blob: 30967cd61467293aea13c514f3436745952c45b0 [file] [log] [blame]
/*
*
* Copyright (c) 2021 Project CHIP Authors
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "app_common.h"
#if (OTA_SUPPORT == 1)
#include <app/clusters/ota-requestor/OTADownloader.h>
#include <app/clusters/ota-requestor/OTARequestorInterface.h>
#include "OTAImageProcessorImpl.h"
#include "ota.h"
#include "sfu_fwimg_regions.h"
#include "stm_ext_flash.h"
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
#include "mapping_fwimg.h"
#include "mapping_sbsfu.h"
#elif defined(__ICCARM__) || defined(__GNUC__)
#include "mapping_export.h"
#endif /* __CC_ARM || __ARMCC_VERSION */
#include "sfu_standalone_loader.h"
#define STM_HEADER_SIZE 8
static uint32_t mCPU1Size;
static uint32_t mCPU2Size;
static uint32_t mDownloadedBytesCPU2;
static uint8_t mSwitchDwlSlot;
namespace chip {
bool OTAImageProcessorImpl::IsFirstImageRun()
{
OTARequestorInterface * requestor = chip::GetRequestorInstance();
if (requestor == nullptr)
{
return false;
}
return requestor->GetCurrentUpdateState() == OTARequestorInterface::OTAUpdateStateEnum::kApplying;
}
CHIP_ERROR OTAImageProcessorImpl::ConfirmCurrentImage()
{
ChipLogProgress(DeviceLayer, "OTA Confirm current image");
OTARequestorInterface * requestor = chip::GetRequestorInstance();
if (requestor == nullptr)
{
return CHIP_ERROR_INTERNAL;
}
uint32_t currentVersion;
uint32_t targetVersion = requestor->GetTargetVersion();
ReturnErrorOnFailure(DeviceLayer::ConfigurationMgr().GetSoftwareVersion(currentVersion));
if (currentVersion != targetVersion)
{
ChipLogError(SoftwareUpdate, "Current software version = %" PRIu32 ", expected software version = %" PRIu32, currentVersion,
targetVersion);
return CHIP_ERROR_INCORRECT_STATE;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::PrepareDownload()
{
// Get OTA status - under what circumstances does prepared break?
// what happens if a prepare is pending and another one is invoked
// Should we store the state here and wait until we receive notification
mHeaderParser.Init();
DeviceLayer::PlatformMgr().ScheduleWork(HandlePrepareDownload, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::ProcessHeader(ByteSpan & block)
{
ChipLogProgress(DeviceLayer, "OTA Process Header");
if (mHeaderParser.IsInitialized())
{
OTAImageHeader header;
CHIP_ERROR error = mHeaderParser.AccumulateAndDecode(block, header);
// Needs more data to decode the header
VerifyOrReturnError(error != CHIP_ERROR_BUFFER_TOO_SMALL, CHIP_NO_ERROR);
ReturnErrorOnFailure(error);
mParams.totalFileBytes = header.mPayloadSize;
mHeaderParser.Clear();
// Load Ota_ImageHeader_t header structure and call application callback to validate image header
Ota_ImageHeader_t OtaImgHeader;
this->mSwVer = header.mSoftwareVersion; // Store software version in imageProcessor as well
OtaImgHeader.vendorId = header.mVendorId;
OtaImgHeader.productId = header.mProductId;
OtaImgHeader.softwareVersion = header.mSoftwareVersion;
OtaImgHeader.minApplicableVersion = header.mMinApplicableVersion.ValueOr(0);
OtaImgHeader.maxApplicableVersion = header.mMaxApplicableVersion.ValueOr(0);
if (true != OtaHeaderValidation(OtaImgHeader))
{
