blob: 88964d9aa1d3c8664511a415ee04e1ce56058ab5 [file] [log] [blame]
/*
*
* Copyright (c) 2020 Project CHIP Authors
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "AppTask.h"
#include "AppConfig.h"
#include "AppEvent.h"
#include "FabricTableDelegate.h"
#include "LEDUtil.h"
#include "PWMDevice.h"
#include <DeviceInfoProviderImpl.h>
#include <app-common/zap-generated/attributes/Accessors.h>
#include <app/DeferredAttributePersistenceProvider.h>
#include <app/TestEventTriggerDelegate.h>
#include <app/clusters/identify-server/identify-server.h>
#include <app/clusters/ota-requestor/OTATestEventTriggerHandler.h>
#include <app/server/Dnssd.h>
#include <app/server/OnboardingCodesUtil.h>
#include <app/server/Server.h>
#include <credentials/DeviceAttestationCredsProvider.h>
#include <credentials/examples/DeviceAttestationCredsExample.h>
#include <lib/core/ErrorStr.h>
#include <lib/support/CHIPMem.h>
#include <lib/support/CodeUtils.h>
#include <system/SystemClock.h>
#ifdef CONFIG_CHIP_WIFI
#include <app/clusters/network-commissioning/network-commissioning.h>
#include <platform/nrfconnect/wifi/NrfWiFiDriver.h>
#endif
#if CONFIG_CHIP_OTA_REQUESTOR
#include "OTAUtil.h"
#endif
#ifdef CONFIG_CHIP_CRYPTO_PSA
#include <crypto/PSAOperationalKeystore.h>
#ifdef CONFIG_CHIP_MIGRATE_OPERATIONAL_KEYS_TO_ITS
#include "MigrationManager.h"
#endif
#endif
#include <dk_buttons_and_leds.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(app, CONFIG_CHIP_APP_LOG_LEVEL);
using namespace ::chip;
using namespace ::chip::app;
using namespace ::chip::Credentials;
using namespace ::chip::DeviceLayer;
namespace {
constexpr int kFactoryResetTriggerTimeout = 3000;
constexpr int kFactoryResetCancelWindowTimeout = 3000;
constexpr int kAppEventQueueSize = 10;
constexpr EndpointId kLightEndpointId = 1;
constexpr uint8_t kDefaultMinLevel = 0;
constexpr uint8_t kDefaultMaxLevel = 254;
#if NUMBER_OF_BUTTONS == 2
constexpr uint32_t kAdvertisingTriggerTimeout = 3000;
#endif
// NOTE! This key is for test/certification only and should not be available in production devices!
// If CONFIG_CHIP_FACTORY_DATA is enabled, this value is read from the factory data.
uint8_t sTestEventTriggerEnableKey[TestEventTriggerDelegate::kEnableKeyLength] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
K_MSGQ_DEFINE(sAppEventQueue, sizeof(AppEvent), kAppEventQueueSize, alignof(AppEvent));
k_timer sFunctionTimer;
Identify sIdentify = { kLightEndpointId, AppTask::IdentifyStartHandler, AppTask::IdentifyStopHandler,
Clusters::Identify::IdentifyTypeEnum::kVisibleIndicator };
LEDWidget sStatusLED;
LEDWidget sIdentifyLED;
#if NUMBER_OF_LEDS == 4
FactoryResetLEDsWrapper<2> sFactoryResetLEDs{ { FACTORY_RESET_SIGNAL_LED, FACTORY_RESET_SIGNAL_LED1 } };
#endif
bool sIsNetworkProvisioned = false;
bool sIsNetworkEnabled = false;
bool sHaveBLEConnections = false;
const struct pwm_dt_spec sLightPwmDevice = PWM_DT_SPEC_GET(DT_ALIAS(pwm_led1));
chip::DeviceLayer::DeviceInfoProviderImpl gExampleDeviceInfoProvider;
// Define a custom attribute persister which makes actual write of the CurrentLevel attribute value
// to the non-volatile storage only when it has remained constant for 5 seconds. This is to reduce
// the flash wearout when the attribute changes frequently as a result of MoveToLevel command.
