ReleaseConnection();
StartConnection(connection);
});
nw_listener_set_state_changed_handler(listener, ^(nw_listener_state_t state, nw_error_t error) {
switch (state)
{
case nw_listener_state_invalid:
ChipLogDetail(Inet, "Listener: Invalid");
res = INET_ERROR_INCORRECT_STATE;
nw_listener_cancel(listener);
break;
case nw_listener_state_waiting:
ChipLogDetail(Inet, "Listener: Waiting");
break;
case nw_listener_state_failed:
ChipLogDetail(Inet, "Listener: Failed");
res = chip::System::MapErrorPOSIX(nw_error_get_error_code(error));
break;
case nw_listener_state_ready:
ChipLogDetail(Inet, "Listener: Ready");
res = INET_NO_ERROR;
dispatch_semaphore_signal(mListenerSemaphore);
break;
case nw_listener_state_cancelled:
ChipLogDetail(Inet, "Listener: Cancelled");
if (res == INET_NO_ERROR)
res = INET_ERROR_CONNECTION_ABORTED;
dispatch_semaphore_signal(mListenerSemaphore);
break;
}
});
nw_listener_start(listener);
dispatch_semaphore_wait(mListenerSemaphore, DISPATCH_TIME_FOREVER);
ReturnErrorOnFailure(res);
mListener = listener;
nw_retain(mListener);
return res;
}
INET_ERROR IPEndPointBasis::StartConnection(nw_connection_t & aConnection)
{
__block INET_ERROR res = INET_NO_ERROR;
nw_connection_set_queue(aConnection, mDispatchQueue);
nw_connection_set_state_changed_handler(aConnection, ^(nw_connection_state_t state, nw_error_t error) {
switch (state)
{
case nw_connection_state_invalid:
ChipLogDetail(Inet, "Connection: Invalid");
res = INET_ERROR_INCORRECT_STATE;
nw_connection_cancel(aConnection);
break;
case nw_connection_state_preparing:
ChipLogDetail(Inet, "Connection: Preparing");
res = INET_ERROR_INCORRECT_STATE;
break;
case nw_connection_state_waiting:
ChipLogDetail(Inet, "Connection: Waiting");
nw_connection_cancel(aConnection);
break;
case nw_connection_state_failed:
ChipLogDetail(Inet, "Connection: Failed");
res = chip::System::MapErrorPOSIX(nw_error_get_error_code(error));
break;
case nw_connection_state_ready:
ChipLogDetail(Inet, "Connection: Ready");
res = INET_NO_ERROR;
dispatch_semaphore_signal(mConnectionSemaphore);
break;
case nw_connection_state_cancelled:
ChipLogDetail(Inet, "Connection: Cancelled");
if (res == INET_NO_ERROR)
res = INET_ERROR_CONNECTION_ABORTED;
dispatch_semaphore_signal(mConnectionSemaphore);
break;
}
});
nw_connection_start(aConnection);
dispatch_semaphore_wait(mConnectionSemaphore, DISPATCH_TIME_FOREVER);
SuccessOrExit(res);
mConnection = aConnection;
nw_retain(mConnection);
HandleDataReceived(mConnection);
return res;
}
void IPEndPointBasis::ReleaseAll()
{
OnMessageReceived = NULL;
OnReceiveError = NULL;
ReleaseConnection();
ReleaseListener();
if (mParameters)
{
nw_release(mParameters);
mParameters = NULL;
}
if (mDispatchQueue)
{
dispatch_suspend(mDispatchQueue);
dispatch_release(mDispatchQueue);
mDispatchQueue = NULL;
}
if (mConnectionSemaphore)
{
dispatch_release(mConnectionSemaphore);
mConnectionSemaphore = NULL;
}
if (mListenerQueue)
{
dispatch_suspend(mListenerQueue);
dispatch_release(mListenerQueue);
mListenerQueue = NULL;
}
if (mListenerSemaphore)
{
dispatch_release(mListenerSemaphore);
mListenerSemaphore = NULL;
}
if (mSendSemaphore)
{
dispatch_release(mSendSemaphore);
mSendSemaphore = NULL;
}
}
INET_ERROR IPEndPointBasis::ReleaseListener()
{
VerifyOrReturnError(mListener, INET_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mDispatchQueue, INET_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mConnectionSemaphore, INET_ERROR_INCORRECT_STATE);
nw_listener_cancel(mListener);
dispatch_semaphore_wait(mListenerSemaphore, DISPATCH_TIME_FOREVER);
nw_release(mListener);
mListener = NULL;
return INET_NO_ERROR;
}
INET_ERROR IPEndPointBasis::ReleaseConnection()
{
VerifyOrReturnError(mConnection, INET_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mDispatchQueue, INET_ERROR_INCORRECT_STATE);
VerifyOrReturnError(mConnectionSemaphore, INET_ERROR_INCORRECT_STATE);
nw_connection_cancel(mConnection);
dispatch_semaphore_wait(mConnectionSemaphore, DISPATCH_TIME_FOREVER);
nw_release(mConnection);
mConnection = NULL;
return INET_NO_ERROR;
}
#endif // CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
} // namespace Inet
} // namespace chip