return CHIP_ERROR_INCORRECT_STATE;
}
}
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::Finalize()
{
DeviceLayer::PlatformMgr().ScheduleWork(HandleFinalize, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::Apply()
{
ChipLogProgress(SoftwareUpdate, "Applying - resetting device");
if (mCPU2Size == 0)
{
STANDALONE_LOADER_STATE = STANDALONE_LOADER_INSTALL_REQ; // install only CPU1
}
else if (mCPU1Size == 0)
{
STANDALONE_LOADER_STATE = STANDALONE_LOADER_BYPASS_REQ; // install only CPU2
}
else
{
STANDALONE_LOADER_STATE = STANDALONE_LOADER_BYPASS_REQ_AND_INSTALL_REQ; // install CPU1 and CPU2
}
NVIC_SystemReset();
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::Abort()
{
DeviceLayer::PlatformMgr().ScheduleWork(HandleAbort, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::ProcessBlock(ByteSpan & block)
{
if ((block.data() == nullptr) || block.empty())
{
return CHIP_ERROR_INVALID_ARGUMENT;
}
CHIP_ERROR err = ProcessHeader(block);
ChipLogProgress(DeviceLayer, "OTA Process Block");
if (err != CHIP_NO_ERROR)
{
ChipLogError(SoftwareUpdate, "Matter image header parser error %s", chip::ErrorStr(err));
this->mDownloader->EndDownload(CHIP_ERROR_INVALID_FILE_IDENTIFIER);
return err;
}
// Store block data for HandleProcessBlock to access
err = SetBlock(block);
if (err != CHIP_NO_ERROR)
{
ChipLogError(SoftwareUpdate, "Cannot set block data: %" CHIP_ERROR_FORMAT, err.Format());
return err;
}
DeviceLayer::PlatformMgr().ScheduleWork(HandleProcessBlock, reinterpret_cast<intptr_t>(this));
return CHIP_NO_ERROR;
}
void OTAImageProcessorImpl::HandlePrepareDownload(intptr_t context)
{
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
ChipLogProgress(DeviceLayer, "OTA Prepare DL");
if (imageProcessor == nullptr)
{
ChipLogError(SoftwareUpdate, "ImageProcessor context is null");
return;
}
else if (imageProcessor->mDownloader == nullptr)
{
ChipLogError(SoftwareUpdate, "mDownloader is null");
return;
}
// running this in a thread so won't block main event loop
ChipLogProgress(SoftwareUpdate, "HandlePrepareDownload");
mSwitchDwlSlot = false; // start with dwl_slot1 for CPU1
STM_EXT_FLASH_Delete_Image(EXTERNAL_FLASH_ADDRESS + SLOT_DWL_1_START, SLOT_SIZE(SLOT_DWL_1));
STM_EXT_FLASH_Delete_Image(EXTERNAL_FLASH_ADDRESS + SLOT_DWL_4_START, SLOT_SIZE(SLOT_DWL_4));
// Initialize tracking variables
imageProcessor->mParams.downloadedBytes = 0;
mDownloadedBytesCPU2 = 0;
imageProcessor->mDownloader->OnPreparedForDownload(CHIP_NO_ERROR);
}
void OTAImageProcessorImpl::HandleFinalize(intptr_t context)
{
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
if (imageProcessor == nullptr)
{
return;
}
ChipLogProgress(SoftwareUpdate, "HandleFinalize");
imageProcessor->ReleaseBlock();
// Start from scratch
imageProcessor->mParams.downloadedBytes = 0;
}
void OTAImageProcessorImpl::HandleAbort(intptr_t context)
{
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
if (imageProcessor == nullptr)
{
return;
}
ChipLogProgress(SoftwareUpdate, "HandleAbort");
STM_EXT_FLASH_Delete_Image(EXTERNAL_FLASH_ADDRESS + SLOT_DWL_1_START, SLOT_SIZE(SLOT_DWL_1));
STM_EXT_FLASH_Delete_Image(EXTERNAL_FLASH_ADDRESS + SLOT_DWL_4_START, SLOT_SIZE(SLOT_DWL_4));