// DeferredAttribute object describes a deferred attribute, but also holds a buffer with a value to
// be written, so it must live so long as the DeferredAttributePersistenceProvider object.
DeferredAttribute gCurrentLevelPersister(ConcreteAttributePath(kLightEndpointId, Clusters::LevelControl::Id,
Clusters::LevelControl::Attributes::CurrentLevel::Id));
DeferredAttributePersistenceProvider gDeferredAttributePersister(Server::GetInstance().GetDefaultAttributePersister(),
Span<DeferredAttribute>(&gCurrentLevelPersister, 1),
System::Clock::Milliseconds32(5000));
#ifdef CONFIG_CHIP_CRYPTO_PSA
chip::Crypto::PSAOperationalKeystore sPSAOperationalKeystore{};
#endif
} // namespace
namespace LedConsts {
constexpr uint32_t kBlinkRate_ms{ 500 };
constexpr uint32_t kIdentifyBlinkRate_ms{ 500 };
namespace StatusLed {
namespace Unprovisioned {
constexpr uint32_t kOn_ms{ 100 };
constexpr uint32_t kOff_ms{ kOn_ms };
} /* namespace Unprovisioned */
namespace Provisioned {
constexpr uint32_t kOn_ms{ 50 };
constexpr uint32_t kOff_ms{ 950 };
} /* namespace Provisioned */
} /* namespace StatusLed */
} /* namespace LedConsts */
#ifdef CONFIG_CHIP_WIFI
app::Clusters::NetworkCommissioning::Instance sWiFiCommissioningInstance(0, &(NetworkCommissioning::NrfWiFiDriver::Instance()));
#endif
CHIP_ERROR AppTask::Init()
{
// Initialize CHIP stack
LOG_INF("Init CHIP stack");
CHIP_ERROR err = chip::Platform::MemoryInit();
if (err != CHIP_NO_ERROR)
{
LOG_ERR("Platform::MemoryInit() failed");
return err;
}
err = PlatformMgr().InitChipStack();
if (err != CHIP_NO_ERROR)
{
LOG_ERR("PlatformMgr().InitChipStack() failed");
return err;
}
#if defined(CONFIG_NET_L2_OPENTHREAD)
err = ThreadStackMgr().InitThreadStack();
if (err != CHIP_NO_ERROR)
{
LOG_ERR("ThreadStackMgr().InitThreadStack() failed");
return err;
}
#if CONFIG_CHIP_THREAD_SSED
err = ConnectivityMgr().SetThreadDeviceType(ConnectivityManager::kThreadDeviceType_SynchronizedSleepyEndDevice);
#elif CONFIG_OPENTHREAD_MTD_SED
err = ConnectivityMgr().SetThreadDeviceType(ConnectivityManager::kThreadDeviceType_SleepyEndDevice);
#else
err = ConnectivityMgr().SetThreadDeviceType(ConnectivityManager::kThreadDeviceType_Router);
#endif
if (err != CHIP_NO_ERROR)
{
LOG_ERR("ConnectivityMgr().SetThreadDeviceType() failed");
return err;
}
#elif defined(CONFIG_CHIP_WIFI)
sWiFiCommissioningInstance.Init();
#else
return CHIP_ERROR_INTERNAL;
#endif // CONFIG_NET_L2_OPENTHREAD
// Initialize LEDs
LEDWidget::InitGpio();
LEDWidget::SetStateUpdateCallback(LEDStateUpdateHandler);
sStatusLED.Init(SYSTEM_STATE_LED);
sIdentifyLED.Init(LIGHTING_STATE_LED);
sIdentifyLED.Set(false);
UpdateStatusLED();
// Initialize buttons
int ret = dk_buttons_init(ButtonEventHandler);
if (ret)
{
LOG_ERR("dk_buttons_init() failed");
return chip::System::MapErrorZephyr(ret);
}
// Initialize function button timer
k_timer_init(&sFunctionTimer, &AppTask::FunctionTimerTimeoutCallback, nullptr);
k_timer_user_data_set(&sFunctionTimer, this);