imageProcessor->ReleaseBlock();
// Start from scratch
imageProcessor->mParams.downloadedBytes = 0;
mDownloadedBytesCPU2 = 0;
mSwitchDwlSlot = false; // start with dwl_slot1 for CPU1
}
void OTAImageProcessorImpl::HandleProcessBlock(intptr_t context)
{
STM_OTA_StatusTypeDef status;
auto * imageProcessor = reinterpret_cast<OTAImageProcessorImpl *>(context);
if (imageProcessor == nullptr)
{
ChipLogError(SoftwareUpdate, "ImageProcessor context is null");
return;
}
else if (imageProcessor->mDownloader == nullptr)
{
ChipLogError(SoftwareUpdate, "mDownloader is null");
return;
}
if (mSwitchDwlSlot == false)
{ // CPU1 write in DWL_SLOT 1
if (imageProcessor->mParams.downloadedBytes == 0)
{ // get STM_Header
uint8_t STMHeader[STM_HEADER_SIZE];
memcpy(STMHeader, reinterpret_cast<std::uint8_t *>(imageProcessor->mBlock.data()), sizeof(STMHeader));
// retrieve the cpu1/2 size with STM header
mCPU1Size = STMHeader[0] + ((STMHeader[1]) << 8) + ((STMHeader[2]) << 16) + ((STMHeader[3]) << 24);
mCPU2Size = STMHeader[4] + ((STMHeader[5]) << 8) + ((STMHeader[6]) << 16) + ((STMHeader[7]) << 24);
// check the header
if ((mCPU1Size > SLOT_SIZE(SLOT_DWL_1)) || (mCPU2Size > SLOT_SIZE(SLOT_DWL_4)) || (mCPU2Size + mCPU1Size == 0))
{
ChipLogError(SoftwareUpdate, "Flash decode failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_DECODE_FAILED);
return;
}
if (mCPU1Size == 0)
{ // update only CPU2
// write in DWL_SLOT1 data without STM header
status = STM_EXT_FLASH_WriteChunk(imageProcessor->mParams.downloadedBytes + SLOT_DWL_4_START,
reinterpret_cast<std::uint8_t *>(imageProcessor->mBlock.data()) + STM_HEADER_SIZE,
static_cast<std::uint32_t>(imageProcessor->mBlock.size()) - STM_HEADER_SIZE);
if (status != STM_EXT_FLASH_OK)
{
ChipLogError(SoftwareUpdate, "Flash write failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_WRITE_FAILED);
return;
}
imageProcessor->mParams.downloadedBytes += imageProcessor->mBlock.size() - STM_HEADER_SIZE;
mSwitchDwlSlot = true; // switch to DWL_SLOT 4 for all the next data
mDownloadedBytesCPU2 = imageProcessor->mBlock.size() - STM_HEADER_SIZE; // update the bytes write in Dwl_slot4
}
else
{
// write in DWL_SLOT1 data without STM header
status = STM_EXT_FLASH_WriteChunk(imageProcessor->mParams.downloadedBytes + SLOT_DWL_1_START,
reinterpret_cast<std::uint8_t *>(imageProcessor->mBlock.data()) + STM_HEADER_SIZE,
static_cast<std::uint32_t>(imageProcessor->mBlock.size()) - STM_HEADER_SIZE);
if (status != STM_EXT_FLASH_OK)
{
ChipLogError(SoftwareUpdate, "Flash write failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_WRITE_FAILED);
return;
}
imageProcessor->mParams.downloadedBytes += imageProcessor->mBlock.size() - STM_HEADER_SIZE;
}
}
else if ((imageProcessor->mParams.downloadedBytes + static_cast<std::uint32_t>(imageProcessor->mBlock.size())) >= mCPU1Size)
{
// split the block in 2 for Dwl_slot1 and Dwl_slot4
uint32_t CPU2BlockStart =
imageProcessor->mParams.downloadedBytes + static_cast<std::uint32_t>(imageProcessor->mBlock.size()) - mCPU1Size;
uint32_t CPU1BlockEnd = static_cast<std::uint32_t>(imageProcessor->mBlock.size()) - CPU2BlockStart;
if (CPU2BlockStart + CPU1BlockEnd == static_cast<std::uint32_t>(imageProcessor->mBlock.size()))