#ifdef CONFIG_MCUMGR_TRANSPORT_BT
// Initialize DFU over SMP
GetDFUOverSMP().Init();
GetDFUOverSMP().ConfirmNewImage();
#endif
#ifdef CONFIG_CHIP_OTA_REQUESTOR
/* OTA image confirmation must be done before the factory data init. */
OtaConfirmNewImage();
#endif
// Initialize lighting device (PWM)
uint8_t minLightLevel = kDefaultMinLevel;
Clusters::LevelControl::Attributes::MinLevel::Get(kLightEndpointId, &minLightLevel);
uint8_t maxLightLevel = kDefaultMaxLevel;
Clusters::LevelControl::Attributes::MaxLevel::Get(kLightEndpointId, &maxLightLevel);
ret = mPWMDevice.Init(&sLightPwmDevice, minLightLevel, maxLightLevel, maxLightLevel);
if (ret != 0)
{
return chip::System::MapErrorZephyr(ret);
}
mPWMDevice.SetCallbacks(ActionInitiated, ActionCompleted);
// Initialize CHIP server
#if CONFIG_CHIP_FACTORY_DATA
ReturnErrorOnFailure(mFactoryDataProvider.Init());
SetDeviceInstanceInfoProvider(&mFactoryDataProvider);
SetDeviceAttestationCredentialsProvider(&mFactoryDataProvider);
SetCommissionableDataProvider(&mFactoryDataProvider);
// Read EnableKey from the factory data.
MutableByteSpan enableKey(sTestEventTriggerEnableKey);
err = mFactoryDataProvider.GetEnableKey(enableKey);
if (err != CHIP_NO_ERROR)
{
LOG_ERR("mFactoryDataProvider.GetEnableKey() failed. Could not delegate a test event trigger");
memset(sTestEventTriggerEnableKey, 0, sizeof(sTestEventTriggerEnableKey));
}
#else
SetDeviceInstanceInfoProvider(&DeviceInstanceInfoProviderMgrImpl());
SetDeviceAttestationCredentialsProvider(Examples::GetExampleDACProvider());
#endif
static CommonCaseDeviceServerInitParams initParams;
static SimpleTestEventTriggerDelegate sTestEventTriggerDelegate{};
static OTATestEventTriggerHandler sOtaTestEventTriggerHandler{};
VerifyOrDie(sTestEventTriggerDelegate.Init(ByteSpan(sTestEventTriggerEnableKey)) == CHIP_NO_ERROR);
VerifyOrDie(sTestEventTriggerDelegate.AddHandler(&sOtaTestEventTriggerHandler) == CHIP_NO_ERROR);
#ifdef CONFIG_CHIP_CRYPTO_PSA
initParams.operationalKeystore = &sPSAOperationalKeystore;
#endif
(void) initParams.InitializeStaticResourcesBeforeServerInit();
initParams.testEventTriggerDelegate = &sTestEventTriggerDelegate;
ReturnErrorOnFailure(chip::Server::GetInstance().Init(initParams));
AppFabricTableDelegate::Init();
#ifdef CONFIG_CHIP_MIGRATE_OPERATIONAL_KEYS_TO_ITS
err = MoveOperationalKeysFromKvsToIts(sLocalInitData.mServerInitParams->persistentStorageDelegate,
sLocalInitData.mServerInitParams->operationalKeystore);
if (err != CHIP_NO_ERROR)
{
LOG_ERR("MoveOperationalKeysFromKvsToIts() failed");
return err;
}
#endif
gExampleDeviceInfoProvider.SetStorageDelegate(&Server::GetInstance().GetPersistentStorage());
chip::DeviceLayer::SetDeviceInfoProvider(&gExampleDeviceInfoProvider);
app::SetAttributePersistenceProvider(&gDeferredAttributePersister);
ConfigurationMgr().LogDeviceConfig();
PrintOnboardingCodes(chip::RendezvousInformationFlags(chip::RendezvousInformationFlag::kBLE));
// Add CHIP event handler and start CHIP thread.
// Note that all the initialization code should happen prior to this point to avoid data races
// between the main and the CHIP threads.
PlatformMgr().AddEventHandler(ChipEventHandler, 0);
err = PlatformMgr().StartEventLoopTask();
if (err != CHIP_NO_ERROR)
{
LOG_ERR("PlatformMgr().StartEventLoopTask() failed");
}
return err;
}
CHIP_ERROR AppTask::StartApp()
{
ReturnErrorOnFailure(Init());
AppEvent event = {};
while (true)
{
k_msgq_get(&sAppEventQueue, &event, K_FOREVER);
DispatchEvent(event);
}
return CHIP_NO_ERROR;
}
void AppTask::IdentifyStartHandler(Identify *)
{
AppEvent event;
event.Type = AppEventType::IdentifyStart;
event.Handler = [](const AppEvent &) {
Instance().mPWMDevice.SuppressOutput();
sIdentifyLED.Blink(LedConsts::kIdentifyBlinkRate_ms);
};
PostEvent(event);
}
void AppTask::IdentifyStopHandler(Identify *)
{
AppEvent event;
event.Type = AppEventType::IdentifyStop;
event.Handler = [](const AppEvent &) {
sIdentifyLED.Set(false);
Instance().mPWMDevice.ApplyLevel();
};
PostEvent(event);
}
#if NUMBER_OF_BUTTONS == 2
void AppTask::StartBLEAdvertisementAndLightActionEventHandler(const AppEvent & event)
{
if (event.ButtonEvent.Action == static_cast<uint8_t>(AppEventType::ButtonPushed))
{
Instance().StartTimer(kAdvertisingTriggerTimeout);
Instance().mFunction = FunctionEvent::AdvertisingStart;
}
else
{
if (Instance().mFunction == FunctionEvent::AdvertisingStart && Instance().mFunctionTimerActive)
{
Instance().CancelTimer();
Instance().mFunction = FunctionEvent::NoneSelected;
AppEvent button_event;
button_event.Type = AppEventType::Button;
button_event.ButtonEvent.PinNo = BLE_ADVERTISEMENT_START_AND_LIGHTING_BUTTON;
button_event.ButtonEvent.Action = static_cast<uint8_t>(AppEventType::ButtonReleased);
button_event.Handler = LightingActionEventHandler;
PostEvent(button_event);
}
}
}
#endif
void AppTask::LightingActionEventHandler(const AppEvent & event)
{
PWMDevice::Action_t action = PWMDevice::INVALID_ACTION;
int32_t actor = 0;
if (event.Type == AppEventType::Lighting)
{
action = static_cast<PWMDevice::Action_t>(event.LightingEvent.Action);
actor = event.LightingEvent.Actor;
}
else if (event.Type == AppEventType::Button)
{
action = Instance().mPWMDevice.IsTurnedOn() ? PWMDevice::OFF_ACTION : PWMDevice::ON_ACTION;
actor = static_cast<int32_t>(AppEventType::Button);
}
if (action != PWMDevice::INVALID_ACTION && Instance().mPWMDevice.InitiateAction(action, actor, NULL))
{
LOG_INF("Action is already in progress or active.");
}
}
void AppTask::ButtonEventHandler(uint32_t buttonState, uint32_t hasChanged)
{
AppEvent button_event;
button_event.Type = AppEventType::Button;
#if NUMBER_OF_BUTTONS == 2
if (BLE_ADVERTISEMENT_START_AND_LIGHTING_BUTTON_MASK & hasChanged)
{
button_event.ButtonEvent.PinNo = BLE_ADVERTISEMENT_START_AND_LIGHTING_BUTTON;
button_event.ButtonEvent.Action =
static_cast<uint8_t>((BLE_ADVERTISEMENT_START_AND_LIGHTING_BUTTON_MASK & buttonState) ? AppEventType::ButtonPushed
: AppEventType::ButtonReleased);
button_event.Handler = StartBLEAdvertisementAndLightActionEventHandler;