{
mDownloadedBytesCPU2 = 0;
// CPU1 write in DWL_SLOT 1
status = STM_EXT_FLASH_WriteChunk(imageProcessor->mParams.downloadedBytes + SLOT_DWL_1_START,
reinterpret_cast<std::uint8_t *>(imageProcessor->mBlock.data()), CPU1BlockEnd);
if (status != STM_EXT_FLASH_OK)
{
ChipLogError(SoftwareUpdate, "Flash write failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_WRITE_FAILED);
return;
}
if (mCPU2Size != 0)
{
// CPU2 write in DWL_SLOT 4
status = STM_EXT_FLASH_WriteChunk(
mDownloadedBytesCPU2 + SLOT_DWL_4_START,
reinterpret_cast<std::uint8_t *>(imageProcessor->mBlock.data()) + CPU1BlockEnd, CPU2BlockStart);
if (status != STM_EXT_FLASH_OK)
{
ChipLogError(SoftwareUpdate, "Flash write failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_WRITE_FAILED);
return;
}
mSwitchDwlSlot = true; // switch to DWL_SLOT 4 for all the next data
imageProcessor->mParams.downloadedBytes += imageProcessor->mBlock.size(); // keep track of all bytes dwl
mDownloadedBytesCPU2 = CPU2BlockStart; // update the bytes write in Dwl_slot4
}
}
else
{
ChipLogError(SoftwareUpdate, "Flash decode failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_DECODE_FAILED);
return;
}
}
else
{ // CPU1 write in DWL_SLOT 1
status = STM_EXT_FLASH_WriteChunk(imageProcessor->mParams.downloadedBytes + SLOT_DWL_1_START,
reinterpret_cast<std::uint8_t *>(imageProcessor->mBlock.data()),
static_cast<std::uint32_t>(imageProcessor->mBlock.size()));
if (status != STM_EXT_FLASH_OK)
{
ChipLogError(SoftwareUpdate, "Flash write failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_WRITE_FAILED);
return;
}
imageProcessor->mParams.downloadedBytes += imageProcessor->mBlock.size();
}
}
else
{ // CPU2 write in DWL_SLOT 4
status = STM_EXT_FLASH_WriteChunk(mDownloadedBytesCPU2 + SLOT_DWL_4_START,
reinterpret_cast<std::uint8_t *>(imageProcessor->mBlock.data()),
static_cast<std::uint32_t>(imageProcessor->mBlock.size()));
if (status != STM_EXT_FLASH_OK)
{
ChipLogError(SoftwareUpdate, "Flash write failed");
imageProcessor->mDownloader->EndDownload(CHIP_ERROR_WRITE_FAILED);
return;
}
imageProcessor->mParams.downloadedBytes += imageProcessor->mBlock.size(); // keep track of all bytes dwl
mDownloadedBytesCPU2 += imageProcessor->mBlock.size(); // update the bytes write in Dwl_slot4
}
imageProcessor->mDownloader->FetchNextData();
}
CHIP_ERROR OTAImageProcessorImpl::SetBlock(ByteSpan & block)
{
if (!IsSpanUsable(block))
{
ReleaseBlock();
return CHIP_NO_ERROR;
}
if (mBlock.size() < block.size())
{
if (!mBlock.empty())
{
ReleaseBlock();
}
uint8_t * mBlock_ptr = static_cast<uint8_t *>(chip::Platform::MemoryAlloc(block.size()));
if (mBlock_ptr == nullptr)
{
return CHIP_ERROR_NO_MEMORY;
}
mBlock = MutableByteSpan(mBlock_ptr, block.size());
}
CHIP_ERROR err = CopySpanToMutableSpan(block, mBlock);
if (err != CHIP_NO_ERROR)
{
ChipLogError(SoftwareUpdate, "Cannot copy block data: %" CHIP_ERROR_FORMAT, err.Format());
return err;
}
return CHIP_NO_ERROR;
}
CHIP_ERROR OTAImageProcessorImpl::ReleaseBlock()
{
if (mBlock.data() != nullptr)
{
chip::Platform::MemoryFree(mBlock.data());
}
mBlock = MutableByteSpan();
return CHIP_NO_ERROR;
}
} // namespace chip
#endif