PostEvent(button_event);
}
#else
if (LIGHTING_BUTTON_MASK & buttonState & hasChanged)
{
button_event.ButtonEvent.PinNo = LIGHTING_BUTTON;
button_event.ButtonEvent.Action = static_cast<uint8_t>(AppEventType::ButtonPushed);
button_event.Handler = LightingActionEventHandler;
PostEvent(button_event);
}
if (BLE_ADVERTISEMENT_START_BUTTON_MASK & buttonState & hasChanged)
{
button_event.ButtonEvent.PinNo = BLE_ADVERTISEMENT_START_BUTTON;
button_event.ButtonEvent.Action = static_cast<uint8_t>(AppEventType::ButtonPushed);
button_event.Handler = StartBLEAdvertisementHandler;
PostEvent(button_event);
}
#endif
if (FUNCTION_BUTTON_MASK & hasChanged)
{
button_event.ButtonEvent.PinNo = FUNCTION_BUTTON;
button_event.ButtonEvent.Action =
static_cast<uint8_t>((FUNCTION_BUTTON_MASK & buttonState) ? AppEventType::ButtonPushed : AppEventType::ButtonReleased);
button_event.Handler = FunctionHandler;
PostEvent(button_event);
}
}
void AppTask::FunctionTimerTimeoutCallback(k_timer * timer)
{
if (!timer)
{
return;
}
AppEvent event;
event.Type = AppEventType::Timer;
event.TimerEvent.Context = k_timer_user_data_get(timer);
event.Handler = FunctionTimerEventHandler;
PostEvent(event);
}
void AppTask::FunctionTimerEventHandler(const AppEvent & event)
{
if (event.Type != AppEventType::Timer)
{
return;
}
// If we reached here, the button was held past kFactoryResetTriggerTimeout, initiate factory reset
if (Instance().mFunction == FunctionEvent::SoftwareUpdate)
{
LOG_INF("Factory Reset Triggered. Release button within %ums to cancel.", kFactoryResetTriggerTimeout);
// Start timer for kFactoryResetCancelWindowTimeout to allow user to cancel, if required.
Instance().StartTimer(kFactoryResetCancelWindowTimeout);
Instance().mFunction = FunctionEvent::FactoryReset;
// Turn off all LEDs before starting blink to make sure blink is co-ordinated.
sStatusLED.Set(false);
#if NUMBER_OF_LEDS == 4
sFactoryResetLEDs.Set(false);
#endif
sStatusLED.Blink(LedConsts::kBlinkRate_ms);
#if NUMBER_OF_LEDS == 4
sFactoryResetLEDs.Blink(LedConsts::kBlinkRate_ms);
#endif
}
else if (Instance().mFunction == FunctionEvent::FactoryReset)
{
// Actually trigger Factory Reset
Instance().mFunction = FunctionEvent::NoneSelected;
chip::Server::GetInstance().ScheduleFactoryReset();
}
else if (Instance().mFunction == FunctionEvent::AdvertisingStart)
{
// The button was held past kAdvertisingTriggerTimeout, start BLE advertisement if we have 2 buttons UI
#if NUMBER_OF_BUTTONS == 2
StartBLEAdvertisementHandler(event);
Instance().mFunction = FunctionEvent::NoneSelected;
#endif
}
}
void AppTask::FunctionHandler(const AppEvent & event)
{
if (event.ButtonEvent.PinNo != FUNCTION_BUTTON)
return;
// To trigger software update: press the FUNCTION_BUTTON button briefly (< kFactoryResetTriggerTimeout)
// To initiate factory reset: press the FUNCTION_BUTTON for kFactoryResetTriggerTimeout + kFactoryResetCancelWindowTimeout
// All LEDs start blinking after kFactoryResetTriggerTimeout to signal factory reset has been initiated.
// To cancel factory reset: release the FUNCTION_BUTTON once all LEDs start blinking within the
// kFactoryResetCancelWindowTimeout
if (event.ButtonEvent.Action == static_cast<uint8_t>(AppEventType::ButtonPushed))
{
if (!Instance().mFunctionTimerActive && Instance().mFunction == FunctionEvent::NoneSelected)
{
Instance().StartTimer(kFactoryResetTriggerTimeout);
Instance().mFunction = FunctionEvent::SoftwareUpdate;
}
}
else
{
// If the button was released before factory reset got initiated, trigger a software update.
if (Instance().mFunctionTimerActive && Instance().mFunction == FunctionEvent::SoftwareUpdate)
{
Instance().CancelTimer();
Instance().mFunction = FunctionEvent::NoneSelected;
#ifdef CONFIG_MCUMGR_TRANSPORT_BT
GetDFUOverSMP().StartServer();
#else
LOG_INF("Software update is disabled");
#endif
}
else if (Instance().mFunctionTimerActive && Instance().mFunction == FunctionEvent::FactoryReset)
{
#if NUMBER_OF_LEDS == 4
sFactoryResetLEDs.Set(false);
#endif
UpdateStatusLED();
Instance().CancelTimer();
Instance().mFunction = FunctionEvent::NoneSelected;
LOG_INF("Factory Reset has been Canceled");
}
}
}
void AppTask::StartBLEAdvertisementHandler(const AppEvent &)
{
if (Server::GetInstance().GetFabricTable().FabricCount() != 0)
{
LOG_INF("Matter service BLE advertising not started - device is already commissioned");
return;
}
if (ConnectivityMgr().IsBLEAdvertisingEnabled())
{
LOG_INF("BLE advertising is already enabled");
return;
}
if (Server::GetInstance().GetCommissioningWindowManager().OpenBasicCommissioningWindow() != CHIP_NO_ERROR)
{
LOG_ERR("OpenBasicCommissioningWindow() failed");
}
}
void AppTask::UpdateLedStateEventHandler(const AppEvent & event)
{
if (event.Type == AppEventType::UpdateLedState)
{
event.UpdateLedStateEvent.LedWidget->UpdateState();
}
}
void AppTask::LEDStateUpdateHandler(LEDWidget & ledWidget)
{
AppEvent event;
event.Type = AppEventType::UpdateLedState;
event.Handler = UpdateLedStateEventHandler;
event.UpdateLedStateEvent.LedWidget = &ledWidget;
PostEvent(event);
}
void AppTask::UpdateStatusLED()
{
// Update the status LED.
//
// If IPv6 network and service provisioned, keep the LED On constantly.
//
// If the system has ble connection(s) uptill the stage above, THEN blink the LED at an even
// rate of 100ms.
//
// Otherwise, blink the LED for a very short time.
if (sIsNetworkProvisioned && sIsNetworkEnabled)
{
sStatusLED.Set(true);
}
else if (sHaveBLEConnections)
{
sStatusLED.Blink(LedConsts::StatusLed::Unprovisioned::kOn_ms, LedConsts::StatusLed::Unprovisioned::kOff_ms);
}
else
{
sStatusLED.Blink(LedConsts::StatusLed::Provisioned::kOn_ms, LedConsts::StatusLed::Provisioned::kOff_ms);
}
}
void AppTask::ChipEventHandler(const ChipDeviceEvent * event, intptr_t /* arg */)
{
switch (event->Type)
{
case DeviceEventType::kCHIPoBLEAdvertisingChange:
#ifdef CONFIG_CHIP_NFC_COMMISSIONING
if (event->CHIPoBLEAdvertisingChange.Result == kActivity_Started)
{
if (NFCMgr().IsTagEmulationStarted())
{
LOG_INF("NFC Tag emulation is already started");
}
else
{
ShareQRCodeOverNFC(chip::RendezvousInformationFlags(chip::RendezvousInformationFlag::kBLE));
}
}
else if (event->CHIPoBLEAdvertisingChange.Result == kActivity_Stopped)
{
NFCMgr().StopTagEmulation();
}
#endif
sHaveBLEConnections = ConnectivityMgr().NumBLEConnections() != 0;
UpdateStatusLED();
break;
#if defined(CONFIG_NET_L2_OPENTHREAD)
case DeviceEventType::kDnssdInitialized:
#if CONFIG_CHIP_OTA_REQUESTOR
InitBasicOTARequestor();
#endif /* CONFIG_CHIP_OTA_REQUESTOR */
break;
case DeviceEventType::kThreadStateChange:
sIsNetworkProvisioned = ConnectivityMgr().IsThreadProvisioned();
sIsNetworkEnabled = ConnectivityMgr().IsThreadEnabled();
#elif defined(CONFIG_CHIP_WIFI)
case DeviceEventType::kWiFiConnectivityChange:
sIsNetworkProvisioned = ConnectivityMgr().IsWiFiStationProvisioned();
sIsNetworkEnabled = ConnectivityMgr().IsWiFiStationEnabled();
#if CONFIG_CHIP_OTA_REQUESTOR
if (event->WiFiConnectivityChange.Result == kConnectivity_Established)
{
InitBasicOTARequestor();
}
#endif /* CONFIG_CHIP_OTA_REQUESTOR */
#endif
UpdateStatusLED();
break;
default:
break;
}
}
void AppTask::CancelTimer()
{
k_timer_stop(&sFunctionTimer);
mFunctionTimerActive = false;
}
void AppTask::StartTimer(uint32_t timeoutInMs)
{
k_timer_start(&sFunctionTimer, K_MSEC(timeoutInMs), K_NO_WAIT);
mFunctionTimerActive = true;
}
void AppTask::ActionInitiated(PWMDevice::Action_t action, int32_t actor)
{
if (action == PWMDevice::ON_ACTION)
{
LOG_INF("Turn On Action has been initiated");
}
else if (action == PWMDevice::OFF_ACTION)
{
LOG_INF("Turn Off Action has been initiated");
}
else if (action == PWMDevice::LEVEL_ACTION)
{
LOG_INF("Level Action has been initiated");
}
}
void AppTask::ActionCompleted(PWMDevice::Action_t action, int32_t actor)
{
if (action == PWMDevice::ON_ACTION)
{
LOG_INF("Turn On Action has been completed");
}
else if (action == PWMDevice::OFF_ACTION)
{
LOG_INF("Turn Off Action has been completed");
}
else if (action == PWMDevice::LEVEL_ACTION)
{
LOG_INF("Level Action has been completed");
}
if (actor == static_cast<int32_t>(AppEventType::Button))
{
Instance().UpdateClusterState();
}
}
void AppTask::PostEvent(const AppEvent & event)
{
if (k_msgq_put(&sAppEventQueue, &event, K_NO_WAIT) != 0)
{
LOG_INF("Failed to post event to app task event queue");
}
}
void AppTask::DispatchEvent(const AppEvent & event)
{
if (event.Handler)
{
event.Handler(event);
}
else
{
LOG_INF("Event received with no handler. Dropping event.");
}
}
void AppTask::UpdateClusterState()
{
SystemLayer().ScheduleLambda([this] {
// write the new on/off value
Protocols::InteractionModel::Status status =
Clusters::OnOff::Attributes::OnOff::Set(kLightEndpointId, mPWMDevice.IsTurnedOn());
if (status != Protocols::InteractionModel::Status::Success)
{
LOG_ERR("Updating on/off cluster failed: %x", to_underlying(status));
}
// write the current level
status = Clusters::LevelControl::Attributes::CurrentLevel::Set(kLightEndpointId, mPWMDevice.GetLevel());
if (status != Protocols::InteractionModel::Status::Success)
{
LOG_ERR("Updating level cluster failed: %x", to_underlying(status));
}
});
}